Statistical Methods

Nels Grevstad

Metropolitan State University of Denver

ngrevsta@msudenver.edu

December 3, 2019

3

Nels Grevstad

Topics

Paired Samples Version of the Wilcoxon Signed Ranks Test

3 Large Sample Version of the Wilcoxon Signed Ranks Test

イロト イポト イヨト イヨト

Objectives

Objectives:

- Carry out a Wilcoxon signed ranks test for a population mean.
- Carry out the paired samples version of a Wilcoxon signed ranks test for two population means.
- Carry out the large sample version of the Wilcoxon signed ranks test for a population mean.

イロト イポト イヨト イヨト

Wilcoxon Signed Ranks Test for a Population Mean μ

Parametric and Nonparametric Tests

• A *parametric test* is one that requires an **assumption** that the data are a sample from a some **specific probability distribution** (e.g. **normal**).

イロト イ理ト イヨト イヨト

Wilcoxon Signed Ranks Test for a Population Mean μ

Parametric and Nonparametric Tests

• A *parametric test* is one that requires an **assumption** that the data are a sample from a some **specific probability distribution** (e.g. **normal**).

イロト イポト イヨト イヨト

A *nonparametric test* is one that requires no such assumption.

Wilcoxon Signed Ranks Test for a Population Mean μ

Parametric and Nonparametric Tests

• A *parametric test* is one that requires an **assumption** that the data are a sample from a some **specific probability distribution** (e.g. **normal**).

A *nonparametric test* is one that requires no such assumption.

The *t* tests and ANOVA *F* tests are parametric tests.

イロト イポト イヨト イヨト

• The *Wilcoxon signed ranks test* is a **nonparametric** alternative to the **one-sample** *t* **test**.

イロト イポト イヨト イヨト

= 990

- The *Wilcoxon signed ranks test* is a **nonparametric** alternative to the **one-sample** *t* **test**.
- We only assume only that X₁, X₂,..., X_n are a random sample from *some* continuous, symmetric distribution whose mean is μ.

The null hypothesis is that μ is equal to a claimed value μ₀.

Null Hypothesis:

$$H_0: \ \mu \ = \ \mu_0$$

イロト イポト イヨト イヨト

3

• The **alternative hypothesis** will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

- 1. $H_a: \mu > \mu_0$ (one-sided, upper-tailed)
- 2. $H_a: \mu < \mu_0$ (one-sided, lower-tailed)
- 3. $H_a: \mu \neq \mu_0$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

イロン 不得 とくほ とくほとう

Comment: Because the population distribution is symmetric, its mean, μ, is also its median (50th percentile), μ

イロト イポト イヨト イヨト

э.

Comment: Because the population distribution is symmetric, its mean, μ, is also its median (50th percentile), μ

Thus we could state H_0 and H_a in terms of the **population** median, e.g.

$$H_0: \tilde{\mu} = \mu_0$$

イロト イポト イヨト イヨト

Wilcoxon Signed Ranks Test Statistic for μ :

- 1. Discard any observations X_i that equal μ_0 , and diminish the sample size by the number of discarded X_i 's before proceeding with Steps 2 3.
- 2. **Rank** the absolute deviations $|X_i \mu_0|$ from smallest (rank = 1) to largest (rank = *n*), keeping track of each deviation's original sign. For **ties**, use the **average** of the **ranks** that would've been assigned if there weren't any ties.
- 3. The test statistic, denoted S_+ , is

 $S_+ =$ Sum of ranks of $|X_i - \mu_0|$'s that were positive.

Example

The **price-to-earnings** (**P**/**E**) **ratio** of a stock is an important tool in finance. A low P/E ratio indicates a "value" or "bargain" stock.

イロト イポト イヨト イヨト

э.

Example

The **price-to-earnings** (**P**/**E**) **ratio** of a stock is an important tool in finance. A low P/E ratio indicates a "value" or "bargain" stock.

A recent issue of the *Wall Street Journal* indicated that the P/E ratio of the entire S&P 500 stock index is **19.0**.

イロト イポト イヨト イヨト

æ

Example

The **price-to-earnings** (**P**/**E**) **ratio** of a stock is an important tool in finance. A low P/E ratio indicates a "value" or "bargain" stock.

A recent issue of the *Wall Street Journal* indicated that the P/E ratio of the entire S&P 500 stock index is **19.0**.

