
Chapter 10

Tests for Comparing k Populations

Chapter Objectives

• State and interpret the two versions of the one-factor ANOVA model.
• Interpret sums of squares, degrees of freedom, and mean squares.
• Carry out a one-factor ANOVA F test for differences among k population means.
• Obtain and interpret fitted values and residuals associated with a fitted ANOVA model.
• Carry out a Kruskal-Wallis test for differences among k population means.
• Decide which test (the ANOVA F test or Kruskal-Wallis test) is more appropriate for a given set of

data.
• Carry out a Bonferroni multiple comparison procedure to identify which of k population means differ

from each other.

Key Takeaways

• The ANOVA F test is a parametric test for differences among k population means that requires
either that the samples are from normal populations or the sample sizes are all large. We can assess
normality by graphing the data. A log transformation can make right-skewed data more normal prior
to conducting an ANOVA F test.
• The one-factor ANOVA model describes two sources of variation in a response variable: between-

groups non-random differences, and within-groups random error.
• Sums of squares in ANOVA are statistics that measure between-groups and within-groups variation

in the observed values of a response variable.
• Mean squares are another way to measure between-groups and within-groups variation. They’re

obtained by dividing sums of squares by their degrees of freedom. The degrees of freedom associated
with a sum of squares is determined by how many of its squared deviations are ”free to vary.” The
values of two mean squares are directly comparable, but the values of two sums of squares aren’t
necessarily comparable.
• The ANOVA F test statistic is a ratio of two mean squares. Its numerator measures between-groups

variation and its denominator within-groups variation.
• The Kruskal-Wallis test is a nonparametric test for differences among k population means that doesn’t

require a normality assumption or large sample sizes.
• A multiple comparison procedure, such as the Bonferroni procedure, is used to identify which pop-

ulation means differ from each other after an ANOVA F test (or Kruskal-Wallis test) has indicated
that such differences exist.
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10.1 Introduction

Environmental studies often involve taking samples from several populations to decide if their means differ.
For example, the populations might correspond to different land-use types, different hazardous waste sites,
or different industrial regions.

Example 10.1: Comparing k Populations

Phosphate concentrations were measured in water sampled from three watersheds near Toronto,
Canada that differed by land-use type: highly urbanized, moderately urbanized, and rural [17].
One question of interest was whether the mean phosphate concentration differs from one land-use
type to the next.

The hypotheses would be

H0: µ1 = µ2 = µ3

Ha: the µi’s aren’t all equal.

where µ1, µ2, and µ3 are the population mean phosphate concentrations for the three land-use types.

We’ll denote the number of populations being compared by k, and we’ll look at two hypothesis test
procedures for deciding whether differences exist among their means:

1. The one-factor analysis of variance (ANOVA) F test

2. The Kruskal-Wallis test

The first one is a parametric test, requiring either that the populations are normal or that the sample sizes
are large. The second is a nonparametric test, so it doesn’t have the normality requirement. When only
two populations are being compared (k = 2), ANOVA becomes identical to the two-sample t test (pooled
version) of Chapter 8, so ANOVA is like a t test for three or more samples. Likewise, the Kruskal-Wallis test
is like a rank sum test for three or more samples (and is identical to that test when only two populations
are being compared).

We’ll sometimes refer to the k samples as groups, and we’ll think of the categorical variable that
defines the groups as the explanatory variable, also referred to as a factor whose levels are the grouping
categories. In the phosphate study (Example 10.1), the factor is land-use type, with three levels: highly
urbanized, moderately urbanized, and rural.

Both hypothesis test procedures can also be used to decide if the mean responses to several treatments
in a randomized experiment differ. In this case, the groups, or factor levels, correspond to treatments.

Example 10.2: Comparing k Experimental Treatments

To investigate the bioaccumulation of selenium (Se) in snakes via maternal transfer, 33 female house
snakes were randomly assigned to three treatment groups, 11 per group [8]. The first group was fed
mice having Se levels typical of those found in nature, about 1 µg/g dry mass of Se. The second the
third groups were fed mice injected with solutions containing 10 and 20 µg/g of Se, respectively.
After six months the snakes were allowed to mate, and their eggs and hatchlings analyzed for Se.

The hypotheses would be

H0: µ1 = µ2 = µ3

Ha: the µi’s aren’t all equal.
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where µ1, µ2, and µ3 are the population mean Se concentrations in offspring of snakes fed the three
diets.

10.2 One-Factor Analysis of Variance

10.2.1 Introduction

One-factor analysis of variance (or ANOVA) is a procedure for deciding if there are any differences
among the means of k populations from which samples have been drawn, or among the mean responses to
k treatments.

Example 10.3: One Factor ANOVA

A quality assurance study was carried out to compare lead measurement results for water sent to
k = 5 laboratories [1]. If the labs are systematically producing different results, it may signify
improperly calibrated equipment or poorly trained technicians.

A large quantity of wastewater was split into 50 specimens, 10 of which were assigned randomly
each lab for analysis. The table below shows the lead concentration measurements (µg/L) and their
summary statistics for each lab:

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

3.4 4.5 5.3 3.2 3.3
3.0 3.7 4.7 3.4 2.4
3.4 3.8 3.6 3.1 2.7
5.0 3.9 5.0 3.0 3.2
5.1 4.3 3.6 3.9 3.3
5.5 3.9 4.5 2.0 2.9
5.4 4.1 4.6 1.9 4.4
4.2 4.0 5.3 2.7 3.4
3.8 3.0 3.9 3.8 4.8
4.2 4.5 4.1 4.2 3.0

Ȳ1 = 4.30 Ȳ2 = 3.97 Ȳ3 = 4.46 Ȳ4 = 3.12 ȳ5 = 3.34
S1 = 0.904 S2 = 0.440 S3 = 0.642 S4 = 0.764 S5 = 0.737

Four plots for visually comparing these five samples are below.
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Figure 10.1: Means plot (top left), bar plot of the means (top right), boxplots (bottom left), and
individual value plot (bottom right) of lead measurements from five labs. Error bars in the bar plot
are ± one standard error. Asterisks in the individual value plot are the sample means.

The plots suggest that the labs aren’t all producing the same results, and the sample means shown
at the bottom of the data table seem to support this conclusion. But are the observed differences
among the sample means statistically significant, or can they be explained by chance variation? A
one-factor ANOVA F test will answer this question.

10.2.2 Notation

Suppose either that we have independent random samples of sizes n1, n2, . . . nk (not necessarily all the
same) from k populations or responses for k treatment groups of sizes n1, n2, . . . nk in a randomized
experiment. We’ll focus only on the case in which the sample sizes are equal, even though ANOVA can be
carried out when they’re not equal. Focusing on the equal-sample size case simplifies much of the notation.
Thus, for the remainder of this chapter, we’ll let

n = The common sample size for the k samples.

As in Example 10.3, the data and summary statistics may be presented in a table of the form below.
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Group 1 Group 2 · · · Group k

Y11 Y21 · · · Yk1
Y12 Y22 · · · Yk2

...
... · · ·

...
Y1n Y2n · · · Ykn

Ȳ1 Ȳ2 · · · Ȳk
S1 S2 · · · Sk

where

Yij = The jth observation in the ith group.

In this double-subscript notation, the first subscript, i, indicates the group to which an individual belongs,
and it takes the values 1, 2, . . . , k. The second subscript, j, distinguishes individuals within a group. It
takes the values 1, 2, . . . , n.

Also, we’ll let

Ȳi = The sample mean for the ith group, and is called the ith group mean or ith factor
level mean.

Si = The sample standard deviation for the ith group.

We’ll let

N = The overall sample size, that is, the total number of observations in all k groups
combined.

Because each of the k samples has n observations,

N = kn.

Finally, we let

Ȳ = The overall sample mean, which is to say, the mean of all N observations in the
k groups combined.

The next fact says that the overall mean can obtain by averaging the group means.

Fact 10.1 When the group sample sizes are equal, the overall sample mean Ȳ is equal to the average
of the k group means Ȳ1, Ȳ2, . . . , Ȳk, that is,

Ȳ =
1

k

k∑
i=1

Ȳi . (10.1)

Example 10.4: One Factor ANOVA

For the lead measurements made at five labs (Example 10.3),

n = 10 and N = 50,

and the overall mean is obtained either by averaging the 50 observations or as below by averaging
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the five group means shown at the bottom of the table in Example 10.3.

Ȳ =
1

k

k∑
i=1

Ȳi

=
1

5
(4.30 + 3.97 + 4.46 + 3.12 + 3.34)

= 3.838.

When the sample sizes aren’t equal, the overall mean is a weighted average of the group means, with weights
proportional to the sample sizes.

10.2.3 Variation Between and Within Groups

The five group means given in Example 10.3 aren’t all equal, but we wouldn’t expect them to be, even
if the technicians at the labs were well trained and the equipment was properly calibrated, because slight
variations in lead concentrations from one water specimen to the next as well as measurement error would
lead to chance variation (sampling error) among the group means. We want to know if the differences
among the five means are larger than can be explained by chance.

Differences among group means (Ȳi’s) are referred to as between-groups variation. Variation of
individual observations (Yij ’s) within a group is called within-groups variation. To decide if the variation
between groups is more than can be explained by chance, we’ll compare a measure of that variation to a
measure of the variation within groups. If the between-groups variation is large relative to the within-
groups variation, we’ll deem the differences between group means to be statistically significant, that is,
larger than can be explained by chance.

