Notes

Notes

Notes

Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

November 14, 2019

Goodness of Fit Test

Objectives

Objectives:

• Carry out a chi-squared goodness of fit test.

Nels Grevstad Goodness of Fit Test

Nels Grevstad

Goodness of Fit Test

Notes

Introduction

- Recall that a *binomial experiment* involves *n* trials, each of which results in one of two possible outcomes (*success* or *failure*).
- A *multinomial experiment* involves n trials, each of which results in one of k > 2 possible outcomes (or *categories*).

Nels Grevstad

Example

Suppose an unbalanced tetrahedral (4-sided) die lands on 1, 2, 3, and 4 with probabilities $p_1 = 0.1$, $p_2 = 0.2$, $p_3 = 0.3$, and $p_4 = 0.4$.

If we roll the die n = 10 times and count how many times it lands on each side, that's a **multinomial experiment**.

Nels Grevstad Goodness of Fit Test

Goodness of Fit Test

Notes

Notation:

n = The number of trials (sample size). $n_1, n_2, \dots, n_k =$ The <u>observed counts</u> for the k categories (or <u>cells</u>). $p_1, p_2, \dots, p_k =$ The probabilities for the k categories.

Nels Grevstad

Goodness of Fit Test

Example
If we roll the tetrahedral die described earlier $n=10$ times, a
one possible set of outcomes is:

		Outo	ome		Row
	1	2	3	4	Total
Observed Count	$n_1 = 2$	$n_2 = 2$	$n_3 = 3$	$n_4 = 3$	n = 10
(i.e. it landed on 1 to	wice, on 2	2 twice, o	on 3 thre	e times,	and on
4 three times).					

Nels Grevstad

Notes

• Comment: A multinomial experiment might consist of drawing a sample of size *n* from a population whose individuals each belong to one of *k* categories.

In this case, p_1, p_2, \ldots, p_k are the **population proportions** for the categories.

Nels Grevstad

Notes

Goodness of Fit Test

Example

A 1973 study at UCLA examined the ages of a sample of n=66 individuals selected for grand juries in Alameda County, CA.

Each individual in the sample fell into one of k = 4 age categories:

21 to 40 years 41 to 50 years 51 to 60 years 61 years and older

Counting how many individuals fall into each category makes it a **multinomial experiment**.

Nels Grevstad Goodness of Fit Test

Notes

The observed the	e observ	ed cour	its n_1, n	$\mathbf{z}_2, n_3, { m and} r$	n_4 are:
	21 to 40	Age 41 to 50	Category 51 to 60	61 and older	Row Total
Observed Count	$n_1 = 5$	$n_2 = 9$	$n_3 = 19$	$n_4 = 33$	n = 66

Note:

$$\sum_{i} n_i = n$$
 and $\sum_{i} p_i$

= 1.

Nels Grevstad Goodness of Fit Test

• The **null hypothesis** is that the probabilities for the k

Nels Grevstad Goodness of Fit Test

categories are equal to some hypothesized values:

Null Hypothesis:

 $H_0: p_1 = p_{10}, p_2 = p_{20}, \dots, p_k = p_{k0}$

where $p_{10}, p_{20}, \ldots, p_{k0}$ are hypothesized values for the true (unknown) probabilities p_1, p_2, \ldots, p_k .

Nels Grevstad

Notes

Notes

Notes

Notes

Notes

Notes

• The **alternative hypothesis** is that *at least one probability* differs from its hypothesized value:

Goodness of Fit Test

Alternative Hypothesis:	The alternative hypothesis will
be	
$H_a: p_i \neq p_{i0}$	for at least one i .

Nels Grevstad Goodness of Fit Test

Nels Grevstad Goodness of Fit Test

• To carry out the *goodness of fit test*, we'll need a new probability distribution.

Chi-Squared Distributions

• The <u>chi-squared distribution</u> has a single parameter ν , called the *degrees of freedom*.

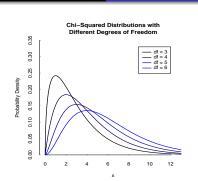
We denote the chi-squared distribution with ν df by $\chi^2(\nu).$

• Properties of Chi-Squared Distributions:

Nels Grevstad

Nels Grevstad Goodness of Fit Test

- 1. They're right skewed and lie entirely to the right of 0.
- 2. The one (and only) parameter of the distribution, its degrees of freedom, controls the distribution's shape, center, and spread.



Goodness of Fit Test

Figure: $\chi^2(\nu)$ distributions with different values of ν (df).

