Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

November 19, 2019

Topics

Chi-Squared Tests for Two-Way Contingency Tables

Objectives

Objectives:

- Carry out a chi-squared test for homogeneity.
- Carry out a chi-squared test for independence.

Chi-Squared Tests for Two-Way Contingency Tables

Introduction

 Correlation and the t test for a regression slope are used to decide if there's an association between two numerical variables.

Chi-Squared Tests for Two-Way Contingency Tables

Introduction

 Correlation and the t test for a regression slope are used to decide if there's an association between two numerical variables.

One-factor ANOVA and the two-sample t test are used decide if there's an association between a numerical variable and a categorical one.

Chi-Squared Tests for Two-Way Contingency Tables

Introduction

 Correlation and the t test for a regression slope are used to decide if there's an association between two numerical variables.

One-factor ANOVA and the two-sample t test are used decide if there's an association between a numerical variable and a categorical one.

The *chi-squared test* is used to decide if there's an **association** between **two categorical** variables.

To determine if there's any **association** between a person's **socio-economic status** and their cigarette **smoking status**, **three random samples** of sizes **200**, **300**, and **300**, respectively, are drawn from each of **three populations** defined by **socio-economic class** (**SEC** – *high*, *middle*, and *low*).

To determine if there's any **association** between a person's **socio-economic status** and their cigarette **smoking status**, **three random samples** of sizes **200**, **300**, and **300**, respectively, are drawn from each of **three populations** defined by **socio-economic class** (**SEC** – *high*, *middle*, and *low*).

The *contingency table* on the next slide shows the results.

To determine if there's any **association** between a person's **socio-economic status** and their cigarette **smoking status**, **three random samples** of sizes **200**, **300**, and **300**, respectively, are drawn from each of **three populations** defined by **socio-economic class** (**SEC** – *high*, *middle*, and *low*).

The *contingency table* on the next slide shows the results.

Note that the sum of each row gives the sample size from that population.

		Smo	Sample		
		Current	Size		
Popula-	High SEC	40	20	140	200
tion	Middle SEC	75	45	180	300
	Low SEC	105	60	135	300

A study was carried out to decide if there's any **association** between **hair color** (*dark* or *light*) and **eye color** (*dark* or *light*).

A study was carried out to decide if there's any **association** between **hair color** (*dark* or *light*) and **eye color** (*dark* or *light*).

A **single** random sample of n=6,800 men was taken (from a **single** population), and each man **cross-classified** according to his **hair color** and **eye color**.

A study was carried out to decide if there's any **association** between **hair color** (*dark* or *light*) and **eye color** (*dark* or *light*).

A **single** random sample of n=6,800 men was taken (from a **single** population), and each man **cross-classified** according to his hair color and eye color.

The *contingency table* on the next slide shows the results.

A study was carried out to decide if there's any **association** between **hair color** (*dark* or *light*) and **eye color** (*dark* or *light*).

A **single** random sample of n=6,800 men was taken (from a **single** population), and each man **cross-classified** according to his hair color and eye color.

The *contingency table* on the next slide shows the results.

Note that the sum of the four table entries gives the sample size.

		Hair Color				
		Dark Light				
Eye Color	Dark	726	131			
·	Light	3,129	2,814			

 The data are summarized in a <u>contingency table</u> having the form below. The data are summarized in a <u>contingency table</u> having the form below.

		1 2 ··· J Total						
	1	n_{11}	n_{12}		n_{1J}	n_1 .		
Row	2	n_{21}	n_{22}	• • •	n_{2J}	n_2 .		
Category	÷	:	÷	٠.	÷	:		
	I	n_{I1}	n_{I2}	• • •	n_{IJ}	n_{I} .		
	Total	$n_{\cdot 1}$	$n_{\cdot 2}$	• • •	$n_{\cdot J}$	n		

Notation: For a given contingency table,

I =The number of row categories.

J =The number of column categories.

 $n_{ij} = \text{The } i, j \text{th } \underline{\textit{cell count}}.$

n.j = The jth <u>column total</u>.

 n_i . = The *i*th <u>row total</u>.

n = The overall sample size.

The **contingency table** below shows the **marginal row** and **marginal column totals** and the **overall sample size**.

	Smo	Sample		
	Current	Size		
High SEC	40	20	140	200
Middle SEC	75	45	180	300
Low SEC	105	60	135	300
Total	220	125	455	800
	Middle SEC Low SEC	High SEC 40 Middle SEC 75 Low SEC 105	Current Former High SEC 40 20 Middle SEC 75 45 Low SEC 105 60	High SEC 40 20 140 Middle SEC 75 45 180 Low SEC 105 60 135

The **contingency table** below shows the **marginal row** and **marginal column totals** and the **overall sample size**.

