Notes

Introduction to Statistics

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

October 6, 2019

Nels Grevstad

Determining the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

Topics

1 Determining the Required Sample Size for Estimating μ

2 Confidence Interval for μ when σ is Unknown

Nels Grevstad

ing the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

Objectives

Objectives:

- Determine the sample size required for the margin of error in a Cl for a population mean to be no bigger than some specified value.
- Distinguish between the *t* distribution and the standard normal distribution.
- Compute and interpret a Cl for a population mean when the population standard deviation isn't known.

Nels Grevstad

Determining the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

Determining the Required Sample Size for Estimating μ (8.2)

• Recall that the margin of error in a one-mean z CI for μ is

Margin of Error $= z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

We can make the margin of error as small as we want by using a large enough n.

Nels Grevstad

Notes

Notes

• Suppose we want the margin of error to no bigger than some value *E*.

Solving

$$z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq E$$

for n gives the *required sample size* (see the next slide).

Determining the Required Sample Size for Estimating μ

Sample Size for Estimating μ : The sample size required for the margin of error in a CI for μ to be no bigger than some value *E* is

Nels Grevstad

$$n \geq \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2,$$

which we round up to the nearest integer.

In practice, we usually don't know the value of σ , so we plug in a guess for it's value (e.g. based on prior studies).

Nels Grevstad

Determining the Required Sample Size for Estimating μ

Example

Suppose we want to conduct a survey to find out how much time Denver residents spend exercising, on average, per week.

Our goal is to **estimate** the true (unknown) **mean** amount of time μ (in minutes) using a **99% CI**.

A similar study in Seattle suggests that a reasonable guess for the Denver population standard deviation σ is **50** minutes.

How large should our sample size be if we want the margin of error to be no bigger than 10 minutes?

Nels Grevstad

Determining the Required Sample Size for Estimating μ

We have

 $E = 10 \ z_{lpha/2} = z_{0.005} = 2.58 \ \sigma = 50$

so we'd need

$$n \geq \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{2.58(50)}{10}\right)^2 = 166.41,$$

Nels Grevstad

which we round up to 167.

Notes

Exercise

Suppose, as before, that we want to **estimate** the true (unknown) **mean** weekly exercise time μ of Denver residents using a **99% CI**, and that a reasonable guess for σ is **50** minutes.

Suppose now, though, that we only need the **margin of error** to be **no bigger than 15** minutes.

 a) Will the sample size required for a 15-minute margin of error be larger or smaller than the one required for a 10-minute margin of error?

Nels Grevstad

Determining the Required Sample Size for Estimating μ

Notes

 b) Calculate the sample size required for a 15-minute margin of error. Compare it to the one required for a 10-minute margin of error.

Nels Grevstad

termining the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

Confidence Interval for μ when σ is Unknown (8.3)

Introduction

 Usually the population standard deviation σ isn't known, so we can't use the one-mean z Cl for μ.

Instead, we **estimate** σ by the sample standard deviation s, and then use the **one-mean** t **CI** described ahead.

ining the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

Notes

Introduction to the $\ensuremath{\mathbf{t}}$ Distribution

• For the *one-mean* t *CI*, we'll need a new probability distribution, the t distribution.

Nels Grevstad

Nels Grevstad

Notes

Sining the Required Sample Size for Estimating Confidence Interval for μ when σ is Unknow

• Recall that the standardized version of the sample mean,

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

follows a **standard normal** distribution (when the sample is from a *normal* population or n is *large*).

If we use the estimate s in place of σ, the standardized version of x̄,

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

.

instead follows a so-called <u>*t* distribution</u> with n - 1degrees of freedom (or df).

Nels Grevstad

ermining the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

Notes

Notes

• There's a different t distribution for each value of the degrees of freedom, n - 1.

Several *t* distribution curves are shown on the next slide.

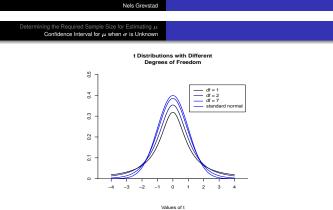


Figure: t distributions with different df along with the standard normal (z) curve.

Neis Grevstad Determining the Required Sample Size for Estimating یه Confidence Interval for μ when σ is Unknown

Notes

• Properties of the t Distributions

 They're centered on zero and resemble the standard normal distribution, but are more spread out in the tails.

Nels Grevstad

• As the **df increases**, the *t* **curves** get closer and closer to the **standard normal** *z* **curve**.

When the **df** is larger than about **40**, the t and z **curves** are practically **indistinguishable**.

Confidence Interval for μ when σ is Unknow

Notes

The One-Mean t Confidence Interval for μ

• The next slide gives the procedure for computing a CI for μ when σ isn't known.

hining the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

One-Mean t **CI** for μ : When the population standard deviation σ is unknown, the <u>one-mean t confidence interval</u> for the unknown population mean μ is

Nels Grevstad

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

with margin of error

Margin of Error
$$= t_{\alpha/2} \frac{s}{\sqrt{n}}$$
,

where $t_{\alpha/2}$ is a *t* critical value, obtained from the *t* distribution with n-1 df, and α is either 0.10, 0.05, or 0.01, depending on the level of confidence (see the next slides).

