Wilcoxon Signed Ranks Test for a Population Mean Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test	Notes
Statistical Methods	
Nels Grevstad	
Metropolitan State University of Denver ngrevsta@msudenver.edu	
December 3, 2019	
Nels Grevstad	
Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test	Notes
Topics	
$lacktriangledown$ Wilcoxon Signed Ranks Test for a Population Mean μ	
2 Paired Samples Version of the Wilcoxon Signed Ranks Test	
3 Large Sample Version of the Wilcoxon Signed Ranks Test	
Neis Grevstad	
Wilcoxon Signed Ranks Test for a Population Mean ## Paired Samples Version of the Wilcoxon Signed Ranks ## Paired Samples Version of the Wilcoxon Signed Ranks ##	M .
Large Sample Version of the Wilcoxon Signed Ranks Test Objectives	Notes
Objectives:	
 Carry out a Wilcoxon signed ranks test for a population mean. 	
 Carry out the paired samples version of a Wilcoxon signed ranks test for two population means. 	
 Carry out the large sample version of the Wilcoxon signed ranks test for a population mean. 	
Neis Grevstad	
Wilcoxon Signed Ranks Test for a Population Mean Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test	Notes
Wilcoxon Signed Ranks Test for a Population Mean μ	

Parametric and Nonparametric Tests

• A parametric test is one that requires an assumption that the data are a sample from a some specific probability $\textbf{distribution} \ (e.g. \ \textbf{normal}).$

A *nonparametric test* is one that requires no such assumption.

The t tests and ANOVA ${\cal F}$ tests are parametric tests.

Notes		
Notes		

- The Wilcoxon signed ranks test is a nonparametric alternative to the one-sample t test.
- We only assume only that X_1, X_2, \ldots, X_n are a random sample from **some** continuous, symmetric distribution whose mean is μ .

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test

• The **null hypothesis** is that μ is equal to a claimed value μ_0 .

Null Hypothesis:

$$H_0: \mu = \mu_0$$

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

 The alternative hypothesis will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

1. H_a : $\mu > \mu_0$ (one-sided, upper-tailed)

2. H_a : μ < μ_0 (one-sided, lower-tailed)

3. $H_a: \mu \neq \mu_0$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

• Comment: Because the population distribution is *symmetric*, its mean, μ , is also its median (50th percentile), $\tilde{\mu}$.

Thus we could state ${\cal H}_0$ and ${\cal H}_a$ in terms of the ${\bf population}$ ${\bf median},$ e.g.

$$H_0: \tilde{\mu}\ =\ \mu_0$$

otes		
nos		
otes		
otes		

Wilcoxon Signed Ranks Test Statistic for μ :

- 1. Discard any observations X_i that equal μ_0 , and diminish the sample size by the number of discarded X_i 's before proceeding with Steps 2 3.
- 2. Rank the absolute deviations $|X_i \mu_0|$ from smallest (rank = 1) to largest (rank = n), keeping track of each deviation's original sign. For **ties**, use the **average** of the **ranks** that would've been assigned if there weren't any ties.
- 3. The **test statistic**, denoted S_+ , is

 $S_{+} = \text{Sum of ranks of } |X_{i} - \mu_{0}|$'s that were positive.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

Example

The **price-to-earnings** (**P/E**) **ratio** of a stock is an important tool in finance. A low P/E ratio indicates a "value" or "bargain" stock.

A recent issue of the *Wall Street Journal* indicated that the P/E ratio of the entire S&P 500 stock index is **19.0**.