The next slide shows the **P/E ratios** in a sample of n = 14 large U.S. banks, as reported in *Forbes* magazine. Also shown are the **deviations** away from **19.0**.

くロト (過) (目) (日)

P/E Ratio (X_i)	Deviation ($X_i - 19.0$)
24.3	5.3
15.8	-3.2
22.1	3.1
14.4	-4.6
11.7	-7.3
13.2	-5.8
17.0	-2.0
22.1	3.1
15.4	-3.6
19.0	0.0
23.0	4.0
13.2	-5.8
10.9	-8.1
18.2	-0.8

We want to decide if the true **mean P/E ratio** for large U.S. banks, μ , is **different** from **19.0**:

 $H_0: \mu = 19.0$ $H_a: \mu \neq 19.0$

.....

Nels Grevstad

We want to decide if the true **mean P/E ratio** for large U.S. banks, μ , is **different** from **19.0**:

 $H_0: \mu = 19.0$ $H_a: \mu \neq 19.0$

Ratios of random variables, like the **P/E ratio**, often follow a *heavy tailed*, *non-normal* (but symmetric) distribution called the *Cauchy* distribution.

We want to decide if the true **mean P/E ratio** for large U.S. banks, μ , is **different** from **19.0**:

 $H_0: \mu = 19.0$ $H_a: \mu \neq 19.0$

Ratios of random variables, like the **P/E ratio**, often follow a *heavy tailed*, *non-normal* (but symmetric) distribution called the *Cauchy* distribution.

(We could also check the normality assumption with a normal probability plot of the **P/E ratios**.)

We want to decide if the true **mean P/E ratio** for large U.S. banks, μ , is **different** from **19.0**:

 $H_0: \mu = 19.0$ $H_a: \mu \neq 19.0$

Ratios of random variables, like the **P/E ratio**, often follow a *heavy tailed*, *non-normal* (but symmetric) distribution called the *Cauchy* distribution.

(We could also check the normality assumption with a normal probability plot of the **P/E ratios**.)

Thus a one-sample *t* test *isn't* appropriate.

We'll carry out a **Wilcoxon signed ranks test**. Here are the **sorted absolute values** of the **deviations** along with their original **signs** and their **ranks**:

ヘロト ヘアト ヘヨト ヘ

-∃=->

We'll carry out a **Wilcoxon signed ranks test**. Here are the **sorted absolute values** of the **deviations** along with their original **signs** and their **ranks**:

$ X_i - 19 $	0.0	0.8	2.0	3.1	3.1	3.2	3.6	4.0	4.6	5.3	5.8	5.8	7.3	8.1
Sign	NA	-	-	+	+	-	-	+	-	+	-	-	-	-
Rank	NA	1	2	3.5	3.5	5	6	7	8	9	10.5	10.5	12	13

イロト イポト イヨト イヨト

æ

We'll carry out a **Wilcoxon signed ranks test**. Here are the **sorted absolute values** of the **deviations** along with their original **signs** and their **ranks**:

$ X_i - 19 $	0.0	0.8	2.0	3.1	3.1	3.2	3.6	4.0	4.6	5.3	5.8	5.8	7.3	8.1
Sign	NA	-	-	+	+	-	-	+	-	+	-	-	-	-
Rank	NA	1	2	3.5	3.5	5	6	7	8	9	10.5	10.5	12	13

< ロ > < 同 > < 三 >

Note that the **zero** deviation is discarded, and so now n = 13, and the **ties** are assigned the **average rank**.

The test statistic is

$$S_{+}$$
 = Sum of ranks of $|X_{i} - 19|$'s that were positive
= $3.5 + 3.5 + 7 + 9$
= 23.

イロト イポト イヨト イヨト

= 900

Nels Grevstad

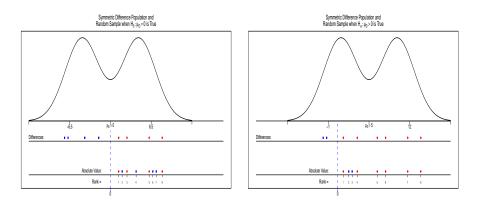


Figure: Symmetric populations and samples from them. Absolute values of positive (blue squares) and negative (red diamonds) at the bottom. Left plot, $H_0: \mu = 0$ is true. Right plot, $H_a: \mu > 0$ is true.