The plots below illustrate this concept. In both plots, the group means are Ȳ1 = 112, Ȳ2 = 120, and
Ȳ3 = 105. Thus the between-groups variation is the same for the two sets of data. But in the left plot,
the within-groups variation is much smaller, as indicated by the shorter boxes. An ANOVA F test would
find statistically significant differences among the three groups in the left plot, but not among those in the
right plot.
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Figure 10.2: Two sets of boxplots showing three groups. The between-groups variation is the same for the
two plots, but the within-groups variation is much smaller for the plot on the left.
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10.2.4 The One-Factor ANOVA Model

Statistical Models

A common approach to detecting patterns in noisy data is to think of the variation in the data as arising
from two types of sources: nonrandom and random. Nonrandom sources of variation are what drive the
overall pattern in the data. They’re usually few in number and either known or identifiable as being the
source of the pattern. Often, they correspond to some underlying physical, chemical, or biological process.
Random sources of variation result from the random selection of the individuals (e.g. specimens) upon
which measurements are made and the differing characteristics that those individuals have. When those
differing characteristics affect the measured variable, it produces the ”noise” in noisy data, that is, the
deviations of individual observations away from the overall pattern. There are usually many such differing
characteristics, but they’re often unknown and unidentifiable, and each one’s contribution to the variation
might be small or tiny.

For the study of phosphate in water (Example 10.1), land-use type (the factor) would be considered a
nonrandom source of phosphate variation, and the multitude of characteristics that differ from one water
specimen to the next (e.g. sample site location, sampling time of day, weather conditions, etc.) would be
considered random sources of variation. For the study of selenium in snakes (Example 10.2), the amount
of Se fed to the adult snakes (the factor) would be considered a nonrandom source of variation in their
offsprings’ Se levels, and individual characteristics of the adult snakes (e.g. their prior histories, genetic
backgrounds, physical attributes, etc.) would be considered random sources of variation.

By thinking about data in terms of nonrandom and random sources of variation, we can formulate a
statistical model to convey that thinking. Usually, statistical models have the form

Y = Nonrandom Overall Pattern + Random Deviation From the Pattern

This expresses an observation Y as the sum of a term representing one or more nonrandom sources of
variation and another representing random sources. The nonrandom piece is written in terms of unknown
constants called model parameters. It might also involve one or more explanatory variables. The random
piece is a random variable, usually assumed to follow a normal distribution whose mean is zero.

The simplest example of a statistical model is the one used in Chapter 4 to describe a measurement
that includes measurement error,

Y = µ+ ε .

Here, Y is an observed measurement, µ is the true (unknown) concentration, and ε is a N(0, σ) measurement
error. According to this model, the ”overall pattern” in a set of measurements is just the true concentration
µ, which would be called the (unknown) model parameter. Recall that this model is equivalent to saying

Y ∼ N(µ, σ) .

Once a statistical model has been specified for a given set of data, we use the data to estimate the
values of the unknown parameters in the model and to test hypotheses about those values. When the null
hypothesis is rejected, a pattern is considered to have been detected in the data.

The One-Factor ANOVA Model: Two Versions

In an ANOVA setting, the statistical model will contain a nonrandom piece representing between-groups
variation and a random piece representing within-groups variation. There are two (equivalent) ways to
specify the nonrandom piece: the group means version and the treatment effects version.

We’ll assume that our k samples are drawn from normal populations whose means might differ but
whose standard deviations are equal. In the context of the lead measurements from the five labs (Example
10.3), this can be written as
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Lab 1: Y11, Y12, . . . , Y1n are a sample from a N(µ1, σ) population.
Lab 2: Y21, Y22, . . . , Y2n are a sample from a N(µ2, σ) population.

...
Lab 5: Y51, Y52, . . . , Y5n are a sample from a N(µ5, σ) population.

where µ1, µ2, . . . , µ5 are referred to as the group population means. Note that the population means
might differ from one lab to the next, but the population standard deviations are supposed to be the same.

One-Factor ANOVA Model (Group Means Version)

The assumptions about the data can be written more succinctly as the statistical model

Yij = µi + εij ,

where Yij is the jth lead measurement made at Lab i and

εij ∼ N(0, σ).

In this model, the nonrandom ”overall pattern” is determined by the population means µ1, µ2, . . . , µ5,
which, if they differ, contribute to between-groups variation in the data (see Fig. 10.3). Larger differences
among these means correspond to more between-groups variation. The random ”deviation” of a lab’s lead
measurement away from that lab’s population mean,

εij = Yij − µi,

is called random error. It results from natural variation from one water specimen to the next, and
contributes to within-groups variation. The error standard deviation σ (which is also each lab’s population
standard deviation) represents the size of a typical random error. A larger σ corresponds to more within-
groups variation. A graphical depiction of the model is below.

One−Factor Analysis of Variance Model

µ1
µ3
µ2

µ5µ4

Y

Lab 1

Lab 3
Lab 2

Lab 5
Lab 4

●

ε
Y

Figure 10.3: Graphical depiction of the group means version of the one-factor ANOVA model for Example
10.3.

Generalizing from this lead measurements example gives the so-called group means version of the
one-factor ANOVA model.
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One-Factor ANOVA Model (Group Means Version): A statistical model for describing data
in random samples from k populations is:

Yij = µi + εij , (10.2)

where

Yij is the jth observation (j = 1, 2, . . . , n) in the ith group (i = 1, 2, . . . , k).
µi is the ith group’s population mean.
εij is a random error term following a N(0, σ) distribution, and the εij ’s are

independent of each other.

The unknown model parameters are the population means µ1, µ2, . . . , µk and the error standard deviation
σ. In practice, these will be estimated from the data. We’ll see how they’re estimated in Subsection 10.2.6,
and we’ll see how to test hypothesis about the µi’s in Section 10.2.12.

One-Factor ANOVA Model (Treatment Effects Version)

Sometimes it’s preferable to write the statistical model in terms of the effects of the treatments in an
experiment. We define

µ = The overall population mean, defined to be the average of the group population
means,

that is,

µ =
1

k

k∑
i=1

µi .

We also define

αi = The ith treatment effect, defined to be the discrepancy between the ith group’s
population mean µi and the overall mean µ,

that is,
αi = µi − µ . (10.3)

With these definitions, we can write the ith group mean, µi, as the overall mean plus a treatment effect:

µi = µ + (µi − µ)

= µ + αi . (10.4)

Plugging the right side of (10.4) in for µi in (10.2), we get the treatment effects version of the one-
factor ANOVA model.

One-Factor ANOVA Model (Treatment Effects Version): The statistical model for describing
data in random samples from k populations can also be written as:

Yij = µ+ αi︸ ︷︷ ︸
This is µi

+ εij , (10.5)

where

Yij is the jth observation (j = 1, 2, . . . , n) in the ith sample (i = 1, 2, . . . , k).
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µ is a constant representing an overall population mean.
αi is the effect of the ith treatment.
εij is a random error term following a N(0, σ) distribution, and the εij ’s are

independent of each other.

In this version of the model, the unknown model parameters are the overall population mean µ, the
treatment effects α1, α2, . . . , αk, and the error standard deviation σ. In practice, these will be estimated
from the data. We’ll see how they’re estimated in Subsection 10.2.6, and we’ll see how to test hypothesis
about the αi’s in Section 10.2.12.

For the study of lead measurements at the five labs, µ is the overall population mean measurement
across all five labs, and αi is the effect of a measurement being made at the ith lab. Note that αi will
be positive if the ith lab’s measurement results are systematically high (relative to the overall mean) and
negative if its results are systematically low. Fig. 10.4 below illustrates.

One−Factor Analysis of Variance Model

α4

µ4
µ

Y

Lab 1

Lab 3

Lab 2

Lab 5
Lab 4

Figure 10.4: Graphical depiction of the treatment effects version of the one-factor ANOVA model for
Example 10.3.

10.2.5 Null and Alternative Hypotheses

The hypotheses that we’ll be testing are stated differently depending on which of the two versions of the
ANOVA model is being used to describe the data. If the group means version is being used, the hypotheses
are stated in terms of the group population means µ1, µ2, . . . , µk. If the treatment effects version is being
used, they’re stated in terms of the treatment effects α1, α2, . . . , αk. But the two sets of hypotheses are
equivalent, just two different ways of saying the same thing. Here they are.

Hypothesis Equivalent Hypothesis
About the µi’s About the αi’s

Null H0 : µ1 = µ2 = · · · = µk H0 : α1 = α2 = · · · = αk = 0

Alternative Ha : The µi’s aren’t all equal Ha : The αi’s don’t all equal 0
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To see that the two sets of hypotheses say the same thing, note that by (10.3), the αi’s will all equal zero
only if the µi’s are all the same (and equal to their average µ).

Comment: The alternative hypothesis doesn’t necessarily say the µi’s are all different from each other (or
that the αi’s are all non-zero). It just says that for at least one pair, the µi’s don’t equal each other (and
that at least one of the αi’s doesn’t equal zero).

10.2.6 Model Parameter Estimates, Fitted Values, and Residuals

Model Parameter Estimates

If the nonrandom part of a statistical model accurately reflects the true underlying physical, biological,
chemical, etc. process that generated a pattern in a set of data, then estimates of the (unknown) model
parameters will provide insight into that underlying process.

Recall that for the group means version of the one-factor ANOVA model, the parameters are µ1, µ2, . . . , µk
and σ, and for the treatment effects version, the parameters are µ, α1, α2, . . . , αk, and σ. Estimation of
σ will be covered in Subsection 10.2.10. The other parameters are listed in the table below along with
their estimators based on the data. Also shown is alternative notation for each estimator that will come
in handy later.

Model Parameter Estimators
Alternate

Notation for
Model Parameter Estimator the Estimator

µi Ȳi µ̂i
µ Ȳ µ̂
αi = µi − µ Ȳi − Ȳ α̂i

The figures below illustrate these parameter estimates for the data on lead measurements from the five
labs (Example 10.3). These figures should be compared with the graphs depicting the ANOVA models in
Figs. 10.3 and 10.4.
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Figure 10.5: Graphical depiction of the parameter estimates for the group means (left) and treatment
effects (right) versions of the one-factor ANOVA model for Example 10.3. Asterisks are the sample means.
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Fitted Values

Once the parameters in a statistical model have been estimated, we say that the model has been fitted to
the data. Fitting a model to a set of data provides a summary of the nonrandom ”overall pattern” in the
data.

