Statistical Methods

Nels Grevstad

Metropolitan State University of Denver

ngrevsta@msudenver.edu

October 31, 2019

イロト イポト イヨト イヨト

= 990

Nels Grevstad

・ロト・(型ト・ミト・ミト) ヨー つくで

Nels Grevstad

Objectives

Objectives:

- State the treatment effects version of the three-factor ANOVA model when L > 1.
- Carry out three-factor ANOVA *F* tests for the interaction effects and main effects of Factors A, B, and C when *L* > 1.
- Interpret the two- and three-factor interaction effects and main effects in the three-factor ANOVA model.
- Interpret residuals and fitted values.
- Use residuals to check normality and constant standard deviation assumptions.

ヘロン 人間 とくほ とくほ とう

э.

Three-Factor ANOVA

Three-Factor ANOVA

 Sometimes we'll want to simultaneously test for the effects of three factors.

▲□▶▲圖▶▲≣▶▲≣▶ = 悪 - 釣�?

Example

An **experiment** was carried out to investigate the distance at detection for four different **radar systems**, two different **aircraft**, flying at **day** and at **night**.

イロト イポト イヨト イヨト

Example

An **experiment** was carried out to investigate the distance at detection for four different **radar systems**, two different **aircraft**, flying at **day** and at **night**.

Two observations were made at each combination of levels of the three factors.

イロト イポト イヨト イヨト

Example

An **experiment** was carried out to investigate the distance at detection for four different **radar systems**, two different **aircraft**, flying at **day** and at **night**.

Two observations were made at each combination of levels of the three factors.

イロト イポト イヨト イヨト

э.

The data are in a three-dimensional table on the next slide.

Factor B: Radar System

Radar System 1 (j = 1)

Factor C: Aircraft

		Aircraft 1	Aircraft 2	
		(k = 1)	(k = 2)	
	Day	49.21	55.11	
Factor A:	(i = 1)	49.37	57.44	
Time	Night	47.12	54.75	
	(i = 2)	50.68	55.80	

Radar System 2 (j = 2)

		Factor C: Aircraft		
		Aircraft 1	Aircraft 2	
		(k = 1)	(k = 2)	
	Day	49.22	47.97	
Factor A:	(i = 1)	49.57	47.75	
Time	Night	49.56	51.56	
	(i = 2)	49.62	50.52	

(Cont'd next slide)

Nels Grevstad

		Radar System 3 $(j = 3)$		
		Factor C: Aircraft		
		Aircraft 1	Aircraft 2	
		(k = 1)	(k = 2)	
	Day —	51.90	48.27	
Factor A:	(i = 1)	50.00	51.93	
Time	Night	48.60	53.74	
	(i = 2)	50.75	50.99	

Radar System 4 (j = 4)

		Factor C: Aircraft		
		Aircraft 1	Aircraft 2	
		(k = 1)	(k = 2)	
	Day –	56.96	51.11	Γ
Factor A:	(i = 1)	52.95	47.87	
Time	Night	53.39	48.08	Γ
	(i = 2)	54.41	49.80	

• Each **combination** of levels of the **three** factors is referred to as a *group* (e.g. a *treatment group* in an experiment).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Notation:

Nels Grevstad

Notation:

- I = The numbers of levels of Factor A.
- J = The numbers of levels of Factor B.
- K = The numbers of levels of Factor C.
- L = The number of observations (common sample size) in each of the IJK treatment groups.
- X_{ijkl} = The *l*th observation at the *i*th level of Factor A, *j*th level of Factor B, and *k*th level of Factor C.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• (cont'd)

- \bar{X} = The *grand mean* of all IJKL observations.
- $\bar{X}_{i...}$ = The <u>*Factor A level mean*</u> of all observations at level *i* of Factor A.
- $\bar{X}_{.j..}$ = The <u>*Factor B level mean*</u> of all observations at level *j* of Factor B.
- $\bar{X}_{..k.}$ = The <u>*Factor C level mean*</u> of all observations at level k of Factor C.
- $\bar{X}_{ij..}$ = The mean of all observations at level *i* of Factor A and *j* of Factor B.
- $\bar{X}_{i \cdot k}$. = The mean of all observations at level *i* of Factor A and *k* of Factor C.
- $\bar{X}_{.jk.}$ = The mean of all observations at level j of Factor B and k of Factor C.
- \bar{X}_{ijk} . = The **group mean** of the observations in the i, j, kth group.

Comments:

• The sample sizes per group **don't** all have to be the same. But we'll only look at the equal-sample size case.

Comments:

- The sample sizes per group **don't** all have to be the same. But we'll only look at the equal-sample size case.
- The data can be samples from *IJK* populations (representing combinations of the levels of the factors) or responses to treatments in a randomized experiment.

ヘロン 人間 とくほ とくほ とう

э.