イロト イポト イヨト イヨト

3

S₊ will be large when the deviations X_i - μ₀ are larger in the positive direction than in the negative direction, as would be the case if μ > μ₀.

イロト イポト イヨト イヨト

э.

- S₊ will be large when the deviations X_i μ₀ are larger in the positive direction than in the negative direction, as would be the case if μ > μ₀.
- S₊ will be small when the deviations in the *positive* direction are *smaller* than those in the *negative* direction, as would be the case if μ < μ₀.

イロト イポト イヨト イヨト

- 1. Large values of S_+ provide evidence against H_0 in favor of $H_a: \mu > \mu_0$.
- 2. Small values of S_+ provide evidence against H_0 in favor of $H_a: \mu < \mu_0$.
- 3. Large and small values of S_+ provide evidence against H_0 in favor of $H_a : \mu \neq \mu_0$.

イロト イポト イヨト イヨト

> **Sampling Distribution of the Test Statistic Under** H_0 : If S_+ is the Wilcoxon signed ranks test statistic, then when

> > $H_0: \mu = \mu_0$

is true, S_+ follows a so-called *Wilcoxon signed ranks distribution*, which has one parameter n (the sample size), i.e.

 $S_+ \sim \text{Wilcoxon}_{\text{SR}}(n).$

• Properties of $Wilcoxon_{SR}(n)$ distributions

• They're symmetric, discrete distributions.

イロト イポト イヨト イヨト

э.

Properties of Wilcoxon_{SR}(n) distributions

- They're symmetric, discrete distributions.
- The probability lies between **0** and n(n + 1)/2(= 1 + 2 + ... + n).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Properties of Wilcoxon_{SR}(n) distributions
 - They're symmetric, discrete distributions.
 - The probability lies between **0** and n(n + 1)/2(= 1 + 2 + ... + n).
 - They're **centered** on n(n + 1)/4 (which is the *mean* of the distribution).

ヘロト 人間 とくほとく ほとう

э.

- Properties of Wilcoxon_{sr}(n) distributions
 - They're symmetric, discrete distributions.
 - The probability lies between **0** and n(n + 1)/2(= 1 + 2 + ... + n).
 - They're **centered** on n(n + 1)/4 (which is the *mean* of the distribution).
 - As *n* increases, the Wilcoxon_{SR}(n) distributions approach a normal distribution.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

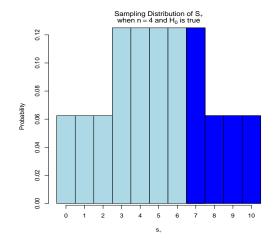


Figure: Wilcoxon_{SR}(n) distribution when n = 4. The shaded area is the upper-tailed p-value when $S_+ = 7$.

Example

Recall that for a test of

$$H_0: \mu = 19.0$$
$$H_a: \mu \neq 19.0$$

where μ is the true **mean P/E ratio** for large U.S. banks, a sample of n = 14 (diminished to n = 13) banks produced a **Wilcoxon signed ranks test statistic**

$$S_{+} = 23.$$

イロト イポト イヨト イヨト

э.

Nels Grevstad

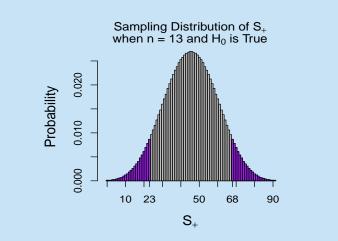


Figure: Wilcoxon_{SR}(n) distribution when n = 13. The shaded area is the two-tailed p-value when $S_+ = 23$.

By symmetry of the Wilcoxon_{SR}(n) distribution, when n = 13,

 $P(S_+ \le 23) = P(S_+ \ge 13(14)/2 - 23) = P(S_+ \ge 68).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

By symmetry of the Wilcoxon_{SR}(n) distribution, when n = 13,

 $P(S_+ \le 23) = P(S_+ \ge 13(14)/2 - 23) = P(S_+ \ge 68).$

From **Table A13**, the **p-value** for the two-tailed test is **between 2(0.055)** and **2(0.095)**, i.e. **between 0.110** and **0.190**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

By symmetry of the Wilcoxon_{SR}(n) distribution, when n = 13,

 $P(S_+ \le 23) = P(S_+ \ge 13(14)/2 - 23) = P(S_+ \ge 68).$

From **Table A13**, the **p-value** for the two-tailed test is **between 2(0.055)** and **2(0.095)**, i.e. **between 0.110** and **0.190**.