For each individual in a given group, we define the individual’s fitted value (also called predicted
value) to be the estimate of that group’s population mean µi (or µ+ αi).

Fitted Values (Group Means Version):

Fitted Values for Individuals in ith Group = µ̂i = Ȳi

Fitted Values (Treatment Effects Version):

Fitted Values for Individuals in ith Group = µ̂+ α̂i = Ȳ + (Ȳi − Ȳ ) = Ȳi

Note that regardless of which version of the model is being used, the fitted values are just the group means
Ȳ1, Ȳ2, . . . , Ȳk. Note also that all n individuals in a given group share the same fitted value. For the study
of lead measurements at the five labs, the fitted values are the blue asterisks in Fig. 10.5, and all ten
water specimens sent to a given lab share that same fitted value. The alternative name predicted value
is a reference to a fitted value’s interpretation as the lead measurement value we’d ”predict” for a water
specimen sent to the given lab.

Residuals

The fitted values provide estimates of the nonrandom ”overall pattern” piece of the statistical model.
Residuals are estimates of the random ”deviations” ε away from the overall pattern, that is, of the random
error in the data. A residual is the difference between an individual’s observed Y value and the fitted
value for that individual.

Residual = Observed Y Value − Fitted Value

We’ll denote the residual for the jth individual in the ith group by eij . In symbols, residuals are defined
as below for the two versions of the ANOVA model.

Residuals (Group Means Version):

eij = Yij − µ̂i (10.6)

= Yij − Ȳi

Residuals (Treatment Effects Version):

eij = Yij − (µ̂+ α̂i) (10.7)

= Yij − Ȳi

Note that regardless of which version of the model is being used, the residuals are just the deviations of the
Yij’s away from their corresponding group means Ȳ1, Ȳ2, . . . , Ȳk. There’ll be one residual for each observed
value Yij in the data set (N residuals total). For the study of lead measurements at the five labs, the
residuals are the gaps in Fig. 10.5 between the points and the blue asterisks, and correspond to random
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error in the lead measurements.

Note: By rearranging (10.6) or (10.7), we can write an observation Yij as

Yij = µ̂i + eij

or
Yij = µ̂+ α̂i + eij ,

both of which are of the form

Observed Value = Fitted Value + Residual.

Comparing these expressions to the ANOVA models (10.2) and (10.5), it’s clear that the residual eij
approximates the random error term εij (which is unobservable because the true model parameter values
are unknown). In Subsection 10.2.11, we’ll use the residuals to estimate the standard deviation σ of the
N(0, σ) error distribution, and in Subsection 10.2.13 we’ll use them to check the normality assumption.

10.2.7 The Double Summation Notation

We’ll use the residuals to illustrate the double summation notation. From Chapter 3 we know that the
deviations of observations away from a sample mean alway sum to zero. But residuals are deviations away
from sample (group) means, so they sum to zero within each group. This is stated formally in the next fact.

Fact 10.2 For data in random samples from k populations, for each i = 1, 2, . . . , k, the residuals
within the ith group sum to zero, that is,

n∑
j=1

eij = 0

for each fixed i.

It follows that the sum of all N residuals will be zero too because this sum can be obtained by first summing
within each group and then summing those results:

n∑
j=1

e1j +
n∑
j=1

e2j + · · ·+
n∑
j=1

ekj = 0 + 0 + · · ·+ 0 = 0. (10.8)

The left hand side above is more concisely written using the double summation notation, whereby (10.8)
becomes

k∑
i=1

n∑
j=1

eij = 0.

This notation says first, for each fixed value of i, sum over the n individuals (j = 1, 2, . . . , n) within the
ith group, and then sum those results over the k groups (i = 1, 2, . . . , k). The double summation notation
will be used extensively in the remainder of this chapter and the next.

10.2.8 Sums of Squares

Introduction

As mentioned in Subsection 10.2.3, to decide if the observed differences among the group means in a one-
factor study are larger than can be explained by chance variation, we’ll compare a measure of the between-
groups variation in those means to a measure of the within-groups variation in individual observations. In
this section we’ll look at a way to measure these two types of variation.
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Recall (Chapter 3) that one measure of variation in a data set X1, X2, . . . , Xn is the sample variance
(squared standard deviation),

S2 =

∑n
i=1(Xi − X̄)2

n− 1
, (10.9)

which we think of as an ”average” squared deviation of an observation Xi away from the sample mean X̄.
The numerator on the right side above is an example of what’s called a sum of squares. The measures
of variation used in ANOVA will be based on certain sums of squares.

Between-Groups Variation

Between-groups variation refers to variation among the group means Ȳ1, Ȳ2, . . . , Ȳk. In ANOVA, we mea-
sure this variation by the treatment sum of squares, denoted SSTr, defined as follows (where we also
invoke the definition, from Subsection 10.2.6, of the estimators α̂i of the treatment effects αi).

Treatment Sum of Squares (Between-Groups Variation):

SSTr = n
k∑
i=1

(Ȳi − Ȳ )2 = n
k∑
i=1

α̂2
i . (10.10)

The reason for the n in front will be explained later. For now, just know that it’ll make things easier when
we compare the between-groups variation to the within-groups variation. The treatment sum of squares
reflects the sizes of the deviations of the group means away from the overall mean Ȳ . Those deviations
will be large when there are substantial differences among the group means, and in this case SSTr will be
large. It’s in this sense that SSTr measures between-groups variation.

Within-Groups Variation

Within-groups variation refers to variation of the observations Yij within the groups. One way of measuring
this variation is to compute the sample variances S2

1 , S
2
2 , . . . , S

2
k one group at at time and then combine

them. In ANOVA, they’re combined by multiplying each one by n−1 and then summing the results. This
gives the so-called error sum of squares, denoted SSE.

Error Sum of Squares (Within Groups Variation):

SSE = (n− 1)S2
1 + (n− 1)S2

2 + · · ·+ (n− 1)S2
k . (10.11)

Notice from the definition (10.9) of a sample variance that when we multiply by n− 1 we get the sum of
squares within that group, that is,

(n− 1)S2
i =

n∑
j=1

(Yij − Ȳi)2 .

Thus another way to obtain the SSE is to add together the within-group sums of squares:

SSE =
n∑
j=1

(Y1j − Ȳ1)2 +
n∑
j=1

(Y2j − Ȳ2)2 + · · ·+
n∑
j=1

(Ykj − Ȳk)2 .

We can write this more concisely using the double summation notation, as below, where we also use the
fact that each deviation Yij − Ȳi is just a residual.
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Error Sum of Squares (Alternative Formula):

SSE =

k∑
i=1

n∑
j=1

(Yij − Ȳi)2 =

k∑
i=1

n∑
j=1

e2ij . (10.12)

This says that the error sum of squares is simply the sum of squared residuals. The double summation
notation indicates that we’re summing the squared residuals for all N individuals, that is, for the n
individuals (j = 1, 2, . . . , n) in every one of the k groups (i = 1, 2, . . . , k). The error sum of squares reflects
the sizes of the deviations of individual observations away from their corresponding group means, that
is, the sizes of the residuals. Those deviations (the residuals) will be large if there’s substantial variation
within each group, and in this case SSE will be large. It’s in this sense that SSE measures within-groups
variation. Furthermore, because the residuals are approximations of the random errors in the ANOVA
model, a large value of SSE indicates a large degree of variation in the data due to random error (”noise”).

10.2.9 The ANOVA Partition of the Variation in the Data

Introduction

We can think of between-groups variation in the data as arising primarily from the nonrandom effect of the
factor (that is, from differences among the population means µ1, µ2, . . . , µi) and within-groups variation as
arising purely from random error (heterogeneity among individuals within the k groups). We’ll see in a bit
that if we were to lump the observations from all k groups together into one big sample, the two types of
variation (between- and within-groups) would account for all of the variation in the data.

Total Variation

To see what this means, consider combining the k groups into one big, overall sample. Then the total
variation in the data can be measured by the variance (squared standard deviation) of the overall sample.
This variance reflects the sizes of the deviations of the N individual observations away from the overall
mean Ȳ , and is written using double summation notation as

S2 =

∑k
i=1

∑n
j=1(Yij − Ȳ )2

N − 1
.

The double summation is used because we’re summing the squared deviations for all N individuals, that
is, for the n individuals (j = 1, 2, . . . , n) in every one of the k groups (i = 1, 2, . . . , k).

The numerator of this overall sample variance is called the total sum of squares, denoted SSTo.

Total Sum of Squares:

SSTo =
k∑
i=1

n∑
j=1

(Yij − Ȳ )2.

The total sum of squares measures total variation in the data. It will be large if either there are large
differences between the groups or there’s substantial variation of observations within each group. Therefore,
SSTo reflects both between–groups variation and within-groups variation.

Partition of the Total Variation

To see what was meant at the beginning of this section by the statement that the between-groups variation
and within-groups variation in the data account for the total variation (after lumping the groups together),
we have the following fact, which is known as the ANOVA partition of the total variation in the data.
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Fact 10.3 ANOVA Partition: The sums of squares defined previously satisfy the following rela-
tion.

SSTo = SSTr + SSE. (10.13)

This splits the variation in the data as:

Total Variation = Between-Groups Variation + Within-Groups Variation

A mathematical verification of the ANOVA partition is given in Subsection 10.2.14. The partition is
illustrated in the following example.

Example 10.5: Sums of Squares and the ANOVA Partition

For the data on lead measurements at the five labs (Example 10.3), statistical software gives the
following values for the sums of squares.

SSTo = 36.758

SSTr = 13.813

SSE = 22.945.

We see that indeed SSTo = SSTr + SSE since

36.758 = 13.813 + 22.945.

This indicates that more than a third of the total variation in the lead measurements (13.813 out of
36.758) is the result of differences among the five labs’ group means.

10.2.10 Degrees of Freedom

Associated with each sum of squares is a quantity called its degrees of freedom (or df). The degrees of
freedom are the number of deviations, among those used to compute the sum of squares, that are ”free to
vary.” They’re important because they’ll be used later to obtain p-values for ANOVA F tests.