The Three-Factor ANOVA Model

 When L > 1, we use a model that has parameters representing the effects of the three factors as well as their interactions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Three-Factor ANOVA Model (Full Model):

 $X_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + \gamma^{AB}_{ij} + \gamma^{AC}_{ik} + \gamma^{BC}_{jk} + \gamma^{ABC}_{ijk} + \epsilon_{ijkl} \,,$

where

 μ is a constant called the *true grand mean*. α_i is the *effect* of the *i*th level of **Factor A**. β_i is the *effect* of the *i*th level of **Factor B**. δ_k is the *effect* of the kth level of **Factor C**. γ_{ii}^{AB} is the <u>two-factor interaction effect</u> for the *i*th level of **Factor A** and *j*th level of **Factor B**. γ_{ik}^{AC} is the *two-factor interaction effect* for the *i*th level of Factor A and kth level of Factor C. γ_{ik}^{BC} is the <u>two-factor interaction effect</u> for the *j*th level of **Factor B** and *k*th level of **Factor C**.

γ_{ijk}^{ABC} is the <u>three-factor interaction effect</u> for the *i*th level of Factor A, *j*th level of Factor B, and *k*th level of Factor C. ϵ_{ijkl} are iid $N(0, \sigma)$ <u>random errors</u>.

イロト イポト イヨト イヨト 一臣

(More formal definitions on the next slide.)

- More formally, let
 - μ_{ijk} = The population mean for the *i*th level of Factor A, *j*th level of Factor B, and *k*th level of Factor C.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(cont'd)

Then the true grand mean is:

$$\mu = \frac{\sum_i \sum_j \sum_k \mu_{ijk}}{IJK} \,,$$

and the Factor A, B, and C effects are:

$$\alpha_i = \mu_{i\cdots} - \mu, \quad \beta_j = \mu_{\cdot j\cdot} - \mu, \quad \text{and} \quad \delta_j = \mu_{\cdots k} - \mu,$$

where the **true Factor A**, **B**, and **C levels means**, $\mu_{i...}$, $\mu_{\cdot j.}$ and $\mu_{...k}$, are defined as:

$$\mu_{i\cdots} = \frac{\sum_j \sum_k \mu_{ijk}}{JK}, \ \mu_{\cdot j\cdot} = \frac{\sum_i \sum_k \mu_{ijk}}{IK}, \text{ and } \mu_{\cdot \cdot k} = \frac{\sum_i \sum_j \mu_{ijk}}{IJ}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ ○ ○

• (cont'd)

Also, the three-factor interaction effect is defined as:

$$\gamma_{ijk}^{ABC} = \mu_{ijk} - (\mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}).$$

• (cont'd)

Also, the three-factor interaction effect is defined as:

$$\gamma_{ijk}^{ABC} = \mu_{ijk} - (\mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}).$$

With this definition,

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC} + \gamma_{ijk}^{ABC}.$$

▲□▶▲圖▶▲≣▶▲≣▶ = 悪 - 釣�?

(cont'd)

The two-factor interaction effects are defined as:

$$\begin{aligned} \gamma_{ij}^{AB} &= \mu_{ij\cdot} - (\mu + \alpha_i + \beta_j) \\ &= \mu_{ij\cdot} - \mu_{i\cdot\cdot} - \mu_{\cdot j\cdot} + \mu , \\ \gamma_{ik}^{AC} &= \mu_{i\cdot k} - (\mu + \alpha_i + \delta_k) \\ &= \mu_{i\cdot k} - \mu_{i\cdot\cdot} - \mu_{\cdot \cdot k} + \mu , \end{aligned}$$

and

$$\begin{aligned} \gamma_{jk}^{BC} &= \mu_{\cdot jk} - (\mu + \beta_j + \delta_k) \\ &= \mu_{\cdot jk} - \mu_{\cdot j} - \mu_{\cdot \cdot k} + \mu \,, \end{aligned}$$

where

$$\mu_{ij\cdot} = rac{\sum_k \mu_{ijk}}{K}, \ \ \mu_{i\cdot k} = rac{\sum_j \mu_{ijk}}{J}, \ \ \text{and} \ \ \mu_{\cdot jk} = rac{\sum_i \mu_{ijk}}{I}.$$

• It can be shown that defining the α_i 's, β_j 's, δ_k 's, γ_{ij}^{AB} 's, γ_{ik}^{AC} 's, γ_{jk}^{BC} 's, and γ_{ijk}^{ABC} 's as on the previous slides is equivalent to imposing the constraints

$$\sum_{i} \alpha_i = 0, \qquad \sum_{j} \beta_j = 0, \qquad \sum_{k} \delta_j = 0,$$

and

$$\sum_{j} \gamma^{AB}_{ij} = 0$$
 (for each fixed i), $\sum_{i} \gamma^{AB}_{ij} = 0$ (for each fixed j).