The next slide shows the **P/E ratios** in a sample of n=14 large U.S. banks, as reported in *Forbes* magazine. Also shown are the **deviations** away from **19.0**.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

P/E Ratio (X_i)	Deviation ($X_i - 19.0$)
24.3	5.3
15.8	-3.2
22.1	3.1
14.4	-4.6
11.7	-7.3
13.2	-5.8
17.0	-2.0
22.1	3.1
15.4	-3.6
19.0	0.0
23.0	4.0
13.2	-5.8
10.9	-8.1
18.2	-0.8

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

We want to decide if the true **mean P/E ratio** for large U.S. banks, μ , is **different** from **19.0**:

$$H_0: \mu = 19.0$$

$$H_a: \mu \neq 19.0$$

Ratios of random variables, like the **P/E ratio**, often follow a heavy tailed, non-normal (but symmetric) distribution called the Cauchy distribution.

(We could also check the normality assumption with a normal probability plot of the **P/E ratios**.)

Thus a one-sample t test isn't appropriate.

Nels Grevstad

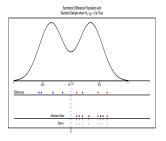
Notes			
Notes			
Notes			
Notes			

We'll carry out a **Wilcoxon signed ranks test**. Here are the **sorted absolute values** of the **deviations** along with their original **signs** and their **ranks**:

$ X_i - 19 $	0.0	0.8	2.0	3.1	3.1	3.2	3.6	4.0	4.6	5.3	5.8	5.8	7.3	8.1
Sign	NA	-	-	+	+	-	-	+	-	+	-	-		-
Rank	NA	1	2	3.5	3.5	5	6	7	8	9	10.5	10.5	12	13

Note that the **zero** deviation is discarded, and so now n=13, and the **ties** are assigned the **average rank**.

Nels Grevstad


Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

The test statistic is

$$S_+ = \operatorname{Sum}$$
 of ranks of $|X_i - 19|$'s that were positive
$$= 3.5 + 3.5 + 7 + 9$$
$$= 23.$$

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

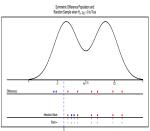


Figure: Symmetric populations and samples from them. Absolute values of positive (blue squares) and negative (red diamonds) at the bottom. Left plot, $H_0:\mu=0$ is true. Right plot, $H_a:\mu>0$ is true.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

- S_+ will be **large** when the deviations $X_i \mu_0$ are *larger* in the *positive* direction than in the *negative* direction, as would be the case if $\mu > \mu_0$.
- S_+ will be **small** when the deviations in the *positive* direction are *smaller* than those in the *negative* direction, as would be the case if $\mu < \mu_0$.

Notes		
Notes		
Notes		
Notes		

- 1. Large values of S_+ provide evidence against H_0 in favor of $H_a: \mu > \mu_0$.
- 2. Small values of S_+ provide evidence against H_0 in favor of $H_a: \mu < \mu_0.$
- 3. Large and small values of S_+ provide evidence against H_0 in favor of $H_a: \mu \neq \mu_0$.

Nels Grevstag

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

Sampling Distribution of the Test Statistic Under H_0 : If S_+ is the Wilcoxon signed ranks test statistic, then when

$$H_0: \mu = \mu_0$$

is true, S_+ follows a so-called *Wilcoxon signed ranks distribution*, which has one parameter n (the **sample size**), i.e.

$$S_+ \sim \mathsf{Wilcoxon}_{\mathsf{SR}}(n).$$

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

ullet Properties of Wilcoxon_{SR}(n) distributions

- They're symmetric, discrete distributions.
- The probability lies between $\mathbf{0}$ and n(n+1)/2 (= $1+2+\ldots+n$).
- ullet They're **centered** on n(n+1)/4 (which is the *mean* of the distribution).
- \bullet As n increases, the $\mathsf{Wilcoxon}_{\mathsf{SR}}(n)$ distributions approach a \mathbf{normal} distribution.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

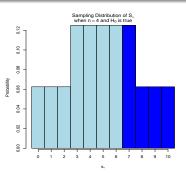


Figure: Wilcoxon_{SR}(n) distribution when n=4. The shaded area is the upper-tailed p-value when $S_+=7$.