To illustrate, consider the sum of squares in the numerator of a sample variance S2 (10.9). We saw in
Chapter 3 that for any set of data X1, X2, . . . , Xn, the deviations Xi − X̄ used to compute that sum of
squares always add up to zero. Because they sum to zero, the value of any one of them can be determined
from the values of the other n − 1, so we say only n − 1 of the deviations are ”free to vary.” Thus there
are n− 1 degrees of freedom associated with the sum of squares in a sample variance.

Here are the degrees of freedom associated with each of the sums of squares SSTo, SSTr, and SSE.

Degrees of Freedom: For one-factor ANOVA, the degrees of freedom are:

df for SSTo = N − 1
df for SSTr = k − 1
df for SSE = k(n− 1) = N − k

We’ll look at these one at a time to see why they make sense. First, for SSTo, the degrees of freedom is
N − 1 because the N deviations Yij − Ȳ used to compute SSTo sum to zero, so only N − 1 of them are
”free to vary.” For SSTr, the degrees of freedom is k − 1 because the k deviations Ȳi − Ȳ used to compute
SSTr sum to zero, so only k − 1 of them are ”free to vary.” Finally, for SSE, the degrees of freedom is
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k(n− 1) = N −k, because within each of the k groups, the n deviations Yij − Ȳi used to compute SSE sum
to zero, so only n− 1 of them (within each group) are ”free to vary” Therefore, in all, because there are k
groups, only k(n− 1) = N − k of the deviations used to compute SSE are ”free to vary.”

The degrees of freedom, like the associated sums of squares in (10.13), are additive in the following sense.

Fact 10.4 The degrees of freedom given above satisfy the following relation.

df for SSTo = df for SSTr + df for SSE. (10.14)

This is easily verified by noting that

N − 1 = (k − 1) + (N − k).

Example 10.6: Degrees of Freedom and the ANOVA Partition

For the study of lead measurements from five labs, we have k = 5, n = 10, and N = 50, so

df for SSTo = N − 1 = 49,

df for SSTr = k − 1 = 4,

and
df for SSE = N − k = 45.

We see that indeed (10.14) holds, as expected, since 49 = 4 + 45.

10.2.11 Mean Squares

Introduction

The treatment sum of squares SSTr measures between-groups variation among group means, and the error
sum of squares SSE measures of within-groups variation due to random error. But these two measures
of variation aren’t directly comparable to each other (because they depend differently on n and k). To
make them comparable, we convert them to mean squares. A mean square is defined as a sum of squares
divided by its degrees of freedom:

Mean Square =
Sum of Squares

Degrees of Freedom
.

A familiar example of a mean square is the sample variance S2 (10.9), which we interpret as an ”average”
squared deviation away from the sample mean. ”Averaging” is done using n− 1 instead of n to produce a
more accurate estimator of the population variance σ2.

We define the mean square for treatments, denoted MSTr, and the mean squared error, denoted
MSE, as below.

Mean Squares: For one-factor ANOVA, the mean square for treatments and mean squared error
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are

MSTr =
SSTr

k − 1
(10.15)

MSE =
SSE

N − k
. (10.16)

These two measures of between- and within-groups variation are directly comparable to each other and
will be used later in the ANOVA F test to test for differences among the k population means.

MSTr and MSE Under H0 and Ha

The mean square for treatments MSTr measures between-groups variation among the group means Ȳ1, Ȳ2,
. . . , Ȳk, which will vary substantially if the population means µ1, µ2, . . . , µk differ, but will also vary to
a lesser extent just by chance (sampling error) even when the population means are equal. To test for
differences among the population means, we’ll need to distinguish between variation in the Ȳi’s that’s due
purely to sampling error and variation that’s due to differences among the population means (and sampling
error).

The mean squared error MSE measures variation in individual observations within groups. It turns
out that when the population means are equal, MSTr and MSE will be approximately equal, but when
there are differences among the population means, MSTr will tend to be larger than MSE. This fact, stated
formally below, will be used later to test for differences among the population means.

Fact 10.5 Consider random samples from k populations. Suppose that the one-factor ANOVA
model (10.2) or (10.5) is appropriate and that the εij ’s are independent and εij ∼ N(0, σ).

Consider also the equivalent sets of hypotheses:

H0 : µ1 = µ2 = · · · = µk or H0 : α1 = α2 = · · · = αk = 0
Ha : The µi’s aren’t all equal Ha : The αi’s don’t all equal 0

Then

1. When H0 is true, both MSE and MSTr are estimators of σ2.

2. When Ha is true, MSE is still an estimator of σ2, but MSTr will tend to overestimate σ2.

Comment: Here’s why MSTr estimates σ2 when the population means are identical. We know that the
standard error of a sample mean Ȳ is σ/

√
n, so the variance of Ȳ is σ2/n. Now, if the population means

are identical, we can think of the sample means Ȳ1, Ȳ2, . . . , Ȳk as a random sample from a distribution
whose variance is σ2/n, in which case the sample variance of the Ȳi’s,

S2 =

∑k
i=1(Ȳi − Ȳ )2

k − 1
,

is an estimate of σ2/n. In order to get an estimate of σ2, we’d need to multiply this sample variance by n.
Doing so gives exactly the MSTr (see the n in the front of SSTr in (10.10)). This is why the n appears in
the front of SSTr.

Comment: To see why MSE estimates σ2, regardless of whether or not the null hypothesis is true, consider
the sample variances S2

1 , S
2
2 , . . . , S

2
k . Because the population variances are all equal to σ2, each S2

i is an
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estimate of σ2, regardless of whether the null or alternative hypothesis is true. Writing SSE in terms of
the S2

i ’s as in (10.11), the MSE can be written as

MSE =
(n− 1)S2

1 + (n− 1)S2
2 + · · ·+ (n− 1)S2

k

k(n− 1)

=
S2
1 + S2

2 + · · ·+ S2
k

k
,

the average of the sample variances. Since each S2
i estimates σ2 regardless of whether the null or alternative

hypothesis is true, their average, the MSE, does too.

Comment: The reason why MSTr overestimates σ2 when the alternative hypothesis is true is that differ-
ences among the µi’s will contribute to excess variation among the Ȳi’s, which in turn will inflate the value
SSTr and therefore also that of MSTr.

Estimating σ

Because the MSE estimates σ2, the common population variance (or variance of the N(0, σ) error distri-
bution) regardless of whether the null or alternative hypothesis is true, its square root estimates σ.

Estimator of σ: For a one-factor study, the estimator of σ, denoted σ̂, is

σ̂ =
√

MSE. (10.17)

10.2.12 The One-Factor ANOVA F Test

Hypotheses and Test Statistic

Recall (Subsection 10.2.5) that the one one-factor ANOVA F test is a test of

H0 : µ1 = µ2 = · · · = µk or H0 : α1 = α2 = · · · = αk = 0
Ha : The µi’s aren’t all equal Ha : The αi’s don’t all equal 0

depending on whether the group means version or the treatment effects version of the ANOVA model is
being used to describe the data.

Here’s the one-factor ANOVA F test statistic.

One-Factor ANOVA F Test Statistic:

F =
MSTr

MSE
. (10.18)

The following properties of the F statistic will help us interpret its observed value.

• Because MSTr and MSE measure between- and within-groups variation in the data, respectively, we
can think of F as

F =
Between-Groups Variation

Within-Groups Variation
.

• If the null hypothesis was true, we’d expect F ≈ 1 because MSTr and MSE would both estimate σ2.

• If the alternative hypothesis was true, we’d expect F > 1 because MSE would estimate σ2 (still) but
MSTr would tend to overestimate σ2.

Therefore,
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Large values of F (larger than about 1) provide evidence in favor of Ha : The µi’s aren’t all equal
(or Ha : The αi’s don’t all equal 0).

The F Distribution

To decide whether an observed value of F provides statistically significant evidence in support of the al-
ternative hypothesis, we’ll need to know its sampling distribution under the null hypothesis.

Sampling Distribution of F Under H0: Consider random samples from k populations. Suppose
that the one-factor ANOVA model (10.2) or (10.5) is appropriate and that the εij ’s are independent
and either the εij ’s are N(0, σ) or the k sample sizes n are all large. Then when

H0 : µ1 = µ2 = · · · = µk or H0 : α1 = α2 = · · · = αk = 0

is true, the F test statistic follows (at least approximately) a distribution called the F distri-
bution, which has two parameters, its k − 1 numerator degrees of freedom and its N − k
denominator degrees of freedom. We write this as

F =
MSTr

MSE
∼ F (k − 1, N − k) .

There’s a different F distribution for each pair of values for its numerator and denominator degrees of
freedom. All F distributions are right skewed and lie entirely to the right of zero. Together, the numerator
and denominator degrees of freedom determine center and spread of the distribution. Some F distribution
density curves are shown below for various values of the degrees of freedom.
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Figure 10.6: F distributions with 10 denominator degrees of freedom, but different values for the numerator
degrees of freedom (left). F distributions with 6 numerator degrees of freedom, but different values for the
denominator degrees of freedom (right).

P-Values

Because large values of the F statistic provide evidence against the null hypothesis, the p-value for the
ANOVA F test is the tail probability under the F distribution to the right of the observed F value (and
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the rejection region, for the rejection region approach, is the rightmost 100α% of the distribution). Fig.
10.7 shows the p-value when the test statistic value is F = 2.7 and there are k = 4 groups with n = 5
observations per group.

P−Value for ANOVA F Test

Values of F

0 1 2 F = 2.7 4 5

P−value = 0.08

F Distribution with
k − 1 = 3 and N − k = 16 df

Figure 10.7: P-value for the ANOVA F test, when the test statistic value is F = 2.7 and there are k = 4
groups with n = 5 observations per group, is the tail area to the right of 2.7 under the F (3, 16) distribution.