	Hair Color				
		Dark	Light	Total	
	Dark	726	131	857	
Eye Color					
	Light	3,129	2,814	5,943	
	Total	3,855	2,945	6,800	

• The chi-squared test is used in two contexts:

- The chi-squared test is used in two contexts:
 - Separate random samples of sizes n₁., n₂., ..., n_I. from I populations defined by a categorical variable, where each individual is classified according to one other categorical variable.

- The chi-squared test is used in two contexts:
 - Separate random samples of sizes n₁., n₂., ..., n_I. from I populations defined by a categorical variable, where each individual is classified according to one other categorical variable.

A **chi-squared test** *test for homogeneity* of the populations is used in this case.

- The chi-squared test is used in two contexts:
 - Separate random samples of sizes n₁., n₂., ..., n_I. from I populations defined by a categorical variable, where each individual is classified according to one other categorical variable.
 - A **chi-squared test** *test for homogeneity* of the populations is used in this case.
 - A single random sample of n individuals from a single population of individuals cross-classified according to two categorical variables.

- The chi-squared test is used in two contexts:
 - Separate random samples of sizes n₁., n₂., ..., n_I. from I populations defined by a categorical variable, where each individual is classified according to one other categorical variable.
 - A **chi-squared test** *test for homogeneity* of the populations is used in this case.
 - A single random sample of n individuals from a single population of individuals cross-classified according to two categorical variables.
 - A **chi-squared test** *test for independence* between the two categorical variables is used in this case.

Test for Homogeneity

Test for Homogeneity

Notation:

 p_{ij} = The *i*th population proportion in the *j*th category.

Column Category

		1	2		J	
	1	p_{11}	p_{12}		p_{1J}	1.0
Row	2	p_{21}	p_{22}		p_{2J}	1.0
Category	:	:	:	٠	:	:
	I	p_{I1}	p_{I2}		p_{IJ}	1.0

Column Category

		1	2		J	
	1	p_{11}	p_{12}		p_{1J}	1.0
Row	2	p_{21}	p_{22}		p_{2J}	1.0
Category	:	:	:	٠	:	÷
	I	p_{I1}	p_{I2}		p_{IJ}	1.0

(Note: The proportions sum to one in each row.)

The null hypothesis in the test for homogeneity is:

Null Hypothesis:

 H_0 : The population proportion for each column category is the same across the populations (rows).

We write this as

$$H_0: p_{1j} = p_{2j} = \cdots = p_{Ij}$$
 for each $j = 1, 2, \ldots, J$

The alternative hypothesis will be

Alternative Hypothesis:

 H_a : The population proportion for at least one column category is different across the populations (rows).

We can write this as

$$H_a: \quad p_{1j}\,, p_{2j}\,, \cdots\,, p_{Ij} \quad$$
 Aren't all equal for at least one $j=1,2,\ldots,J$

• When H_0 is true, we can use p_1, p_2, \dots, p_J to denote the common proportions for the J categories.

• When H_0 is true, we can use $p_1, p_2, ..., p_J$ to denote the common proportions for the J categories.

Then regardless of the population i, the **expected count** for the jth category is

Expected Count $= n_i \cdot p_j$

• Replacing the unknown true proportions p_1, p_2, \dots, p_J by their **estimates** $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_J$, where

$$\hat{p}_j = \frac{n_{\cdot j}}{n},$$

we get the **estimated expected count** (under H_0), denoted \hat{e}_{ij} :

$$\hat{e}_{ij} = n_{i\cdot}\hat{p}_j = \frac{n_{i\cdot}n_{\cdot j}}{n} = \frac{\text{(ith row total)}(j$th column total)}{n}$$

Chi-Squared Test Statistic for Homogeneity:

$$\chi^2 = \sum_{\text{all cells}} \frac{(n_{ij} - e_{ij})^2}{\hat{e}_{ij}}$$

$$= \sum_{\text{all cells}} \frac{(\text{observed} - \text{estimated expected})^2}{\text{estimated expected}}$$

• The numerator of χ^2 will be large if the **observed** counts differ substantially from the **estimated expected** counts under H_0 , so ...

• The numerator of χ^2 will be large if the **observed** counts differ substantially from the **estimated expected** counts under H_0 , so ...

Large values of χ^2 provide evidence against H_0 in favor of $H_a: p_{1j}, p_{2j}, \cdots, p_{Ij}$ aren't all equal for at least one $j=1,2,\ldots,J$.