$$\begin{split} \sum_{k} \gamma_{ik}^{AC} &= 0 \text{ (for each fixed } i), \quad \sum_{i} \gamma_{ik}^{AC} &= 0 \text{ (for each fixed } k). \\ \sum_{k} \gamma_{jk}^{BC} &= 0 \text{ (for each fixed } j), \quad \sum_{j} \gamma_{jk}^{BC} &= 0 \text{ (for each fixed } k), \end{split}$$

• (cont'd)

and

$$\sum_i \gamma^{ABC}_{ijk} \,=\, 0\,, \qquad \sum_j \gamma^{ABC}_{ijk} \,=\, 0\,, \qquad \text{and} \qquad \sum_k \gamma^{ABC}_{ijk} \,=\, 0\,,$$

where in each summation, the other two subscripts are fixed.

Sums of Squares and the ANOVA Partition

• We can *partition* the **total variation** in the data into eight parts reflecting:

・ロト ・聞 と ・ ヨ と ・ ヨ と …

= 990

Sums of Squares and the ANOVA Partition

- We can *partition* the **total variation** in the data into eight parts reflecting:
 - Variation between the levels of Factor A.
 - Variation between the levels of Factor B:
 - Variation between the levels of Factor C:
 - Variation due to the interaction between Factors A and B.
 - Variation due to the interaction between Factors A and C.
 - Variation due to the interaction between Factors B and C.
 - Variation due to the interaction between Factors A, B, and C.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

• Variation within the groups.

• The **partition** will involve the following *sums of squares* (shown with their **df**):

- The **partition** will involve the following *sums of squares* (shown with their **df**):
 - SST is the total sum of squares, defined as

$$SST = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (X_{ijkl} - \bar{X}_{...})^2 \qquad df = IJKL - 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

which measures the **total** variation in the X_{ijkl} 's.

- (cont'd):
 - SSA, SSB, and SSC are the <u>Factor A</u>, <u>B</u>, and C sums of squares, defined as

$$SSA = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{i...} - \bar{X}_{...})^{2}$$

= $JKL \sum_{i=1}^{I} (\bar{X}_{i...} - \bar{X}_{...})^{2}$ $df = I - 1$

$$SSB = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{.j..} - \bar{X}_{....})^{2}$$
$$= IKL \sum_{j=1}^{J} (\bar{X}_{.j..} - \bar{X}_{....})^{2} \qquad df = J - 1$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• (cont'd):

• (cont'd)

$$SSC = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{..k.} - \bar{X}_{...})^{2}$$
$$= IJL \sum_{k=1}^{K} (\bar{X}_{..k.} - \bar{X}_{...})^{2} \qquad df = K - 1$$

which measure, respectively, variation between the **levels** of **Factor A**, between **levels** of **Factor B**, and between **levels** of **Factor C** due to both the **factor effect** and **random error**.

イロト イポト イヨト イヨト

= 990

- (cont'd):
 - SSAB, SSAC, and SSBC are the <u>two-factor interaction</u> sums of squares, given by

$$SSAB = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{ij..} - \bar{X}_{i...} - \bar{X}_{.j..} + \bar{X}_{....})^{2}$$

= $KL \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{ij..} - \bar{X}_{i...} - \bar{X}_{.j..} + \bar{X}_{....})^{2}$
 $df = (I - 1)(J - 1)$

- (cont'd):
 - SSAB, SSAC, and SSBC are the <u>two-factor interaction</u> sums of squares, given by

$$SSAB = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{ij..} - \bar{X}_{i...} - \bar{X}_{.j..} + \bar{X}_{....})^{2}$$

= $KL \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{ij..} - \bar{X}_{i...} - \bar{X}_{.j..} + \bar{X}_{....})^{2}$
 $df = (I - 1)(J - 1)$

$$SSAC = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{i \cdot k \cdot} - \bar{X}_{i \dots} - \bar{X}_{\dots k \cdot} + \bar{X}_{\dots})^{2}$$

= $JL \sum_{i=1}^{I} \sum_{k=1}^{K} (\bar{X}_{i \cdot k \cdot} - \bar{X}_{i \dots} - \bar{X}_{\dots k \cdot} + \bar{X}_{\dots})^{2}$
 $df = (I-1)(K-1)$

• (cont'd):

• (cont'd)

$$SSBC = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{.jk.} - \bar{X}_{.j..} - \bar{X}_{..k.} + \bar{X}_{...})^{2}$$