The One-Factor ANOVA F Test Procedure

The one-factor ANOVA F test procedure is summarized in the table below.
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One-Factor ANOVA F Test for µ1, µ2, . . . , µk

Assumptions: Data are random samples from k populations (or responses of individuals to k
treatments in a randomized experiment), the one-factor ANOVA model (10.2) or (10.5) is ap-
propriate, the εij ’s are independent and either they follow a N(0, σ) distribution or the k sample
sizes n are all large.*

Null hypothesis: H0 : µ1 = µ2 = . . . = µk or H0 : α1 = α1 = . . . = αk = 0.

Test statistic value: F = MSTr
MSE .

Decision rule: Reject H0 if p-value < α or f is in rejection region.

P-value = area under
Alternative F -distribution with Rejection region =
hypothesis k − 1 and N − k d.f.: F values such that:**

Ha : The µi’s aren’t all equal
or to the right of F F ≥ Fα,k−1,N−k

Ha : The αi’s don’t all equal 0

* The ANOVA F test can also be carried out (using statistical software) when the k sample sizes
n1, n2, . . . , nk aren’t all the same. The sample sizes are considered to be large if they’re all at
least 15, unless the samples exhibit strong skewness, in which case they should all be at least 40.

** Fα,k−1,N−k is the 100(1− α)th percentile of the F distribution with k − 1 and N − k d.f.

The ANOVA Table

The results of an analysis of variance (the degrees of freedom, sums of squares, mean squares, observed
F test statistic value, and p-value) are usually summarized in a one-factor ANOVA table having the
form shown below.

One-Factor ANOVA Table:

Source DF SS MS F P-value

Factor k − 1 SSTr MSTr=SSTr/(k − 1) F=MSTr/MSE p
Error N − k SSE MSE=SSE/ (N − k)

Total N − 1 SSTo

The table is arranged so that the first row (labeled ”Factor”) pertains to between-groups variation, the
second row (”Error”) to within-groups variation, and the last row (”Total”) to total variation.

Carrying Out the ANOVA F Test

In practice, ANOVA is carried out using statistical software, which will produce the ANOVA table.
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Example 10.7: One-Factor ANOVA

For the data from the study of lead measurements made at the five labs (Example 10.3), we want
to decide if there are any differences among the five labs’ results. So we’re testing

H0 : µ1 = µ2 = · · · = µk or H0 : α1 = α2 = · · · = αk = 0
Ha : The µi’s aren’t all equal Ha : The αi’s don’t all equal 0

where µi is the true (unknown) mean result upon sending a water specimen to the ith lab (and αi
is the true (unknown) effect of the ith lab on a lead measurement).

The ANOVA table, obtained using statistical software, is shown below.

Source DF SS MS F P-value

Lab 4 13.813 3.453 6.77 0.000
Error 45 22.945 0.510

Total 49 36.758

We see that
SSTr = 13.813, SSE = 22.945, and SSTo = 36.758.

Also,
df for SSTr = 4, df for SSE = 45, and df for SSTo = 49.

We can confirm that the mean squares are equal to the sums of squares divided by their degrees of
freedom,

MSTr = 3.453 =
13.813

4
MSE = 0.510 =

22.945

45
,

and that the F statistic is the ratio of MSTr to MSE,

F = 6.77 =
3.453

0.510
.

The p-value 0.000 is the tail area to the right of F = 6.77 under the F (4, 45) distribution curve.
Using a level of significance α = 0.05, we reject the null hypothesis and conclude that there are
statistically significant differences among the group means given in Example 10.3.

We’ll see how to check the normality and common standard deviation assumptions required by the
F test in Section 10.2.13.

The estimate σ̂ of the true (unknown) standard deviation σ of the N(0, σ) distribution of the random
error is

σ̂ =
√

MSE =
√

0.510 = 0.7144.

Because we concluded that there are differences among the five labs’ means, a logical next question
would be ”Which labs’ means differ from each other?” We’ll see a method for answering this question
in Section 10.7.

10.2.13 Using Residuals to Check the ANOVA F Test Assumptions

The ANOVA F test requires that three conditions be met:

1. The k samples are from normal populations, or equivalently, the errors εij in the ANOVA model
follow a normal distribution.
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2. The k populations have a common standard deviation σ, or equivalently, the standard deviation σ
of the error distribution is the same from one group to the next.

3. The k random samples are collected independently of each other or, equivalently, the random errors
in the ANOVA model are independent of each other.

The third assumption is usually addressed in the study design. Individual observations should be separated
sufficiently in space and time to ensure independence. The other assumptions (normality and common σ)
are checked via plots of the residuals.

Checking the Normality Assumption

Although we could check normality of the data separately for each group using a histogram or normal prob-
ability, these plots can be uninformative when the sample sizes are small. Instead, it’s usually preferable
to plot the N residuals altogether in one histogram or normal probability plot. Since the residuals eij are
approximations of the errors εij in the ANOVA model, the normality assumption is tenable as long as the
residual plot doesn’t show strong signs of non-normality.

Checking the Common σ Assumption

The assumption that the k populations share a common standard deviation is tenable if the amount of
variation within the groups is about the same from one groups to the next. There are a few ways to check
this assumption.

1. Plot the residuals versus the fitted values: In a plot of the residuals (y axis) versus the fitted
values (group means, x axis), the amount of vertical spread away from a horizontal line at y = 0
should be about the same from one group to the next. Fig. 10.9 in Example 10.8 shows the residuals
versus the fitted values (group means) for the lead measurements made at the five labs. The amount
of vertical spread above and below the line is roughly the same from one group to the next, suggesting
that the common population standard deviation assumption is tenable. The five labs are ordered
from left to right by their group means (fitted values). It’s not uncommon for groups whose means
are larger to also have larger standard deviations, so ordering the groups in this way makes it easier
to spot violations of the common standard deviation assumption when they exist. In Fig. 10.10 of
Example 10.9, variation increases from left to right, suggesting that the common standard deviation
assumption isn’t tenable.

2. Compare sample standard deviations: Another way to check the common σ assumption is to
use the following rule of thumb. If the largest of the k sample standard deviations is less than twice
as large as the smallest, then it’s reasonable to assume that the population standard deviations are
equal. This is meant as a rough guideline. In particular, when the sample sizes are small, the sample
standard deviations will tend to vary a lot, and in this case the rule may be a bit conservative.

We’ll see what to do when the normality and constant standard deviation assumptions aren’t met in
Sections 11.3 and 10.4.

Example 10.8: Checking Assumptions for One-Factor ANOVA

In Example 10.7, an ANOVA F test found statistically significant differences among the mean lead
measurements made at the five labs. To validate this result, we need to check the normality and
common standard deviation assumptions.

The residuals, obtained using statistical software, are shown in a histogram and normal probability
plot below.
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Figure 10.8: Histogram (left) and normal probability plot (right) of the residuals after fitting the
one-factor ANOVA model to the lead measurements data.

The plots don’t give any indications of non-normality, so the normality assumption appears to be
met.

A plot of the residuals versus the fitted values (group means) is shown below.
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Figure 10.9: Plot of residuals versus fitted values after fitting the one-factor ANOVA model to the
lead measurements data.

The amount of (vertical) spread in the points appears to be fairly constant from left to right,
suggesting that it’s reasonable to assume that the true (unknown) population standard deviation
σ is the same from one lab to the next. Furthermore, the largest sample standard deviation,
S1 = 0.904, is only about twice as large as the smallest, S2 = 0.440, which doesn’t raise any alarms
about the population standard deviations being unequal.

Since the normality and common standard deviation assumptions appear to be met, the results of
the ANOVA F test performed in Example 10.7 are valid.
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10.2.14 Comments on the ANOVA Partition of the Total Variation

We wrap up this section with a look at why the ANOVA partition

SSTo = SSTr + SSE (10.19)

holds. To this end, notice that we can write a total deviation Yij − Ȳ as

Yij − Ȳ︸ ︷︷ ︸
Total deviation of individual

observation away from

overall mean

= Ȳi − Ȳ︸ ︷︷ ︸
Deviation of treatment

group mean away from

overall mean

+ Yij − Ȳi︸ ︷︷ ︸
Deviation of individual

observation away from

treatment group mean

(10.20)

If we square both sides of (10.20) and then sum over all N = nk individuals, it can be shown that we end
up with:

k∑
i=1

n∑
j=1

(Yij − Ȳ )2︸ ︷︷ ︸
Total sum of squares

=
k∑
i=1

n∑
j=1

(Ȳi − Ȳ )2︸ ︷︷ ︸
Treatment sum of squares

+
k∑
i=1

n∑
j=1

(Yij − Ȳi)2︸ ︷︷ ︸
Error sum of squares

(10.21)

The cross products terms (Ȳi − Ȳ )(Yij − Ȳi) don’t show up on the right side of (10.21) because, it turns
out, they sum to zero.

The left side of (10.21) is the total sum of squares SSTo. The first term on the right side is the treatment
sum of squares SSTr, and the second term is the error sum of squares SSE. Thus (10.21) is equivalent to
(10.19).

10.3 Dealing With Unequal Standard Deviations: Transformations and
Nonparametric Procedures

As mentioned in Subsection 10.2.13, it’s not uncommon for groups whose means are larger to also have
larger standard deviations. This is illustrated in Fig. 10.10. When the variation changes with the mean,
the common standard deviation assumption required by the ANOVA F test isn’t met, and so the results
of the F test might not be valid. Instead, there are two options:

1. Transform the data to equalize the standard deviations: When the standard deviation in-
creases with the mean, it’s sometimes possible to make a transformation of the data, most commonly
by taking their logs or their square roots, so that the transformed data have a more constant standard
deviation across the groups. Often, a standard deviation that increases with the mean is accompanied
by right-skewness of the data, and taking logs (or square roots) corrects for both the non-constant
standard deviation and the non-normality. Once the data have been transformed, the ANOVA F
test can be carried out on the transformed data.

2. Carry out a nonparametric test: We could carry out a nonparametric test that doesn’t require
an assumption of common population standard deviations, such as the Kruskal-Wallis test described
in Section 10.5.