Sampling Distribution of the Test Statistic Under H_0 : If χ^2 is the test statistic for homogeneity, and the sample sizes n_1 , n_2 , ..., n_I . are *large*, then when H_0 is true,

$$\chi^2 \sim \chi^2((I-1)(J-1)).$$

 The sample sizes n₁., n₂., ..., n_I. are considered large enough as long as each of the estimated expected counts is five (or higher). • Comment: The df are (I-1)(J-1) because the deviations $n_{ij} - \hat{e}_{ij}$ sum to zero in each row and in each column, leaving only (I-1)(J-1) "free to vary".

• The $\chi^2((I-1)(J-1))$ curve gives us:

- The $\chi^2((I-1)(J-1))$ curve gives us:
 - The *rejection region* as the extreme largest 100 α % of χ^2 values.

- The $\chi^2((I-1)(J-1))$ curve gives us:
 - The *rejection region* as the extreme largest 100 α % of χ^2 values.
 - The *p-value* as the tail area to the right of the observed χ^2 value.

Exercise

The table below shows the **estimated expected** counts \hat{e}_{ij} in parentheses:

		S	Sample		
		Current	Former	Never	Size
Popula-	High SEC	40 (55.0)	20 (31.3)	140 (113.8)	$n_{1.} = 200$
tion	Middle SEC	75 (82.5)	45 (46.9)	180 (170.6)	$n_{2.} = 300$
	Low SEC	105 (82.5)	60 (46.9)	135 (170.6)	$n_{3.} = 300$
	Total	$n_{\cdot 1} = 220$	n2 = 125	n3 = 455	n = 800

a) Verify that the sample sizes n_1 , n_2 , and n_3 are large enough to justify the use of the chi-squared test.

- a) Verify that the sample sizes n_1 , n_2 , and n_3 are large enough to justify the use of the chi-squared test.
- b) Compute the chi-squared test statistic.

- a) Verify that the sample sizes n_1 , n_2 , and n_3 are large enough to justify the use of the chi-squared test.
- b) Compute the chi-squared test statistic.

Hint: You should get $\chi^2 = 32.7$.

- a) Verify that the sample sizes n_1 , n_2 , and n_3 are large enough to justify the use of the chi-squared test.
- b) Compute the chi-squared test statistic.

Hint: You should get $\chi^2 = 32.7$.

c) Find the **p-value** and state the **conclusion** using $\alpha = 0.05$.

- a) Verify that the sample sizes n_1 , n_2 , and n_3 are large enough to justify the use of the chi-squared test.
- b) Compute the chi-squared test statistic.

Hint: You should get $\chi^2 = 32.7$.

c) Find the **p-value** and state the **conclusion** using $\alpha = 0.05$.

Hint: You should get p-value < 0.001.

Test for Independenc

Test for Independence

Notation:

- $p_{ij} = \text{The } \underline{\textit{joint probability}}$ (or $\underline{\textit{population proportion}}$) of the ith row and jth column crossclassification.
- $p_{\cdot j} = \sum_{i} p_{ij} = \text{The } \underline{\textit{marginal probability}} \text{ of the } i \text{th row category.}$
- $p_{i.} = \sum_{j} p_{ij} = \text{The } \underline{\textit{marginal probability}} \text{ of the } j \text{th column category.}$

Column Category

		1	2		J	
	1	p_{11}	p_{12}		p_{1J}	p_1 .
Row	2	p_{21}	p_{22}		p_{2J}	p_2 .
Category	:	:	÷	٠.	÷	÷
	I	p_{I1}	p_{I2}	• • •	p_{IJ}	p_I .
		$p_{\cdot 1}$	$p_{\cdot 2}$		$p_{\cdot J}$	1.0

 p_{I2}

 $p_{\cdot 2}$

 p_{I1}

 $p_{\cdot 1}$

Column

(Note: The probabilities in the IJ cells sum to one.)

 p_I .

1.0

 p_{IJ}

 $p_{\cdot J}$

Example

In hair and eye color study,

 p_1 . = The **probability** that a randomly selected man has **dark eyes**.

 $p_{.1}$ = The probability that he has dark hair.

ullet Recall that two events A and B are **independent** if

$$P(A \& B) = P(A)P(B).$$

• The null hypothesis in the test for independence is:

Null Hypothesis:

 H_0 : An individual's row category is independent of that individual's column category.

• The null hypothesis in the test for independence is:

Null Hypothesis:

 H_0 : An individual's row category is independent of that individual's column category.

We write this as

$$H_0: p_{ij} = p_{i\cdot} p_{\cdot j}$$
 for all pairs i and j

The alternative hypothesis will be

Alternative Hypothesis:

 ${\cal H}_a$: An individual's row category is dependent on the individual's column category.