Nels Grevstad

Notes	
Notes	
110163	
Notes	
Notes	
-	
Notes	
140162	

Example

Recall that for a test of

$$H_0: \mu = 19.0$$

$$H_a: \mu \neq 19.0$$

where μ is the true **mean P/E ratio** for large U.S. banks, a sample of n=14 (diminished to n=13) banks produced a **Wilcoxon signed ranks test statistic**

$$S_{+} = 23.$$

Nels Grevstag

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

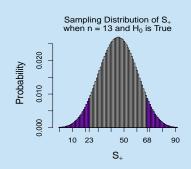


Figure: Wilcoxon_{\rm SR}(n) distribution when n=13. The shaded area is the two-tailed p-value when $S_+=23.$

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

By symmetry of the ${\sf Wilcoxon_{SR}}(n)$ distribution, when n=13,

$$P(S_+ \le 23) \ = \ P(S_+ \ge 13(14)/2 - 23) \ = \ P(S_+ \ge 68) \, .$$

From Table A13, the p-value for the two-tailed test is between 2(0.055) and 2(0.095), i.e. between 0.110 and 0.190.

There's *no statistically significant* evidence that the true mean **P/E ratio** for U.S. banks differs from **19.0**.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

Exercise

The data on the next slide are estimated values of the true (unknown) ratio μ of the mass of the earth to that of the moon obtained from seven different Mariner and Pioneer spacecraft in the 1960's.

Notes			
Notes			
Notes			
Notes			

	Estimated	Deviation
Spacecraft	Ratio X_i	$X_i - 81.3035$
Mariner 2 (Venus)	81.3001	-0.0034
Mariner 4 (Mars)	81.3015	-0.0020
Mariner 5 (Venus)	81.3006	-0.0029
Mariner 6 (Mars)	81.3011	-0.0024
Mariner 7 (Mars)	81.2997	-0.0038
Pioneer 6	81.3005	-0.0030
Pioneer 7	81.3021	-0.0014

Notes

Nels Grevstac

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

Prior to obtaining these estimates, scientists had considered μ to be **81.3035**. We'll use the data to test

$$\begin{array}{rcl} H_0: \mu & = & 81.3035 \\ H_a: \mu & \neq & 81.3035 \end{array}$$

Because the data are $\it ratios$, they (likely) follow the (non-normal) $\it Cauchy \ distribution$, so a one-sample $\it t$ test isn't appropriate.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

Carry out a Wilcoxon signed ranks test using $\alpha=0.05$. Here are the sorted absolute values of the deviations along with their original signs and their ranks:

$ X_i - 81.3035 $	0.0014	0.0020	0.0024	0.0029	0.0030	0.0034	0.0038	3
Sign	-	-	-	-	-	-		Ī
Rank	1	2	3	4	5	6	7	Ī

Hint: You should get $S_{+}=0$ and a **p-value** of **2(0.008) = 0.016**.

Nels Grevsta

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

Lack of Power of Nonparametric Tests

• Notice (Table A13) that when n=4, the **largest** possible value, $S_+=10$, gives an upper-tailed p-value of **0.0625**.

Thus for this sample size, it's **not possible** to **reject** H_0 (using $\alpha=0.05$).

In general, when n is **small**, **nonparametric** tests *lack* power for rejecting H_0 .

Intuitively, it's because some information is discarded when raw data are converted to ranks.

Notes	
110100	
Notes	
Notes	

 Key takeaway: Parametric tests are more powerful than nonparametric ones.

Thus, for example, when the **normality** assumption is \mathbf{met} , the t **test should be used** instead of the Wilcoxon signed ranks test

Nels Grevstag

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

Paired Samples Version of the Wilcoxon Signed Ranks Test

- The Wilcoxon signed ranks test can serve as a nonparametric alternative to the paired t test.
- We'll assume only that X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n are **paired samples** from continuous distributions whose means are μ_1 and μ_2 , and that the **differences** D_1, D_2, \ldots, D_n , where

$$D_i = X_i - Y_i,$$

follow a symmetric distribution.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

The next fact says that as long as the X and Y
distributions have the same shape, the differences will
follow a symmetric distribution.