10.3. DEALINGWITH UNEQUAL STANDARDDEVIATIONS: TRANSFORMATIONS ANDNONPARAMETRIC PROCEDURES327

Example 10.9: Transformation to Stabilize the Standard Deviation

Environmental and ecological studies that focus on direct chemical analysis of water or sediment
don’t necessarily reveal actual ecological health. It’s sometimes preferable, therefore, to instead
focus on indicators of ecological health such as species richness and species diversity, among others.

The table below shows data on species richness (number of different species present) in 0.1 m2

quadrats at 23 locations on the soft bottom of the Saronikos Gulf off the coast of Athens, Greece
[12]. Each location is classified as mud, muddy sand, or sandy mud. One outlier has been removed.
The sample means and standard deviations are given at the bottom of the table.

Species Richness

Mud Sandy Mud Muddy Sand

24 24 20
8 54 20
6 20 36
12 41 71
14 39 48
15 39
22 56

30
37
78
52

Ȳ1 = 14.4 Ȳ2 = 35.6 Ȳ3 = 44.3
S1 = 6.7 S2 = 13.8 S3 = 19.0

The largest sample standard deviation, S2 = 19.0, is more than twice as large as the smallest,
S1 = 6.7, suggesting that the common population standard deviation assumption required for an
ANOVA F test isn’t tenable. Boxplots of the data and a plot of the residuals versus the fitted values
(group means) after fitting the ANOVA model are shown below.
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Figure 10.10: Boxplots of the species richness data (left) and plot of the residuals versus fitted values
(right).
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Both plots show that the standard deviation increases with the mean, suggesting that a log trans-
formation might help stabilize the standard deviation across the groups. Boxplots of the data after
taking their logs and a plot of the residuals versus fitted values after fitting the ANOVA model to
the logs are shown below. The plots confirm that the standard deviation has become more constant
from group to group, so an ANOVA F test using the logs of the data would be justified.
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Figure 10.11: Boxplots of the logs of the species richness data (left) and plot of the residuals versus
fitted values using the log data (right).

10.4 Dealing With Non-Normal Data: Transformations and Nonpara-
metric Procedures

The ANOVA F test, like the t tests, is a parametric test because it requires that the k samples were drawn
from normal populations (or equivalently that the error term ε in the ANOVA model follows a normal
distribution). If this assumption isn’t met (and the sample sizes aren’t large), there are two options:

1. Transform the data to normality: It’s sometimes possible to transform all k samples (same
transformation on every sample), for example by taking their logs or using another transformation
in the Ladder of Powers, so that the transformed values are more normally distributed, and then
carry out the ANOVA F test on the transformed data. As mentioned in the previous section, such
transformations often make the common standard deviation assumption more tenable too.

2. Carry out a nonparametric test: We could carry out a nonparametric test that doesn’t rely on
an assumption of normality. The Kruskal-Wallis test described in the next section is a nonparametric
alternative to the ANOVA F test.

A third option, when the data follow a known (but non-normal) distribution (for example when they’re
Poisson counts) is to use a procedure specifically developed for use with that distribution. These procedures
can be found in more specialized statistics books.



10.5. KRUSKAL-WALLIS TEST 329

10.5 Kruskal-Wallis Test

10.5.1 Introduction

The Kruskal-Wallis test is a nonparametric test for deciding if there are any differences among the
means of k populations. Unlike the ANOVA F test, it doesn’t require a normality assumption about the
populations, so it’s a nonparametric alternative to the ANOVA F test.

Example 10.10 presents a study for which the ANOVA F might not be appropriate, but the Kruskal-
Wallis test would.

Example 10.10: Kruskal-Wallis Test

The Large River Monitoring Network is part of the U.S. Geological Survey’s Biomonitoring of
Environmental Status and Trends Program that monitors environmental contaminants in several
large U.S. river basins. In each river basin, contaminants and their biological indicators are
measured in fish at several monitoring stations.

The table below shows aluminum (Al) concentrations (µg/g wet weight) measured in female common
carp in three river basins, the Colorado, Columbia, and Mississippi River basins. (This is a subset
of the full set of data that was collected.)

Al in Fish

Colorado Columbia Mississippi
River Basin River Basin River Basin

32 18.9 54.9
232 64.1 24.1
36 33.2 40.2
73 48.8 52.7
53 13.7 28.9
20 21.1 73.3
28 43.2 26.7
24 66.5 26.6
24 32.6
11
37
30
26

Side-by-side boxplots and dot plots of the data are shown below.
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Figure 10.12: Boxplots (left) and dot plots (right) of aluminum in female carp from the Colorado,
Columbia, and Mississippi River basins.

We want to decide if there are any differences among the mean Al concentrations for the three
basins. The plots give a slight indication that the samples are from right skewed distributions, and
in particular, the Colorado’s has a large outlier, so because the sample sizes aren’t large, a one-factor
ANOVA F test might not be valid. Instead, in Example 10.11, we’ll conduct a Kruskal-Wallis test.

10.5.2 The Kruskal-Wallis Test Procedure

We’ll assume that we have independent samples of sizes n1, n2, . . . nk (not necessarily the same) from k
continuous populations that have the same shape (but not necessarily normal). We’ll want to test

H0: µ1 = µ2 = · · · = µk

Ha: The µi’s aren’t all equal

where µ1, µ2, . . . , µk are the (unknown) population means.
The Kruskal-Wallis test is carried out by combining the observations from the k groups, sorting and

ranking them from smallest (rank = 1) to largest (rank = N), and then comparing the mean ranks for the
k groups.

As before, we’ll use the notation

Yij = The jth observation in the ith group.

and

N = The overall sample size, that is, the total number of observations in all k groups
combined.

We’ll also let

Rij = The rank of Yij in the overall sample (after combining the k groups).

and
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R̄i = The ith group mean rank, defined to be the mean of the ranks (in the overall
combined sample) of the observations from the ith group, that is,

R̄i =
1

ni

ni∑
j=1

Rij .

Also, we define

R̄ = The overall mean rank, defined as the mean rank of the N observations in the
combined sample. Because these ranks are 1, 2, . . . , N , we have

R̄ =
1

N
(1 + 2 + · · ·+N) . (10.22)

Using the shortcut formula ((8.20) in Chapter 8),

1 + 2 + · · ·+N =
N(N + 1)

2
,

it’s easy to see that a simplified form for R̄ is

R̄ =
N + 1

2
.

Here’s how to compute the Kruskal-Wallis test statistic, denoted Kw.

Kruskal-Wallis Test Statistic:

1. Combine the observations from the k groups into an overall sample, keeping track of which
group each observation originally belonged to, sort and rank the observations in the overall
sample from smallest (rank = 1) to largest (rank = N). If two or more observations are tied,
assign to each of them the average of the ranks they would’ve been assigned if they hadn’t
been tied.

2. Compute the group mean ranks R̄1, R̄2, . . . , R̄k and the overall mean rank R̄.

3. The test statistic is

Kw =
12

N(N + 1)

k∑
i=1

ni(R̄i − R̄)2. (10.23)

This test statistic is the sum of (sample size-weighted) squared deviations of group mean ranks away from
the overall mean rank, multiplied by the constant 12/(N(N+1)). The constant has the effect of ”averaging”
the squared deviations, and is needed in order for Kw to follow a particular sampling distribution under
the null hypothesis (see Subsection 10.5.2). The sum of squares in Kw measures variation in the group
mean ranks, just as the treatment sum of squares SSTr in ANOVA measured variation in the group means
of the original observations.

The next example demonstrates the calculation of the test statistic.

Example 10.11: Kruskal-Wallis Test Statistic

For the data on fish aluminum from Example 10.10, we have k = 3 river basins (the populations),
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and we want to test

H0: µ1 = µ2 = µ3

Ha: The µi’s aren’t all equal

where µ1, µ2, and µ3 are the true (unknown) population mean Al concentrations in female carp
from the Colorado, Columbia, and Mississippi River basins, respectively.

The three sample sizes are n1 = 13, n2 = 8, and n3 = 9, so N = 13+8+9 = 30. The combined sam-
ples, sorted and ranked, are given below (sample 1 = Colorado, 2 = Columbia, and 3 = Mississippi,
with the different font shades indicating basins).

Sample 1 2 2 1 2 1 1 3 1

Observation 11.0 13.7 18.9 20.0 21.1 24.0 24.0 24.1 26.0

Rank 1 2 3 4 5 6.5 6.5 8 9

3 3 1 3 1 1 3 2 1 1 3

26.6 26.7 28.0 28.9 30.0 32.0 32.6 33.2 36.0 37.0 40.2

10 11 12 13 14 15 16 17 18 19 20

2 2 3 1 3 2 2 1 3 1

43.2 48.8 52.7 53.0 54.9 64.1 66.5 73.0 73.3 232.0

21 22 23 24 25 26 27 28 29 30

The tied observations were assigned the average rank. Notice that the three basins are evenly
”intermingled” in the overall sample because there’s substantial overlap in their Al concentrations.

The three group mean ranks are:

R̄1 =
1

13
(1 + 4 + 6.5 + 6.5 + 9 + 12 + 14 + 15 + 18 + 19 + 24 + 28 + 30)

= 14.4.

R̄2 =
1

8
(2 + 3 + 5 + 17 + 21 + 22 + 26 + 27)

= 15.4.

R̄3 =
1

9
(8 + 10 + 11 + 13 + 16 + 20 + 23 + 25 + 29)

= 17.2.

The mean ranks are similar in value (due to the ”intermingling” of the three basins in the overall
sample), and are therefore close to the overall mean rank,

R̄ =
N + 1

2
=

30 + 1

2
= 15.5.

The observed test statistic value is

Kw =
12

N(N + 1)

k∑
i=1

ni
(
R̄i − R̄

)2
=

12

30(30 + 1)

(
13 · (14.4− 15.5)2 + 8 · (15.4− 15.5)2 + 9 · (17.2− 15.5)2

)
= 0.54.
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This test statistic value is close to zero because there’s so little variation in the group mean ranks.
We’ll determine the p-value in Example 10.12.