We can write this as

 $H_0: p_{ij} \neq p_{i\cdot} p_{\cdot j}$ for at least one pair i and j

• The **expected count** for the *i*, *j*th cell is

Expected Count $= n p_{ij}$

which, when H_0 is true, is

Expected Count $= n p_i \cdot p_{\cdot j}$.

• Replacing the unknown true marginal probabilities p_i and $p_{\cdot j}$ by their **estimates** \hat{p}_i and $\hat{p}_{\cdot j}$, with

$$\hat{p}_{i\cdot} = rac{n_{i\cdot}}{n}$$
 and $\hat{p}_{\cdot j} = rac{n_{\cdot j}}{n}$,

• Replacing the unknown true marginal probabilities p_i and $p_{\cdot j}$ by their **estimates** \hat{p}_i and $\hat{p}_{\cdot j}$, with

$$\hat{p}_{i\cdot} = rac{n_{i\cdot}}{n} \quad ext{ and } \quad \hat{p}_{\cdot j} = rac{n_{\cdot j}}{n} \, ,$$

we get the <u>estimated expected count</u> (under H_0), denoted \hat{e}_{ij} :

$$\hat{e}_{ij} = n \, \hat{p}_{i\cdot} \, \hat{p}_{\cdot j} = \frac{n_{i\cdot} n_{\cdot j}}{n} = \frac{(i {
m th \ row \ total})(j {
m th \ column \ total})}{n}$$

• Replacing the unknown true marginal probabilities p_i and $p_{\cdot j}$ by their **estimates** \hat{p}_i and $\hat{p}_{\cdot j}$, with

$$\hat{p}_{i\cdot} = rac{n_{i\cdot}}{n} \quad ext{ and } \quad \hat{p}_{\cdot j} = rac{n_{\cdot j}}{n} \, ,$$

we get the <u>estimated expected count</u> (under H_0), denoted \hat{e}_{ij} :

$$\hat{e}_{ij} = n \, \hat{p}_{i\cdot} \, \hat{p}_{\cdot j} = \frac{n_{i\cdot} n_{\cdot j}}{n} = \frac{(i {\sf th row total})(j {\sf th column total})}{n}$$

(Note: It's the **same** as the **estimated expected count** for the **test for homogeneity**).

Chi-Squared Test Statistic for Independence:

$$\chi^2 = \sum_{\text{all cells}} \frac{(n_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}}$$

$$= \sum_{\text{all cells}} \frac{(\text{observed} - \text{estimated expected})^2}{\text{estimated expected}}$$

Note: It's the **same** as the **test statistic** for the **test for homogeneity**.

Sampling Distribution of the Test Statistic Under H_0 : If χ^2 is the test statistic for independence, and the sample size n is *large*, then when H_0 is true,

$$\chi^2 \sim \chi^2((I-1)(J-1)).$$

 The sample size n is considered large enough as long as each of the estimated expected counts is five (or higher).

Exercise

The table below shows the **estimated expected** counts \hat{e}_{ij} in parentheses:

Hair Color

		Dark	Light	Total
Eye	Dark	726 (485.8)	131 (371.2)	$n_{1.} = 857$
Color				
	Light	3,129 (3,369.2)	2,814 (2,573.8)	$n_{2} = 5,943$
	Total	$n_{\cdot 1} = 3,855$	$n_{\cdot 2} = 2,945$	n = 6,800

a) Verify that the **sample size** *n* is **large enough** to justify the use of the **chi-squared test**.

- a) Verify that the **sample size** *n* is **large enough** to justify the use of the **chi-squared test**.
- b) Compute the chi-squared test statistic.

- a) Verify that the **sample size** n is **large enough** to justify the use of the **chi-squared test**.
- b) Compute the chi-squared test statistic.

Hint: You should get $\chi^2 = 313.7$.

- a) Verify that the sample size n is large enough to justify the use of the chi-squared test.
- b) Compute the chi-squared test statistic.

Hint: You should get $\chi^2 = 313.7$.

c) Find the **p-value** and state the **conclusion** using a level of significance $\alpha=0.05$.

- a) Verify that the sample size n is large enough to justify the use of the chi-squared test.
- b) Compute the chi-squared test statistic.

Hint: You should get $\chi^2 = 313.7$.

c) Find the **p-value** and state the **conclusion** using a level of significance $\alpha=0.05$.

Hint: You should get **p-value** < **0.001**.

- a) Verify that the sample size n is large enough to justify the use of the chi-squared test.
- b) Compute the chi-squared test statistic.

Hint: You should get $\chi^2 = 313.7$.

c) Find the **p-value** and state the **conclusion** using a level of significance $\alpha=0.05$.

Hint: You should get **p-value** < **0.001**.

 d) If there's an association, describe the nature of the association.