There's *no statistically significant* evidence that the true mean **P/E ratio** for U.S. banks differs from **19.0**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Exercise

The data on the next slide are estimated values of the true (unknown) **ratio** μ of the mass of the earth to that of the moon obtained from seven different Mariner and Pioneer spacecraft in the 1960's.

くロト (過) (目) (日)

æ

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ion
Mariner 4 (Mars)81.3015-0.00Mariner 5 (Venus)81.3006-0.00Mariner 6 (Mars)81.3011-0.00	3035
Mariner 5 (Venus)81.3006-0.00Mariner 6 (Mars)81.3011-0.00	34
Mariner 6 (Mars) 81.3011 -0.00	20
	29
Mariner 7 (Mars) 81 2997 _0.00	24
	38
Pioneer 6 81.3005 -0.00	30
Pioneer 7 81.3021 -0.00	14

Prior to obtaining these estimates, scientists had considered μ to be **81.3035**. We'll use the data to test

 $H_0: \mu = 81.3035$ $H_a: \mu \neq 81.3035$

イロト イポト イヨト イヨト 一臣

Because the data are *ratios*, they (likely) follow the (nonnormal) *Cauchy distribution*, so a one-sample *t* test isn't appropriate.

Carry out a Wilcoxon signed ranks test using $\alpha = 0.05$. Here are the sorted absolute values of the deviations along with their original signs and their ranks:

$ X_i - 81.3035 $	0.0014	0.0020	0.0024	0.0029	0.0030	0.0034	0.0038
Sign	-	-	-	-	-	-	-
Rank	1	2	3	4	5	6	7

イロン イボン イヨン

æ

Carry out a Wilcoxon signed ranks test using $\alpha = 0.05$. Here are the sorted absolute values of the deviations along with their original signs and their ranks:

$ X_i - 81.3035 $	0.0014	0.0020	0.0024	0.0029	0.0030	0.0034	0.0038
Sign	-	-	-	-	-	-	-
Rank	1	2	3	4	5	6	7

ヘロト ヘアト ヘヨト ヘ

Hint: You should get $S_{+} = 0$ and a **p-value** of **2(0.008)** = **0.016**.

Lack of Power of Nonparametric Tests

Notice (Table A13) that when n = 4, the largest possible value, S₊ = 10, gives an upper-tailed p-value of 0.0625.

イロト イポト イヨト イヨト

æ

Lack of Power of Nonparametric Tests

Notice (Table A13) that when n = 4, the largest possible value, S₊ = 10, gives an upper-tailed p-value of 0.0625.

Thus for this sample size, it's **not possible** to **reject** H_0 (using $\alpha = 0.05$).

(日) (四) (日) (日) (日)

Lack of Power of Nonparametric Tests

Notice (Table A13) that when n = 4, the largest possible value, S₊ = 10, gives an upper-tailed p-value of 0.0625.

Thus for this sample size, it's **not possible** to **reject** H_0 (using $\alpha = 0.05$).

In general, when n is small, nonparametric tests *lack power* for rejecting H_0 .

イロト イポト イヨト イヨト

Lack of Power of Nonparametric Tests

Notice (Table A13) that when n = 4, the largest possible value, S₊ = 10, gives an upper-tailed p-value of 0.0625.

Thus for this sample size, it's **not possible** to **reject** H_0 (using $\alpha = 0.05$).

In general, when n is small, nonparametric tests *lack power* for rejecting H_0 .

Intuitively, it's because some information is discarded when raw data are converted to ranks.

イロト イポト イヨト イヨト

Key takeaway: Parametric tests are more powerful than nonparametric ones.

イロト 不得 とくほ とくほ とう

3

 Key takeaway: Parametric tests are more powerful than nonparametric ones.

Thus, for example, when the **normality** assumption is **met**, the t **test should be used** instead of the Wilcoxon signed ranks test.

イロト イ理ト イヨト イヨト

Paired Samples Version of the Wilcoxon Signed Ranks Test

• The Wilcoxon signed ranks test can serve as a nonparametric alternative to the paired *t* test.