When the null hypothesis is true, the k samples come from identical populations (they have the same
shapes and centers), so observations from the different groups will be evenly ”intermingled” in the sorted
overall sample. In this case, the group mean ranks R̄1, R̄2, . . . , R̄k won’t differ much, except due to chance
variation, and therefore won’t differ much from the overall mean rank R̄, so Kw will be fairly close to zero
(or more precisely, as will be seen, close to k − 1). On the other hand, when the alternative is true, the
groups will be ”segregated” in the sorted overall sample, leading to large differences among R̄1, R̄2, . . . , R̄k
and a large value of Kw. It follows that

Large values of Kw (larger than k − 1) provide evidence in favor of Ha: Not all µi’s are equal.

The Chi-Square Distribution

To decide whether an observed value of Kw provides statistically significant evidence in support of the
alternative hypothesis, we’ll need to know its sampling distribution under the null hypothesis.

Fact 10.6 Consider independent random samples from k continuous populations whose means are
µ1, µ2, . . . , µk. Suppose also that the populations have the same shape and that the sample sizes
n1, n2, . . . , nk are all large. Then when

H0 : µ1 = µ2 = · · · = µk

is true, the Kruskal-Wallis test statistic Kw follows (approximately) a distribution called the chi-
square distribution with k − 1 degrees of freedom, sometimes denoted as the χ2(k − 1) dis-
tribution. We write this as

Kw ∼ χ2(k − 1).

There’s a different chi-square distribution for each value of its one parameter, its degrees of freedom.
All chi-square distributions are right skewed and lie entirely to the right of zero. The degrees of freedom
determine the center and spread of the distribution. Several chi-square density curves are shown below for
various values of its degrees of freedom.

Comment: The sample sizes are considered large enough for Kw to follow a chi-square distribution (under
the null hypothesis) as long as they’re all five or larger when k > 3 and all six or larger if k = 3.

Comment: The k− 1 degrees of freedom associated with the test statistic Kw refers to the fact that only
k − 1 of the deviations R̄i − R̄ used to compute Kw are ”free to vary” (because they sum to zero).

The mean and standard error of the chi-square distribution are

Mean and Standard Error of the Chi-Square Distribution: The mean µKw and standard
error σKw of a chi-square distribution with k − 1 degrees of freedom are

µKw = k − 1

and
σKw =

√
2(k − 1).
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Figure 10.13: Chi-square distributions with different degrees of freedom.

Thus if the null hypothesis was true, we’d expect the value of Kw to be roughly equal to the mean of its
sampling distribution, k − 1. Values larger than this are evidence in favor of the alternative hypothesis.

P-Values

Because large values of the test statistic Kw provide evidence against the null hypothesis, the p-value for
the Kruskal-Wallis test test is the tail probability under the χ2(k − 1) distribution to the right of the
observed Kw value (and the rejection region, for the rejection region approach, is the rightmost 100α% of
the distribution). Fig. 10.14 shows the p-value when Kw = 8.3 and there are k = 5 groups.

P−Value for Kruskal−Wallis Test

Values of Kw

0 5 Kw = 8.3 15

P−value = 0.081

Chi−Square Distribution

with k − 1 = 4 df

Figure 10.14: P-value for the Kruskal-Wallis test when the observed test statistic value is Kw = 8.3 and
there are k = 5 groups. The p-value is the tail area to the right of 8.3 under the χ2(4) distribution.

The Kruskal-Wallis test procedure is summarized in the table below.
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Kruskal-Wallis Test for µ1, µ2, . . . , µk

Assumptions: The data are independent random samples from k continuous populations that
differ, if at all, by their means µ1, µ2, . . . , µk but not their shapes, and the sample sizes n1, n2,
. . . , nk are all large.*

Null hypothesis: H0 : µ1 = µ2 = . . . = µk.

Test statistic value: Kw = 12
N(N+1)

∑k
i=1 ni(R̄i − R̄)2.

Decision rule: Reject H0 if p-value < α or Kw is in rejection region.

P-value = area under
Alternative χ2 distribution with Rejection region =
hypothesis k − 1 d.f.: Kw values such that:**

Ha : µi 6= µj for some i and j to the right of Kw Kw ≥ χ2
α,k−1

* The sample sizes are considered to be large when they’re all 5 or larger if k > 3, and all 6 or
larger if k = 3. For smaller sample sizes, the test statistic Kw can be compared to a table of tail
areas or critical values of the exact sampling distribution of Kw, found, for example, in [5] or [11].

** χ2
α,k−1 is the 100(1− α)th percentile of the χ2 distribution with k − 1 d.f.

Example 10.12: Kruskal-Wallis Test

In Example 10.11, the test statistic for deciding whether there are differences among the mean Al
concentrations in fish from three river basins was found to be Kw = 0.54. Because it’s so close to
zero, this provides very little evidence for any differences among the three means.

From a table of upper tail areas of the chi-square distribution with k− 1 = 2 degrees of freedom, we
find the p-value to be greater than 0.100. Statistical software reports the p-value as 0.7634. Thus,
using a level of significance α = 0.05, we fail to reject the null hypothesis, and conclude that there
are no statistically significant differences among the three means.

10.5.3 What if the Population Distributions Don’t All Have the Same Shape?

The Kruskal-Wallis test, as described above, relies on an assumption that the population distributions all
have the same shape. But the test can still be carried out when they don’t have the same shape. Recall
that the same was true of the rank sum test (Chapter 8). However, in this situation, it doesn’t testing for
differences among the means µ1, µ2, . . . , µk. Instead, it tests hypotheses that can be stated in words as

H0 : The k population distributions are identical (same means and shapes)
Ha : At least one distribution has values that are systematically different from the others

Here ”systematically different” is interpreted as ”systematically larger or systematically smaller,” as defined
more formally in Subsection 8.7.4 of Chapter 8, and could result from the populations having different
means or having different shapes.
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10.6 Which Test Should Be Used, the ANOVA F Test or the Kruskal-
Wallis Test?

If the k samples are from a non-normal populations or from populations whose standard deviations aren’t
equal, and we don’t want to transform the data, then unless the sample sizes are large, the one-factor
ANOVA F test shouldn’t be used. In this case we have little choice but to use a nonparametric test such
as the Kruskal-Wallis test.

But if the normality assumption is met (and the population standard deviations are about the same),
we have a choice between the ANOVA F test and the Kruskal-Wallis. It can be shown that when the
normality and common standard deviation assumptions are met, the ANOVA F test is more powerful
than the Kruskal-Wallis (or other nonparametric test). In other words, when the alternative hypothesis is
true, the ANOVA F test is less likely to lead to a Type II error and thus more likely to find statistically
significant differences or effects. Therefore, whenever we have a choice, the ANOVA F test is preferred.

The intuition behind why the ANOVA F test is more powerful is that it’s based on the actual numerical
values of the data (via the group means Ȳ1, Ȳ2, . . . , Ȳk) as opposed to just their ranks. Therefore the ANOVA
F test makes use of the complete information that’s contained in the data, whereas the Kruskal-Wallis
test doesn’t. As a result, there’s some loss of power in the Kruskal-Wallis test. The lack of power in the
Kruskal-Wallis test can be particularly severe when the samples sizes are small.

10.7 Multiple Comparison Procedures

10.7.1 Introduction

If H0 is rejected in an ANOVA F test or a Kruskal-Wallis test, we can conclude that at least one difference
exists somewhere among the k means. But further analysis is needed to determine which means differ from
each other.

A multiple comparison procedure is a hypothesis testing procedure, conducted after the null is
rejected in an F test or a Kruskal-Wallis test, that tests for differences, one pair of means at a time. In
other words, it’s used to performs multiple pairwise comparisons between the k means.

It can be shown that when there are k groups, the total number of pairwise comparisons that need to
be made is

Number of pairs µi and µj to compare =
k(k − 1)

2
. (10.24)

Example 10.13: Multiple Comparisons

In Example 10.7 we found statistically significant evidence for differences among the k = 5 labs’
mean lead measurements. The next step is to decide which labs differ from each other. To compare
the labs to each other one pair at a time, according to (10.24), we need to make

5(5− 1)

2
= 10

comparisons. Here they are listed out:

Lab1 vs Lab2 Lab1 vs Lab3 Lab1 vs Lab4 Lab1 vs Lab5
Lab2 vs Lab3 Lab2 vs Lab4 Lab2 vs Lab5
Lab3 vs Lab4 Lab3 vs Lab5
Lab4 vs Lab5
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It may be tempting to simply perform k(k− 1)/2 separate two-sample t tests (or pooled t tests or rank
sum tests), each using a level of significance, say, α = 0.05. The problem with this approach is that even
though the probability of making a Type I error would be 0.05 on any given test, the probability of making
at least one Type I error somewhere among the set of tests would be substantially greater than 0.05. For
example, suppose the number of groups is k = 15. Then the number of pairwise comparisons is 105, and in
this case, because a Type I error occurs 5% the time when a null hypothesis is true, we’d expect about 5
or 6 of the 105 tests to erroneously conclude the two means differ even if in reality the k population means
were all the same.

The goal of a multiple comparison procedure is to keep the probability of making at least one Type I
error among the family of pairwise comparison tests small. When multiple pairwise tests are carried out,
we call the probability of making at least one Type I error (when the k population means are all the same)
the familywise Type I error rate, and denote it by αf . Thus

αf = P (You reject H0 : µi − µj = 0 for at least one pair, µi and µj)

(when in reality µ1 = µ2 = · · · = µk). The level of significance used on each particular pairwise comparison
test, which is also the Type I error probability for that test, is called the pairwise Type I error rate
and is denoted αp. In other words, for each i and j,

αp = P (You reject H0 : µi − µj = 0 for the particular pair, µi and µj)

(when in reality µi = µj).

