Homework 7 MTH 3220, Fall 2019 Due Tuesday, Nov. 5

Section in Book	Problems
11.2	16 (skip part <i>e</i>), 17*, 18 (skip part <i>b</i>)**, 20***
11.3	Problem 1 (given below), 27 (skip part <i>d</i>), 29, 31****

* For_Problem 17, do Part *a* by hand and show your work. You can get the p-value using the pf() function in R. Part *b* may be done using the aov() function in R. The data are on the course website in the file ex_11_17.txt.

> my.anova <- aov(CastingHardness ~ Sand + CarbonFiber + Sand:CarbonFiber, data = my.data)

> summary(my.anova)

Part *c* is asking for an interaction plot, which you can make in R by typing something like this:

** Problem 18 may be done using the aov() function in R, as above. Check the course website for the data (ex_11_18.txt). For Part c, the factor level means can be obtained via something like:

> aggregate(Yield ~ Formulation, data = my.data, FUN = mean) > aggregate(Yield ~ Speed, data = my.data, FUN = mean)

For **Part** *d*, the fitted values and residuals are obtained via **my.anova\$fitted.values** and **my.anova\$residuals**, and for **Part** *e*, the plot can be made using:

```
> qqnorm(my.anova$residuals)
> qqline(my.anova$residuals)
```

*** For **Problem 20**, check the course website for the data (**ex_11_20.txt**). For **Part** *a*, the boxplots can be made by passing a *formula* to **boxplot()**, for example:

> boxplot(MPa ~ Adhesive + Condition + Adhesive:Condition, data = my.data)

For **Part** *b*, you may use the **aov()** function in R, as above. For **Part** *c*, you can add a column named **Treatment** indicating the four treatments to your data frame:

> my.data\$Treatment <- c("SBPDry", "SBPDry", ... "OBPMoist")</pre>

and then carry out the one-factor ANOVA, followed by Tukey's procedure, using:

> my.anova <- aov(MPa ~ Treatment, data = my.data)</p>

> TukeyHSD(my.anova)

Note that the result is the same as if you had performed Tukey's procedure on the **group means** in a **two-factor ANOVA** by typing:

> my.anova <- aov(MPa ~ Adhesive + Condition + Adhesive:Condition, data = my.data)

> TukeyHSD(my.anova)

**** Problem 31 may be done in R using aov(). The data are on the course website (ex_11_31.txt). Because there's only one observation per group, there aren't enough data to fit the full model *and* estimate σ, so you should leave the threefactor interaction out of the model:

> my.anova <- aov(NickelWt ~ Power + Speed + PasteThickness + Power:Speed + Power:PasteThickness + Speed:PasteThickness, data = my.data)

Note that the SSE and MSE for this model are the same as the SSAB and MSAB that you'd get if you fit the full model (try it!).

For **Part** *d*, you can type (using **my.anova** that *doesn't* include the three-factor interaction):

> TukeyHSD(my.anova)

then refer to the **\$PasteThickness** part of the output.

Additional Problem

1. A three factor experiment is conducted to investigate the yields of three different varieties of rice grown under controlled greenhouse conditions. All three **varieties** (Factor B) were grown under two levels of **fertilizer** (Factor C) and two levels of **sunshine** (Factor A).

The response variable is the rice yield, and there were four *replicates* of the experiment (i.e. four observations per cell). The data are shown below and are also in the file **rice.txt**.

	<u>Rice Variety 1 $(j = 1)$</u>		
	Low Fertilizer (k=1)	High Fertilizer (k=2)	
	86	109	
Low Sunshine (i=1)	115	87	
	83	91	
	70	97	
	78	99	
High Sunshine (i=2)	63	108	
	91	116	
	80	93	

Rice Variety 2 (j=2)

	Low Fertilizer (k=1)	High Fertilizer (k=2)
	102	104
Low Sunshine (i=1)	86	114
	68	99
	85	113
	92	85
High Sunshine (i=2)	78	117
	83	99
	87	99

.

<u>Rice Variety 3 (j = 3)</u>

	Low Fertilizer (k=1)	High Fertilizer (k=2)
	75	99
Low Sunshine (i=1)	9	70
	68	80
	95	109
	103	116
High Sunshine (i=2)	115	125
	95	114
	118	111

Read the data into an R data frame named, say, my.data using read.table().

- i. Write out the **full** three-factor **ANOVA model** for the data. Be sure to **state any assumptions** associated with the random error term in the model.
- ii. State the three sets of **hypotheses** for **main effects** that are tested by the three-factor ANOVA *F* tests in terms of the model parameters α_i , β_j , and δ_k .
- iii. State the three sets of **hypotheses** for **two-factor interaction effects** that are tested by the three-factor ANOVA *F* tests in terms of the model parameters γ_{ij}^{AB} , γ_{ik}^{AC} , and γ_{jk}^{BC} .

- iv. State the null and alternative **hypotheses** for **three-factor interaction effect** that are tested by the three-factor ANOVA *F* tests in terms of the model parameters γ_{iik}^{ABC} .
- v. Carry out the three-factor ANOVA and report the **ANOVA table**, using either:

```
> my.anova <- aov(Yield ~ Sunshine + Variety + Fertilizer
+ Sunshine:Variety + Sunshine:Fertilizer
+ Variety:Fertilizer
+ Sunshine:Variety:Fertilizer,
data = my.data)
```

or:

> my.anova <- aov(Yield ~ Sunshine*Variety*Fertilizer, data = my.data)

followed by:

> summary(my.anova)

- vi. Based on the ANOVA *F* tests, answer the following questions:
 - a) Is the three-factor interaction effect statistically significant? Give an **F statistic** value and **p-value** to support your answer.
 - B) Recall that we only proceed with the test for a lower-order effect if it isn't involved in a significant higher-order interaction. Based on the result of the F test for the three-factor interaction, is it reasonable to proceed with the tests for two-factor interactions? Explain.
 - c) Is fertilizer more effective with some varieties of rice than others?Give an F statistic value and p-value to support your answer.
 - d) Does the effect of fertilizer differ depending on how much sunlight there is? Give an **F statistic** value and **p-value** to support your answer.
 - e) Does the amount of sunlight affect the yield of some rice varieties more than others? Give an **F** statistic value and **p-value** to support your answer.
 - f) We only proceed with the test for a lower-order effect if it isn't involved in a significant higher-order interaction. Based on the

results of the F tests for the two-factor and three-factor interactions, **is it reasonable to proceed** with the tests for all three main effects? If not, which ones should we proceed with? Explain.

- g) Does fertilizer have an effect on the rice yield? Give an **F statistic** value and **p-value** to support your answer.
- h) Does variety of rice have *any* effect on the yield? Explain.
- i) Does sunshine have *any* effect on the yield? Explain.
- vii. Check the **normality assumption** required for the ANOVA F test by making a histogram and a normal probability plot of the residuals:

> hist(my.anova\$residuals)
 > qqnorm (my.anova\$residuals)
 > qqline (my.anova\$residuals)

- viii. Check the **constant standard deviation assumption** by plotting the residuals (**my.anova\$residuals**) on the *y* axis versus the fitted (or predicted) values (**my.anova\$fitted.values**) on the *x* axis. After making the plot, add a horizontal line to it at y = 0 by typing:
 - > plot(x = my.anova\$fitted.values , y = my.anova\$residuals)
 > abline (h = 0)