In particular, the X and Y distributions $\emph{don't}$ themselves have to be symmetric.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

Proposition

Suppose X and Y are random observations from any two continuous distributions that have the **same shape** (but possibly different means μ_1 and μ_2). Let

$$D = X - Y.$$

Then the distribution of \boldsymbol{D} is continuous and $\mathbf{symmetric}$ about the value

$$\mu_d = \mu_1 - \mu_2.$$

Notes			
Notes			
Notes			

Wilcoxon Signed Ranks Test for a Population Mean μ	
Paired Samples Version of the Wilcoxon Signed Ranks Test	
Large Sample Version of the Wilcoxon Signed Ranks Test	

• The **null hypothesis** is that μ_d is equal zero.

Null Hypothesis:

 $H_0:\ \mu_d\ =\ 0$

Nala Casusta

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

> The alternative hypothesis will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

1. $H_a: \mu_d > 0$ (one-sided, upper-tailed)

2. $H_a: \mu_d < 0$ (one-sided, lower-tailed)

3. $H_a: \mu_d \neq 0$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

• The test is conducted exactly as a *one-sample* Wilcoxon signed ranks test, but using the sample of differences D_1, D_2, \ldots, D_n .

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

Large Sample Version of the Wilcoxon Signed Ranks
Test

ullet When n is large, the Central Limit Theorem (which applies not just to means, but also to sums of random variables) says that S_+ (which is a sum) follows a normal distribution (approximately).

Notes	
Notes	
Notes	
Notes	

Proposition

1. The mean and standard error (standard deviation) of the Wilcoxon_{SR}(n) distribution, denoted μ_{s_+} and σ_{s_+} , are

$$\begin{array}{rcl} \mu_{s_{+}} & = & E(S_{+}) & = & \frac{n(n+1)}{4} \\ \\ \sigma_{s_{+}} & = & SD(S_{+}) & = & \sqrt{\frac{n(n+1)(2n+1)}{24}} \end{array} \tag{1}$$

2. When n is large (n>20), the Wilcoxon_{SR}(n) distribution is (approximately) **normal**, i.e.

$$S_{+} \sim \mathsf{N}(\mu_{s_{\perp}}, \ \sigma_{s_{\perp}})$$

(approximately).

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

Large Sample Wilcoxon Signed Ranks Test Statistic for μ :

$$Z = \frac{S_+ - \mu_{s_+}}{\sigma_{s_+}} = \frac{S_+ - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}}.$$

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ Paired Samples Version of the Wilcoxon Signed Ranks Test Large Sample Version of the Wilcoxon Signed Ranks Test

ullet Now suppose the sample size n is large.

In this case, the sampling distribution of the test statistic is as follows.

Sampling Distribution of the Test Statistic Under H_0 :

If \boldsymbol{Z} is the large sample Wilcoxon signed ranks test statistic, then when

$$H_0: \mu = \mu_0$$

is true,

$$Z \sim N(0,1).$$

Nels Grevstad

Wilcoxon Signed Ranks Test for a Population Mean μ
Paired Samples Version of the Wilcoxon Signed Ranks Test
Large Sample Version of the Wilcoxon Signed Ranks Test

- The N(0,1) curve gives us:
 - The *rejection region* as the extreme 100 α % of Z values (in the direction(s) specified by H_a).
 - The *p-value* as the tail area(s) beyond the observed Z value (in the direction(s) specified by H_a).

Notes			
Notes			
Notes			
Notes			
Notes			

> Comment: Most statistical software uses a slightly more accurate continuity corrected version of the test statistic Z.

The correction adjusts for the fact that a **continuous** distribution (the $N(0,\,1)$ distribution) is being used to approximate a **discrete** one (the Wilcoxon_{\rm SR}(n) distribution).

Nels Grevstad

Notes	
Notes	
Notes	
Notes	