Nels Grevstad

Goodness of Fit Test

• If *H*₀ was true, we'd expect the sample proportions for the categories to be approximately equal to the null-hypothesized probabilities, i.e. we'd expect

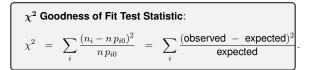
$$\frac{n_i}{n} \approx p_{i0},$$

or equivalently, we'd expect the *observed counts* n_i to be

$n_i \approx n p_{i0}$.

The right side above $(n p_{i0})$ is called the <u>expected count</u> (under H_0).

Nels Grevstad Goodness of Fit Test



• The numerator of χ^2 will be large if the **observed** counts differ substantially from the counts **expected** under H_0 , so

Nels Grevstad

...

Large values of χ^2 provide evidence against H_0 in favor of $H_a : p_i \neq p_{i0}$ for at least one *i*.

Nels Grevstad

Notes

Notes

Notes

Sampling Distribution of the Test Statistic Under H_0 : If χ^2 is the goodness of fit test statistic, and the number of trials n in the *multinomial experiment* is *large*, then when H_0 is true,

$$\chi^2 \sim \chi^2(k-1),$$

where \boldsymbol{k} is the number possible outcomes (categories) for each trial.

- The sample size *n* is considered large enough as long as each of the expected counts is five (or higher).
- Goodness of Fit Test

Nels Grevstad

Notes

Notes

- The $\chi^2(k-1)$ curve gives us:
 - The *rejection region* as the extreme largest 100 α % of χ^2 values.
 - • The p-value as the tail area to the right of the observed χ^2 value.

Comment: The df is k - 1 because only k - 1 of the deviations n_i - np_{i0} used to compute χ² are "free to vary"

Nels Grevstad Goodness of Fit Test

$$\sum_{i} n_{i} - n p_{i0} = \sum_{i} n_{i} - n \sum_{i} p_{i0} = n - n = 0$$

Nels Grevstad

Goodness of Fit Test

since the they sum to zero:

Example

Refer to the study of ages of people selected for grand juries.

The Public Health Department listed the following age demographics for the general population in Alameda County, CA.

	Percentage of
Age Category	General Population
21 to 40	42%
41 to 50	23%
51 to 60	16%
61 and over	19%

Notes

Notes

If the n = 66 individuals selected for grand juries were a random sample from the population, they'd fall into the k = 4 **age categories** with **probabilities** given by the **percentages** above.

Goodness of Fit Test

We'll use the **observed counts** (from the earlier example) to test this claim with a **goodness of fit test**.

Nels Grevstad Goodness of Fit Test

The hypotheses are

 $H_0: p_1 = 0.42, p_2 = 0.23, p_3 = 0.16, p_4 = 0.19$

versus

 H_a : Not all p_i 's equal their null-hypothesized values.

where p_1, p_2, \ldots, p_k are the true (unknown) probabilities of a grand jury selectee falling into the four age categories.

Nels Grevstad

The expected counts (under H_0) are below next to the observed counts: $\begin{array}{c} \begin{array}{c} & \text{Age Category} \\ \hline \text{Observed Count} \end{array} \xrightarrow{\begin{array}{c} 21 \text{ to } 40 \\ n_1 = 5 \end{array} \xrightarrow{\begin{array}{c} n_2 = 9 \\ n_2 = 9 \end{array} \xrightarrow{\begin{array}{c} n_3 = 10 \\ n_{20} = 15.2 \end{array} \xrightarrow{\begin{array}{c} n_{20} = 10.6 \\ n_{20} = 10.6 \end{array} \xrightarrow{\begin{array}{c} n_{20} = 10.6 \\ n_{20} = 12.5 \end{array}} \xrightarrow{\begin{array}{c} \text{Row} \\ \text{Total} \\ n = 66 \\ n = 66 \end{array}} \xrightarrow{\begin{array}{c} \text{Row} \\ \text{Total} \\ n = 66 \\ n = 66 \end{array}}$ Is the sample size n = 66 is large enough to justify the use of the goodness of fit test? Answer: Yes. (Why?)

Goodness of Fit Test

Nels Grevstad

The goodness of fit test statistic is
$$\begin{split} \chi^2 &=& \sum_{i=1}^k \frac{(n_i - n \cdot p_{i0})^2}{n \cdot p_{i0}} \\ &=& \frac{(5 - 27.72)^2}{27.72} + \frac{(9 - 15.18)^2}{15.18} \\ &+ \frac{(19 - 10.56)^2}{10.56} + \frac{(33 - 12.54)^2}{12.54} \\ &=& \mathbf{61.27}. \end{split}$$

Nels Grevstad

Notes

Notes

From a χ^2 distribution table using k - 1 = 3 df, the p-value is less than 0.001.