(日)

Paired Samples Version of the Wilcoxon Signed Ranks Test

- The Wilcoxon signed ranks test can serve as a nonparametric alternative to the paired *t* test.
- We'll assume only that X₁, X₂,..., X_n and Y₁, Y₂,..., Y_n are paired samples from continuous distributions whose means are μ₁ and μ₂, and that the differences D₁, D₂,..., D_n, where

$$D_i = X_i - Y_i,$$

ヘロト 人間 とくほとくほとう

follow a symmetric distribution.

• The next fact says that as long as the *X* and *Y* distributions have the **same shape**, the **differences** will follow a **symmetric** distribution.

イロト イポト イヨト イヨト

æ

• The next fact says that as long as the X and Y distributions have the **same shape**, the **differences** will follow a **symmetric** distribution.

In particular, the X and Y distributions *don't* themselves have to be symmetric.

イロト イ理ト イヨト イヨト

Proposition

Suppose *X* and *Y* are random observations from *any* two continuous distributions that have the **same shape** (but possibly different means μ_1 and μ_2). Let

$$D = X - Y.$$

Then the distribution of *D* is continuous and **symmetric** about the value

$$\mu_d = \mu_1 - \mu_2.$$

イロト イポト イヨト イヨト

• The **null hypothesis** is that μ_d is equal zero.

Null Hypothesis:

$$H_0: \ \mu_d = 0$$

イロン イボン イヨン

3

Nels Grevstad

• The **alternative hypothesis** will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

- 1. $H_a: \mu_d > 0$ (one-sided, upper-tailed)
- 2. $H_a: \mu_d < 0$ (one-sided, lower-tailed)
- 3. $H_a: \mu_d \neq 0$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

The test is conducted exactly as a *one-sample* Wilcoxon signed ranks test, but using the sample of differences D₁, D₂,..., D_n.

イロト イポト イヨト イヨト

= 990

Large Sample Version of the Wilcoxon Signed Ranks Test

When n is large, the Central Limit Theorem (which applies not just to means, but also to sums of random variables) says that S₊ (which is a sum) follows a normal distribution (approximately).

イロト イポト イヨト イヨト

Proposition

1. The mean and standard error (standard deviation) of the Wilcoxon_{SR}(n) distribution, denoted μ_{s_+} and σ_{s_+} , are

$$\mu_{s_{+}} = E(S_{+}) = \frac{n(n+1)}{4}$$

$$\sigma_{s_{+}} = SD(S_{+}) = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

(1)

 When *n* is large (*n* > 20), the Wilcoxon_{SR}(*n*) distribution is (approximately) normal, i.e.

$$S_+ \sim \mathsf{N}(\mu_{s_+}, \sigma_{s_+})$$

(approximately).

Large Sample Wilcoxon Signed Ranks Test Statistic for μ :

$$Z = \frac{S_{+} - \mu_{s_{+}}}{\sigma_{s_{+}}} = \frac{S_{+} - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}}$$

イロト 不得 とくほ とくほ とう

= 990

Nels Grevstad

• Now suppose the sample size *n* is *large*.

In this case, the sampling distribution of the test statistic is as follows.

Sampling Distribution of the Test Statistic Under H_0 : If Z is the large sample Wilcoxon signed ranks test statistic, then when

 $H_0: \mu = \mu_0$

is true,

 $Z \sim N(0,1).$

イロト イヨト イヨト イ

• The N(0,1) curve gives us:

イロト イポト イヨト イヨト

= 990

- The N(0,1) curve gives us:
 - The *rejection region* as the extreme 100α% of Z values (in the direction(s) specified by H_a).

э.

- The N(0,1) curve gives us:
 - The *rejection region* as the extreme 100α% of Z values (in the direction(s) specified by H_a).
 - The *p-value* as the tail area(s) beyond the observed Z value (in the direction(s) specified by H_a).

イロト イポト イヨト イヨト

• **Comment**: Most statistical software uses a slightly more accurate *continuity corrected* version of the test statistic *Z*.

イロン イボン イヨン イヨン

э.

• **Comment**: Most statistical software uses a slightly more accurate *continuity corrected* version of the test statistic *Z*.

The correction adjusts for the fact that a **continuous** distribution (the N(0, 1) distribution) is being used to approximate a **discrete** one (the Wilcoxon_{SR}(n) distribution).

イロト イポト イヨト イヨト