= $IL \sum_{j=1}^{J} \sum_{k=1}^{K} (\bar{X}_{.jk.} - \bar{X}_{.j..} - \bar{X}_{..k.} + \bar{X}_{...})^{2}$
 $df = (J-1)(K-1)$

which measure, respectively, variation due to the AB, AC, and BC two-factor interaction effects and random error.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- (cont'd):
 - SSABC is the <u>three-factor interaction sum of squares</u>, given by

$$SSABC = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\bar{X}_{ijk} - \bar{X}_{ij..} - \bar{X}_{i\cdot k} - \bar{X}_{\cdot jk} + \bar{X}_{i...} + \bar{X}_{i...} + \bar{X}_{\cdot j..} + \bar{X}_{\cdot ...} - \bar{X}_{\cdot ...})^{2}$$

$$= L \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (\bar{X}_{ijk} - \bar{X}_{ij..} - \bar{X}_{i\cdot k} - \bar{X}_{\cdot jk} + \bar{X}_{i...} + \bar{X}_{\cdot ...} + \bar{X}_{\cdot ...} + \bar{X}_{\cdot ...} - \bar{X}_{\cdot ...})^{2}$$

$$df = (I - 1)(J - 1)(K - 1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

which measures variation due to the **ABC three-factor** interaction effect and random error.

• (cont'd):

• SSE is the error sum of squares, defined as

$$SSE = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (X_{ijkl} - \bar{X}_{ijk.})^2$$
$$df = IKJ(L-1)$$

which measures variation of the X_{ijkl} 's within treatment groups due to random error.

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@
Proposition

ANOVA Partition for the Full Model: It can be shown that

$\begin{array}{rcl} \mathsf{SST} &=& \mathsf{SSA} \,+\, \mathsf{SSB} \,+\, \mathsf{SSAC} \,+\, \mathsf{SSAB} \,+\, \mathsf{SSAC} \\ &+\, \mathsf{SSBC} \,+\, \mathsf{SSABC} \,+\, \mathsf{SSE} \end{array}$