Nels Grevstad

g the Required Sample Size for Estimating onfidence Interval for μ when σ is Unknow

$\alpha = 0.10$	for a 90% level of confidence (so $1 - \alpha =$		
	0.90, $\alpha/2 = 0.05$, and the critical value is		
	$t_{0.05})$		
$\alpha = 0.05$	for a 95% level of confidence (so $1 - \alpha =$		
	0.95, $\alpha/2 = 0.025$, and the critical value is		
	$t_{0.025})$		
$\alpha = 0.01$	for a 99% level of confidence (so $1 - \alpha =$		
	0.99, $\alpha/2 = 0.005$, and the critical value is		
	$t_{0.005})$		
(The actual values of $t_{0.05}, t_{0.025}$, and $t_{0.005}$ will depend on the df.)			

Confidence Interval for μ when σ is Unknown

Notes

Notes

Notes

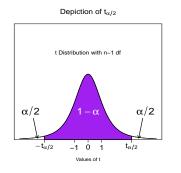
(The CI and margin of error are valid when either the sample is from a **normal** population or the sample size n is **large**.)

Nels Grevstad

• The <u>*t* critical value</u>, $t_{\alpha/2}$, is the *t* value for which the area to its **right** under the *t* distribution with n - 1 degrees of freedom is $\alpha/2$.

Determining the Required Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

Nels Grevstad



Confidence Interval for μ when σ is Unknow

Example

In a study of the behavior of bats, n = 11 observations of the distances (in cm) at which bats first detect insects were recorded.

The **sample mean** and **sample standard deviation** of the **11** observations are

 $\bar{x} = 48.4$ and s = 18.1

The *population* mean μ and standard deviation σ are both *unknown*.

Nels Grevstad

Confidence Interval for μ when σ is Unknown

One goal of the study was to estimate the true (unknown) population mean insect-detection-distance μ using a Cl.

A 95% CI for μ is

$$\bar{x} \pm t_{0.025} \frac{s}{\sqrt{n}} = 48.4 \pm 2.228 \times \frac{18.1}{\sqrt{11}}$$

= 48.4 ± 12.2
= (36.2, 60.6)

where the t critical value, $t_{\scriptscriptstyle 0.025}=2.228,$ was obtained from Table IV using n-1=10 df.

We can be **95% confident** that the true (unknown) mean μ is in this interval somewhere.

Notes

Notes

Is it plausible, based on the CI, that the true (unknown) mean distance μ is as large as 55 cm?

Answer: Yes because 55 is contained in the interval.

Is it plausible that μ is as large as 65 cm?

Answer: No because 65 isn't contained in the interval.

Nels Grevstad

the Required Sample Size for Estimating μ nfidence Interval for μ when σ is Unknown

Notes

Note (two slides back) that the **margin of error** in the estimate, $\bar{x} = 48.4$ cm, is **12.2** cm.

We **interpret** this value as a measure of **how reliable** the estimate is.

More precisely, it tells us that the **sampling error** is **not likely** to be **larger** than **12.2** cm.

Nels Grevstad

termining the Hequired Sample Size for Estimating μ Confidence Interval for μ when σ is Unknown

If we use a 99% confidence level, the t critical value (from Table IV using n-1=10 df) is $t_{\scriptscriptstyle 0.005}=3.169,$ and the Cl for μ is

$$\bar{x} \pm t_{0.005} \frac{s}{\sqrt{n}} = 48.4 \pm 3.169 \times \frac{18.1}{\sqrt{11}}$$

= 48.4 ± 17.3
= (31.1, 65.7)

Note that the 99% CI is wider than the 95% CI.

Nels Grevstad

Confidence Interval for μ when σ is Unknown

Exercise

A highway safety researcher studying the design of a highway sign is interested in the **population mean distance** μ at which drivers are first able to read the sign.

A sample of n = 16 drivers reported that they first read the sign at the following distances (in ft):

Nels Grevstad

440	490	600	540	540	600	380	440	
360	510	490	400	490	540	440	490	

Notes

Confidence Interval for μ when σ is Unknown

The **sample mean** and **sample standard deviation** of the **16** observations are

$$\bar{x} = 484.4$$
 $s = 71.3$

- a) Compute and interpret a 95% CI for the true (unknown) population mean sign-readability-distance μ.
- b) Is it plausible, based on the CI, that μ is as large as 510 ft? Explain.
- c) How big is the margin of error in the estimate, $\bar{x} = 484.4$, of μ ? How do you interpret this value?

Nels Grevstad

Confidence Interval for μ when σ is Unknown

Notes

Notes

d) Now compute a **99% CI** for μ .

e) Which CI is wider, the 95% interval or the 99% interval?

Nels Grevstad

Notes