Using a level of significance $\alpha = 0.05$, we reject H_0 .

Goodness of Fit Test

Grand jurors in Alameda County follow have a different **age distribution** than the general population.

Goodness of Fit Test

Nels Grevstad

Testing Whether a Sample Came From a Specific Distribution

• Consider an iid sample $X_1, X_2, ..., X_n$ from an **unknown** probability distribution whose **pdf** is f(x).

We want to test

$$H_0: f(x) = f_0(x)$$
$$H_a: f(x) \neq f_0(x)$$

where $f_0(x)$ is the **pdf** of some **hypothesize** probability distribution.

Goodness of Fit Test

Nels Grevstad

 To carry out the test, we subdivide the domain (or support) of f₀(x) into k intervals of the form

 $[a_0, a_1), [a_1, a_2), \ldots, [a_{k-1}, a_k).$

Then under H_0 , the probability of each X falling into the *i*th interval is

$$p_{i0} = \int_{a_{i-1}}^{a_i} f_0(x) \, dx$$

Nels Grevstad Goodness of Fit Test

• We obtain the **observed counts** n_1, n_2, \ldots, n_k for each of the *k* **intervals**, and use them in **a goodness of fit test** of

$$H_0: \quad p_1 = p_{10}, \quad p_2 = p_{20}, \quad \dots, \quad p_k = p_{k0}$$

 $H_a: p_i \neq p_{i0}$ for at least one i

where each p_i is the true (unknown) **probability** of an X falling into the *i***th interval**, i.e.

$$\boldsymbol{p_i} = \int_{a_{i-1}}^{a_i} f(x) \, dx$$

Nels Grevstad

Notes

Notes

Goodness of Fit Test

Example

One way to test whether computer-generated "pseudo random numbers" truly do follow the specified probability distribution is to carry out a **goodness of fit test**.

A sample of n = 1000 "pseudo random numbers" was generated from a standard normal distribution using R.

We'll use them to test:

$$H_0: f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
$$H_a: f(x) \neq \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

where f(x) is the true (unknown) distribution of the "pseudo random numbers."

Nels Grevstad Goodness of Fit Test Notes

Notes

The observations were grouped into k = 10 equi-probable intervals under the N(0, 1) distribution.

Nels Grevstad

The **observed counts**, theoretical probabilities, and **expected counts** are on the next slide.

	N(0, 1)	Expected	Observed
Interval	Probability p_{i0}	Count $n p_{i0}$	Count n_i
$-\infty$ to -1.28	0.1	$1000 \cdot 0.1 = 100$	104
-1.28 to -0.84	0.1	$1000 \cdot 0.1 = 100$	89
-0.84 to -0.52	0.1	$1000 \cdot 0.1 = 100$	105
-0.52 to -0.25	0.1	$1000 \cdot 0.1 = 100$	113
-0.25 to 0.00	0.1	$1000 \cdot 0.1 = 100$	90
0.00 to 0.25	0.1	$1000 \cdot 0.1 = 100$	84
0.25 to 0.52	0.1	$1000 \cdot 0.1 = 100$	96
$0.52 \ \mathrm{to} \ 0.84$	0.1	$1000 \cdot 0.1 = 100$	110
$0.84 \mbox{ to } 1.28$	0.1	$1000 \cdot 0.1 = 100$	122
$1.28 \ { m to} \ \infty$	0.1	$1000 \cdot 0.1 = 100$	87
			n = 1000

Goodness of Fit Test

We'll pose the problem as goodness of fit test of

$$H_0: p_1 = 0.1, p_2 = 0.1, \dots, p_{10} = 0.1$$

versus

 $H_a: p_i \neq 0.1$ for at least one i

where the *p_i*'s are the true (unknown) probabilities of an R "pseudo random number" falling into the *i*th interval.

Nels Grevstad

Notes

The test statistic is $\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - n p_{i0})^{2}}{n p_{i0}}$ $= \frac{(104 - 100)^{2}}{100} + \frac{(89 - 100)^{2}}{100} + \frac{(105 - 100)^{2}}{100} + \dots + \frac{(87 - 100)^{2}}{100}$ = 14.56.

Goodness of Fit Test

Nels Grevstad Goodness of Fit Test

Notes

Notes

The **p-value** is the area to the **right** of **14.56** under the χ^2 curve with k - 1 = 9 df.

From a χ^2 distribution table, the **p-value** is **0.1037**.

Using $\alpha = 0.05$, we fail to reject H_0 .

We conclude that there is no evidence that the R "pseudo random numbers" behave any differently than they would if they were an iid sample from a standard normal distribution.

Nels Grevstad

Notes