▲□▶▲□▶▲□▶▲□▶ □ のQの


```
df for SST = df for SSA + df for SSB + df for SSC
+ df for SSAB + df for SSAC
+ df for SSBC + df for SSABC
+ df for SSE
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

Mean Squares for the Full Model

• The *Factor A*, *Factor B*, *Factor C*, *two-factor interaction*, and *three-factor interaction mean squares*, and the *mean squared error* are:

$$MSA = \frac{SSA}{I-1} \qquad MSB = \frac{SSB}{J-1}$$
$$MSC = \frac{SSC}{K-1} \qquad MSAB = \frac{SSAB}{(I-1)(J-1)}$$
$$MSAC = \frac{SSAC}{(I-1)(K-1)} \qquad MSBC = \frac{SSAB}{(J-1)(K-1)}$$
$$MSABC = \frac{SSAB}{(I-1)(J-1)(K-1)} \qquad MSE = \frac{SSE}{IJK(L-1)}$$

イロト イポト イヨト イヨト

The Three-Factor ANOVA F-Tests

 Suppose data in a three-factor study follow the three-factor ANOVA model, where the error terms ε_{ijkl} are iid N(0, σ).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The Three-Factor ANOVA F-Tests

- Suppose data in a three-factor study follow the three-factor ANOVA model, where the error terms ε_{ijkl} are iid N(0, σ).
- The table below lists the **eight** sets of **hypotheses**, *F* **test statistics**, and **sampling distributions** of the test statistics under the null hypothesis.

		Test	Distribution of		
Effect	Hypotheses	Statistic	Under H_0		
Factor A	H_{0A} : $\alpha_i = 0$ for all i H_{aA} : not all α_i 's equal zero	$F = \frac{MSA}{MSE}$	F(I-1, IJK(L-1))		
Factor B	H_{0B} : $\beta_j = 0$ for all j H_{aB} : not all β_j 's equal zero	$F = \frac{MSB}{MSE}$	F(J-1, IJK(L-1))		
Factor C	$\begin{split} H_{0C} \colon \delta_k &= 0 \text{ for all } j \\ H_{aC} \colon \text{not all } \delta_k \text{'s equal zero} \end{split}$	$F = \frac{MSC}{MSE}$	$F(extsf{K-1}, extsf{IJK}(extsf{L-1}))$		
AB Interaction	H_{0AB} : $\gamma_{ij} = 0$ for all i and j H_{aAB} : not all γ_{ij} 's equal zero	$F = \frac{\text{MSAB}}{\text{MSE}}$	F((I-1)(J-1), IJK(L-1))		
AC Interaction	H_{0AC} : $\gamma_{ik} = 0$ for all i and k H_{aAC} : not all γ_{ik} 's equal zero	$F = \frac{\text{MSAC}}{\text{MSE}}$	F((I-1)(K-1), IJK(L-1))		
BC Interaction	H_{0BC} : $\gamma_{jk} = 0$ for all j and k H_{aBC} : not all γ_{jk} 's equal zero	$F = \frac{\text{MSBC}}{\text{MSE}}$	F((J-1)(K-1), IJK(L-1))		
ABC Interaction	$ \begin{array}{l} H_{0ABC} \colon \gamma^{ABC}_{ijk} = 0 \text{ for all } i, j, \text{ and } k \\ H_{aABC} \colon \text{not all } \gamma^{ABC}_{ijk} \text{'s equal zero} \end{array} $	$F = \frac{\text{MSABC}}{\text{MSE}}$	F((I-1)(J-1)(K-1), IJK(L-1))		

• In each case, the **null hypothesis** says there's **no effect** and the **alternative** says there **is an effect**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• In each case, the **null hypothesis** says there's **no effect** and the **alternative** says there **is an effect**.

In each case, a large value of the F test statistic provides evidence against H_0 in favor of H_a .

• The appropriate *F* curves give us:

- The appropriate *F* curves give us:
 - The *rejection regions* as the extreme largest 100α% of *F* values.

- The appropriate *F* curves give us:
 - The *rejection regions* as the extreme largest 100α% of *F* values.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• The *p*-values as the tail areas to the right of the observed *F* values.

• **Comment**: The **ANOVA** *F* **tests** can be used even if the samples are from **non-normal** populations as long the per-group sample sizes are large.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The ANOVA Table

• The results are summarized in an ANOVA table:

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Factor A	I - 1	SSA	$MSA = \frac{SSA}{I-1}$	MSA MSE	р
Factor B	J - 1	SSB	$MSB = \frac{SSB}{J-1}$	MSB MSE	р
Factor C	K - 1	SSC	$MSC = \frac{SSC}{K-1}$	MSC MSE	р
AB Interaction	(I-1)(J-1)	SSAB	$MSAB = \frac{SSAB}{(I-1)(J-1)}$	MSAB MSE	р
AC Interaction	(I-1)(K-1)	SSAC	$MSAC = \frac{SSAC}{(I-1)(K-1)}$	MSAC MSE	р
BC Interaction	(J-1)(K-1)	SSBC	$MSBC = \frac{SSBC}{(J-1)(K-1)}$	MSBC MSE	р
ABC Interaction	(I-1)(J-1)(K-1)	SSABC	$MSABC = \frac{SSABC}{(I-1)(J-1)(K-1)}$	MSABC MSE	р
Error	IJK(L-1)	SSE	$MSE = \frac{SSE}{IJK(L-1)}$	-	
Total	IJKL - 1	SST	×		

Interpretation of the Three-Factor Interaction Effect

 If there's no three-factor interaction, then in the ANOVA model,

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Interpretation of the Three-Factor Interaction Effect

 If there's no three-factor interaction, then in the ANOVA model,

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

In this case, each **two-factor interaction** effect is the *same*, **regardless** of the **level** of the **third factor**.

Interpretation of the Three-Factor Interaction Effect

 If there's no three-factor interaction, then in the ANOVA model,

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}$$

In this case, each **two-factor interaction** effect is the *same*, **regardless** of the **level** of the **third factor**.

• Including the three-factor interaction term γ_{ijk}^{ABC} in the model (and allowing it to be non-zero), allows the two-factor interaction effects to be *different* depending on the level of the third factor.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• Consider *three scenarios* with I = 2 levels of Factor A, J = 2 levels of Factor B, and K = 3 levels of Factor C.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

 Scenario 1 – Main Effects Only: There are A, B, and C main effects, but no two- or three-factor interactions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 Scenario 1 – Main Effects Only: There are A, B, and C main effects, but no two- or three-factor interactions.

The **true group means** μ_{ijk} could be written as

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k,$$

and the **model** as

$$X_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + \epsilon_{ijkl} \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 Scenario 1 – Main Effects Only: There are A, B, and C main effects, but no two- or three-factor interactions.

The true group means μ_{ijk} could be written as

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k,$$

and the model as

$$X_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + \epsilon_{ijkl}.$$

This so-called *additive model* says the **effect** of **each factor** is the *same* for *every combination* of the **levels** of the **other two factors**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Above, the **Factor A effect** (represented by the upward slope of the lines) is the *same* for every combination of levels of **Factors B** and **C**.

イロト 不得 とくほ とくほ とう

• Scenario 2 – Main Effects and AB Interaction: There are A, B, and C main effects and an AB two-factor interaction, but no other two-factor interactions and no

three-factor interaction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Scenario 2 – Main Effects and AB Interaction: There are A, B, and C main effects and an AB two-factor interaction, but no other two-factor interactions and no three-factor interaction.

The true group means μ_{ijk} could be written as

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB}$$

and the model as

$$X_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \epsilon_{ijkl}.$$

▲冊▶▲臣▶▲臣▶ 臣 めへで

• Scenario 2 – Main Effects and AB Interaction: There are A, B, and C main effects and an AB two-factor interaction, but no other two-factor interactions and no three-factor interaction.

The true group means μ_{ijk} could be written as

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB}$$

and the model as

$$X_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \epsilon_{ijkl} \,.$$

▲御▶ ▲臣▶ ▲臣▶ 三臣 - わえべ

This model says that there's an interaction between Factors A and B, but the AB interaction effect is the same regardless of the level of Factor C.

Above, the **AB interaction pattern** is the *same* for every level of Factor C.

 Scenario 3 – Main Effects, AB, BC, and AC Two-Factor Interactions, and ABC Three-Factor Interaction: There are A, B, and C main effects, AB, AC, and BC two-factor interactions, and an ABC three-factor interaction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Scenario 3 – Main Effects, AB, BC, and AC Two-Factor Interactions, and ABC Three-Factor Interaction: There are A, B, and C main effects, AB, AC, and BC two-factor interactions, and an ABC three-factor interaction.

The true group means μ_{ijk} are written as

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC} + \gamma_{ijk}^{ABC}$$

and the model is

$$X_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC} + \gamma_{ijk}^{ABC} + \epsilon_{ijkl} \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Scenario 3 – Main Effects, AB, BC, and AC Two-Factor Interactions, and ABC Three-Factor Interaction: There are A, B, and C main effects, AB, AC, and BC two-factor interactions, and an ABC three-factor interaction.

The true group means μ_{ijk} are written as

$$\mu_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC} + \gamma_{ijk}^{ABC}$$

and the model is

$$X_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + \gamma_{ij}^{AB} + \gamma_{ik}^{AC} + \gamma_{jk}^{BC} + \gamma_{ijk}^{ABC} + \epsilon_{ijkl} \,.$$

This so-called **full model** allows **each two-factor interaction effect** to be *different* **depending** on the **level** of the **third factor**.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Above, the **three-factor interaction** is apparent because the **AB interaction pattern** is *different* depending on the level of **Factor C**.

イロト イポト イヨト イヨト

Only Test for a Lower-Order Effect If It Isn't Involved in a Significant Higher-Order Interaction Effect

 If a higher-order interaction is significant, all lower-order terms involved in that interaction have effects, *regardless* of their p-values.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

Example

For the study of the effects of four **radar systems**, two different **aircraft**, and two different **time periods** (day and night), the **ANOVA table** is below.

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Time	1	0.235	0.235	0.094	0.764
System	3	40.480	13.493	5.380	0.009
Aircraft	1	2.750	2.750	1.096	0.311
Time:System	3	8.205	2.735	1.091	0.382
Time:Aircraft	1	5.152	5.152	2.054	0.171
System:Aircraft	3	142.532	47.511	18.944	0.000
Time:System:Aircraft	3	5.882	1.961	0.782	0.521
Error	16	40.127	2.508		
Total	31	245.362			

イロト イポト イヨト イヨト

ъ

• The three-factor interaction *isn't* statistically significant (F = 0.782, p-value = 0.521).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- The three-factor interaction *isn't* statistically significant (F = 0.782, p-value = 0.521).
- Because the three-factor interaction *isn't* significant, we proceed to the tests for two-factor interactions.

イロト イポト イヨト イヨト

э.

- The three-factor interaction *isn't* statistically significant (F = 0.782, p-value = 0.521).
- Because the three-factor interaction *isn't* significant, we proceed to the tests for two-factor interactions.

The two-factor interaction between System and Aircraft *is* significant (F = 18.944, p-value = 0.000).

イロト イポト イヨト イヨト

- The three-factor interaction *isn't* statistically significant (F = 0.782, p-value = 0.521).
- Because the three-factor interaction *isn't* significant, we proceed to the tests for two-factor interactions.

The two-factor interaction between System and Aircraft *is* significant (F = 18.944, p-value = 0.000).

Neither of the other two-factor interactions is significant (F = 2.054, p-value = 0.171, and F = 1.091, p-value = 0.382).

ヘロン 人間 とくほ とくほ とう

 Because System and Aircraft are involved in a significant two-factor interaction, there's no need to proceed to the tests for their main effects.

ヘロト ヘアト ヘビト ヘビト
- Because System and Aircraft are involved in a significant two-factor interaction, there's no need to proceed to the tests for their main effects.
- Time *isn't* in any significant interactions, so we proceed to the test of for a Time main effect.

- Because System and Aircraft are involved in a significant two-factor interaction, there's no need to proceed to the tests for their main effects.
- Time *isn't* in any significant interactions, so we proceed to the test of for a Time main effect.

It's *not* significant (F = 0.094, p-value = 0.764).

< 🗇 > < 🖻 >

- Because System and Aircraft are involved in a significant two-factor interaction, there's no need to proceed to the tests for their main effects.
- Time *isn't* in any significant interactions, so we proceed to the test of for a Time main effect.

It's *not* significant (F = 0.094, p-value = 0.764).

The next step is to examine the nature of the **significant** effects using plots.

< /₽> < ∃>

- Because System and Aircraft are involved in a significant two-factor interaction, there's no need to proceed to the tests for their main effects.
- Time *isn't* in any significant interactions, so we proceed to the test of for a Time main effect.

It's *not* significant (F = 0.094, p-value = 0.764).

The next step is to examine the nature of the **significant** effects using plots.

An interaction plot of radar system and aircraft is on the next slide.

ヘロト ヘアト ヘヨト ヘ

Three-Factor ANOVA

Nels Grevstad

Three-Factor ANOVA

Based on the plot, for Aircraft 1, the best radar system is System 4. But for Aircraft 2, the best system is System 1.

イロン イボン イヨン イヨン

Estimating Parameters in the Full Model

• Here are the estimators for the model parameters.

Model Parameter Estimators: We estimate the unknown model parameters μ , α_i , β_j , δ_k , γ_{ij}^{AB} , γ_{ik}^{AC} , γ_{jk}^{BC} , γ_{ijk}^{ABC} and σ using the **estimators** $\hat{\mu}$, $\hat{\alpha}_i$, $\hat{\beta}_j$, $\hat{\delta}_k$, $\hat{\gamma}_{ij}^{AB}$, $\hat{\gamma}_{ik}^{AC}$, $\hat{\gamma}_{jk}^{BC}$, $\hat{\gamma}_{ijk}^{ABC}$, and $\hat{\sigma}$, defined as:

Model Parameter	Estimator
$-\mu$	$\hat{\mu} = \bar{X}$
$\alpha_i = \mu_{i} - \mu$	$\hat{\alpha}_i = \bar{X}_{i\dots} - \bar{X}_{\dots}$
$eta_j \;=\; \mu_{\cdot j \cdot} - \mu$	$\hat{\beta}_j = \bar{X}_{\cdot j \cdot \cdot} - \bar{X}_{\cdot \cdot \cdot}$
$\delta_k = \mu_{\cdot\cdot k} - \mu$	$\hat{\delta}_k = \bar{X}_{\cdots k} - \bar{X}_{\cdots}$
$\gamma^{AB}_{ij} = \mu_{ij.} - \mu_{i} - \mu_{.j.} + \mu$	$\hat{\gamma}_{ij}^{AB} = \bar{X}_{ij} - \bar{X}_{i} - \bar{X}_{.j} + \bar{X}_{}$
$\gamma_{ik}^{AC} = \mu_{i\cdot k} - \mu_{i\cdot \cdot} - \mu_{\cdot\cdot k} + \mu$	$\hat{\gamma}_{ik}^{\bar{A}C} = \bar{X}_{i\cdot k\cdot} - \bar{X}_{i\cdot \cdot \cdot} - \bar{X}_{\cdot \cdot \cdot k\cdot} + \bar{X}_{\cdot \cdot \cdot \cdot}$
$\gamma^{BC}_{jk} = \mu_{.jk} - \mu_{.j.} - \mu_{k} + \mu$	$\hat{\gamma}_{jk}^{BC} = \bar{X}_{.jk.} - \bar{X}_{.j} - \bar{X}_{k.} + \bar{X}_{}$
$\gamma_{ijk}^{ABC} = \mu_{ijk} - (\mu + \alpha_i + \beta_j + \delta_k)$	$\hat{\gamma}_{ijk}^{ABC} = \bar{X}_{ijk} - \left(\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\delta}_k\right)$
$+\gamma^{AB}_{ij}+\gamma^{AC}_{ik}+\gamma^{BC}_{jk})$	$+ \hat{\gamma}_{ij}^{AB} + \hat{\gamma}_{ik}^{AC} + \hat{\gamma}_{jk}^{BC} \Big)$
σ	$\hat{\sigma} = \sqrt{MSE}$

• Comment: From parameter estimates above, the sums of squares can be written as:

$$\begin{split} & \mathsf{SSA} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} \hat{\alpha}_{i}^{2} & \mathsf{SSB} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} \hat{\beta}_{j}^{2} \\ & \mathsf{SSC} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} \hat{\delta}_{k}^{2} & \mathsf{SSAB} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\hat{\gamma}_{ij}^{AB})^{2} \\ & \mathsf{SSAC} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\hat{\gamma}_{ik}^{AC})^{2} & \mathsf{SSBC} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\hat{\gamma}_{jk}^{BC})^{2} \\ & \mathsf{SSABC} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\hat{\gamma}_{ijk}^{ABC})^{2} & \mathsf{SSABC} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\hat{\gamma}_{ijk}^{ABC})^{2} \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

Fitted Values and Residuals

• The <u>fitted value</u> (or <u>predicted value</u>) for the *l*th individual in the *i*, *j*, *k*th group, \hat{X}_{ijkl} , is

$$\hat{X}_{ijkl} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\delta}_k + \hat{\gamma}_{ij}^{AB} + \hat{\gamma}_{ik}^{AC} + \hat{\gamma}_{jk}^{BC} + \hat{\gamma}_{ijk}^{ABC}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

: (using definitions of the estimators)

$$= \bar{X}_{ijk}$$
.

Fitted Values and Residuals

• The <u>fitted value</u> (or <u>predicted value</u>) for the *l*th individual in the *i*, *j*, *k*th group, \hat{X}_{ijkl} , is

$$\hat{X}_{ijkl} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\delta}_k + \hat{\gamma}_{ij}^{AB} + \hat{\gamma}_{ik}^{AC} + \hat{\gamma}_{jk}^{BC} + \hat{\gamma}_{ijk}^{ABC}$$

: (using definitions of the estimators)

$$= \bar{X}_{ijk}$$
.

 \hat{X}_{ijkl} is the value we'd predict, based on the data, for the response of the *l*th individual in the *i*, *j*, *k*th group.

ヘロン 人間 とくほ とくほ とう

Fitted Values and Residuals

• The <u>fitted value</u> (or <u>predicted value</u>) for the *l*th individual in the *i*, *j*, *k*th group, \hat{X}_{ijkl} , is

$$\hat{X}_{ijkl} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\delta}_k + \hat{\gamma}_{ij}^{AB} + \hat{\gamma}_{ik}^{AC} + \hat{\gamma}_{jk}^{BC} + \hat{\gamma}_{ijk}^{ABC}$$

: (using definitions of the estimators)

$$= \bar{X}_{ijk}$$
.

 \hat{X}_{ijkl} is the value we'd predict, based on the data, for the response of the *l*th individual in the *i*, *j*, *k*th group.

It's just the i, j, kth group mean \bar{X}_{ijk} . (which is also the estimate of the true group mean μ_{ijk}).

イロン 不良 とくほう 不良 とうほ

• The *residual* for the *l*th observation in the *i*, *j*, *k*th group, e_{ijkl} , is defined as

$$e_{ijkl} = X_{ijkl} - \hat{X}_{ijkl}$$

= $X_{ijkl} - (\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\delta}_k + \hat{\gamma}_{ij}^{AB} + \hat{\gamma}_{ik}^{AC} + \hat{\gamma}_{jk}^{BC} + \hat{\gamma}_{ijk}^{ABC})$
= $X_{ijkl} - \bar{X}_{ijk}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

The **residual** e_{ijkl} corresponds to the **random error** term ϵ_{ijkl} in the model.

• The *residual* for the *l*th observation in the *i*, *j*, *k*th group, e_{ijkl} , is defined as

$$e_{ijkl} = X_{ijkl} - \hat{X}_{ijkl}$$

= $X_{ijkl} - (\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\delta}_k + \hat{\gamma}_{ij}^{AB} + \hat{\gamma}_{ik}^{AC} + \hat{\gamma}_{jk}^{BC} + \hat{\gamma}_{ijk}^{ABC})$
= $X_{ijkl} - \bar{X}_{ijk}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The **residual** e_{ijkl} corresponds to the **random error** term ϵ_{ijkl} in the model.

Note that a **residual** is just the **deviation** of an observed response X_{ijkl} away from the group mean \overline{X}_{ijkl} .

 Comment: The error sum of squares is the sum of squared residuals, i.e.

$$SSE = \sum_{i} \sum_{j} \sum_{k} \sum_{l} e_{ijkl}^2 \,.$$

• For the **ANOVA** *F* tests, we assume the ϵ_{ijkl} 's are iid $N(0, \sigma)$.

• For the **ANOVA** *F* tests, we assume the ϵ_{ijkl} 's are iid $N(0, \sigma)$.

Note that σ is assumed to be **constant** from one group to the next.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• For the **ANOVA** *F* tests, we assume the ϵ_{ijkl} 's are iid $N(0, \sigma)$.

Note that σ is assumed to be **constant** from one group to the next.

• Checking the Normality Assumption: Use a histogram or normal probability plot of the residuals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• For the **ANOVA** *F* tests, we assume the ϵ_{ijkl} 's are iid $N(0, \sigma)$.

Note that σ is assumed to be **constant** from one group to the next.

• Checking the Normality Assumption: Use a histogram or normal probability plot of the residuals.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 Checking the Constant σ Assumption: Plot the residuals versus the fitted values.

• For the **ANOVA** *F* tests, we assume the ϵ_{ijkl} 's are iid $N(0, \sigma)$.

Note that σ is assumed to be **constant** from one group to the next.

- Checking the Normality Assumption: Use a histogram or normal probability plot of the residuals.
- Checking the Constant σ Assumption: Plot the residuals versus the fitted values.

Usually, when σ *isn't* constant, it increases with the group mean.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Example

For the study of aircraft radar systems, a **normal probability plot** of the **residuals** and a plot of **residuals** versus **fitted values** are shown below.

Nels Grevstad

The first plot indicates that the assumption of **normality** of the error term ϵ_{ijkl} is valid, and the second indicates that the assumption of a **constant standard deviation** σ of ϵ_{ijkl} is valid.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