10.7.2 The Bonferroni Procedure

Several multiple comparison procedures have been developed, all of which control the familywise Type
I error rate at some desired level, such as αf = 0.05. The procedure we’ll be looking at, called the
Bonferroni procedure, accomplishes this by using a sufficiently small level of significance for each pairwise
test of hypotheses of the form

H0 : µi − µj = 0

Ha : µi − µj 6= 0 (10.25)

More specifically, it divides the overall familywise Type I error rate equally among the pairwise tests, so for
example to perform the 10 pairwise tests comparing labs in Example 10.13, we’d use level of significance

αp =
0.05

10
= 0.005

for each test. In general, the Bonferroni procedure holds the overall familywise Type I error rate to some
desired level αf by using the following fact.

Fact 10.7 The familywise Type I error rate will be no greater than the desired level αf if each
pairwise test is performed using the Bonferroni-corrected level of significance

αp =
αf

Number of Pairwise Tests
=

αf
k(k − 1)/2

.

10.7.3 Bonferroni Procedure After an ANOVA F Test

Suppose in an ANOVA F , the null hypothesis is rejected. To decide which means among µ1, µ2, . . . , µk
differ from each other, because we’ve already assumed (for the F test) that the populations are normal (or
we had large sample sizes), two-sample t tests are appropriate for the pairwise comparisons. In addition,



338 CHAPTER 10. TESTS FOR COMPARING K POPULATIONS

because we’ve also assumed that the population standard deviations are all equal to the same value, σ,
instead of using the sample standard deviations Si and Sj to compute the t test statistics, we can increase
the power of each t test by pooling the k samples to get a more accurate, combined estimate of σ. The
appropriate pooled estimate, from (10.17), is the square root of the mean squared error, obtained from the
ANOVA table.

We now summarize the procedure.

Bonferroni Multiple Comparison Procedure After One-Factor ANOVA: After a one-factor
ANOVA F test has rejected H0, to decide which pairs of means differ while controlling the familywise
Type I error rate at αf , for each pair of means µi and µj , test the hypotheses

H0 : µi − µj = 0

Ha : µi − µj 6= 0

using the Bonferroni pairwise t test statistic

t =
Ȳi − Ȳj − 0√
MSE
n + MSE

n

=
Ȳi − Ȳj√
2·MSE

n

(10.26)

and decision rule

Reject H0 if p-value < αp
Fail to reject H0 if p-value ≥ αp .

where αp = αf/(k(k − 1)/2). When the corresponding H0 is true, the test statistic (10.26) follows
a t distribution with N − k degrees of freedom, from which the p-value for that test is obtained.

Comment: Each pairwise t test uses the two-sided alternative hypothesis because no direction for the
difference between the corresponding means was specified prior to performing the ANOVA F test.

Example 10.14: Bonferroni Procedure After an ANOVA F Test

Continuing from Example 10.13, we’ll use the Bonferroni procedure to decide which labs’ means
differ from each other, while controlling the familywise Type I error rate at αf = 0.05.

For the first of the 10 comparisons listed in Example 10.13, we’re testing

H0 : µ1 − µ2 = 0

Ha : µ1 − µ2 6= 0

where µ1 and µ2 are the true (unknown) population mean lead measurements at Labs 1 and 2,
respectively. Since k = 5, the Bonferroni-corrected level of significance to use for each pairwise test
is

αp =
0.05

5(5− 1)/2
= 0.005,

and so the decision rule is

Reject H0 if p-value < 0.005
Fail to reject H0 if p-value ≥ 0.005.

The sample means (from Example 10.3) are Ȳ1 = 4.30 and Ȳ2 = 3.97, the MSE (from the ANOVA
table in Example 10.7) is 0.510, and the common sample size is n = 10. Thus the observed value of
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the test statistic (10.26) is

t =
4.30− 3.97√

2(0.510)
10

= 1.03,

and the p-value, from the t distribution with N − k = 45 degrees of freedom, is 2(0.1543) = 0.3086.
Thus we fail to reject the null hypothesis and therefore have no reason to believe that µ1 and µ2 differ.

The complete set of test statistic values and p-values for the pairwise tests is shown below. Statis-
tically significant differences (at the Bonferroni-corrected significance level αp = 0.005) are marked
with an asterisk.

Pair of Means t P-value

Lab1 vs Lab2 1.03 0.3070
Lab1 vs Lab3 -0.50 0.6188
Lab1 vs Lab4 3.69 0.0006*
Lab1 vs Lab5 3.01 0.0043*
Lab2 vs Lab3 -1.53 0.1320
Lab2 vs Lab4 2.66 0.0107
Lab2 vs Lab5 1.97 0.0547
Lab3 vs Lab4 4.20 0.0001*
Lab3 vs Lab5 3.51 0.0010*
Lab4 vs Lab5 -0.69 0.4945

We conclude that Labs 1 and 4 differ, Labs 1 and 5 differ, Labs 3 and 4 differ, and Labs 3 and 5
differ. These results are consistent with the side-by-side boxplots in Example 10.3.

10.7.4 Bonferroni Procedure After a Kruskal-Wallis Test

If the null hypothesis is rejected in a Kruskal-Wallis test and we want to to decide which of the means
differ from each other, we can perform multiple rank sum tests, each time using the Bonferroni-corrected
level of significance.

Bonferroni Multiple Comparison Procedure After a Kruskal-Wallis Test: After a Kruskal-
Wallis test has rejected H0, to decide which pairs of means differ while controlling the familywise
Type I error rate at αf , for each pair of means µi and µj , test the hypotheses

H0 : µi − µj = 0

Ha : µi − µj 6= 0

using a rank-sum test with decision rule

Reject H0 if p-value < αp
Fail to reject H0 if p-value ≥ αp

where αp = αf/(k(k − 1)/2).
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10.7.5 Other Multiple Comparison Procedures

The Bonferroni multiple comparison procedure is conservative, especially when k is large, in the sense that
it sometimes doesn’t detect differences between population means when in reality those differences exist.
In fact, it’s possible that the ANOVA F test or Kruskal-Wallis test leads rejection of the null hypothesis,
yet the pairwise t tests (or rank sum tests) don’t detect any differences among the means. If this occurs
after an ANOVA F test, it’s advisable to turn to one of the other multiple comparison procedures, such
as the Duncan or Tukey procedures. Details about these can be found in [7].

10.8 Problems

10.1 Explain what’s wrong with each of the following statements.

a) The ANOVA F test is a test of the null hypothesis that the k sample means are equal.

b) The mean squares in an ANOVA are additive, that is, MSTo = MSTr + MSE.

c) Within-groups variation in the response variable reflects differences among the k group means.

d) When we reject the null hypothesis in an ANOVA F test we conclude that none of the k population
(or treatment) means equal each other.

10.2 A study compared four groups with 11 observations per group. The resulting treatment sum of
squares was SSTr = 17.0 and the error sum of squares was SSE = 80.0.

a) Find the values of the mean square for treatments MSTr and the mean squared error MSE.

b) Give the value of the ANOVA F statistic.

c) Give the numerator and denominator degrees of freedom for the distribution of the F statistic under
the null hypothesis.

d) Sketch the F distribution of part c, mark the observed value of F on the horizontal axis, and shade
the area corresponding to the p-value (which turns out to be 0.0505), as in Fig. 10.7.

10.3 Driving heavy equipment on farmland can compress the soil and hinder future crops by inhibiting
root growth. A study was carried out to examine the effects of soil compression on soil penetrability, which
determines how much resistance a plant’s roots will meet when growing through the soil [13]. Higher pen-
etrability values mean the roots meet less resistance. Soil penetrability was measured on 20 parcels of land
under each of three soil compression levels, loose, intermediate and compressed, giving 60 measurements
total. A one-factor ANOVA was carried out, and part of the ANOVA table is shown below.

Source DF SS MS F P-value

Compression ? ? 9.13 ? 0.000
Error ? ? 0.07

Total ? ?

Fill in the values that are missing from the ANOVA table.

10.4 In an agricultural experiment designed to compare the effects of four fertilizer treatments on the
yield of corn, 40 plots of land were randomly allocated to the treatment groups, with 10 plots being
treated by each fertilizer. At the end of the growing season, the corn yield was recorded for each plot and
a one-factor ANOVA carried out. Part of the ANOVA table is shown below.
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Source DF SS MS F P-value

Treatment ? 4751.1 ? ? 0.000
Error ? 1173.0 ?

Total ? ?

Fill in the values that are missing from the ANOVA table.

10.5 Observational studies have found that soils with higher levels of acidity have less healthy microbial
communities. In an experiment to decide if it’s a cause and effect relationship, nine soil samples were
selected from forest sites whose soil pH levels were close to neutral [2]. Each was then treated with one
of three levels of acidification (mild, strong, and extreme) using acid water with a pH of 0.5, with three
soil specimens assigned randomly to each treatment group. After an incubation period of 80 days, the
microbial biomass (microbial carbon as a percent of total organic carbon in the soil) was measured. The
table below shows the data.

Microbial Biomass
Mild Acidification Strong Acidification Extreme Acidification

1.35 0.45 0.91
1.29 0.36 0.57
1.24 0.48 0.51

a) Write out the group means version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population means µ1, µ2 and µ3.

c) Carry out a one-factor ANOVA and write out the resulting ANOVA table.

d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, does acidification have any effect on microbial biomass?

e) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the three groups appear to be met?

g) Assuming that σ is the same for the three groups, what’s the estimated value of σ?

h) You should have found that there are significant differences among the three mean biomass percents.
Carry out a Bonferroni multiple comparison procedure, controlling the overall familywise Type I
error rate at 0.05, to determine which means differ from each other.

10.6 Refer to the experiment to decide if soil acidification affects microbial community health described
in Problem 10.5.

Another variable recorded for each plot at the end of the incubation period was the metabolic quotient,
qCO2, a measure of microbial respiration per unit of microbial biomass. A small metabolic quotient
indicates a more energy efficient, and therefore healthier, microbial community. The table below shows the
qCO2 data (µg CO2-C/mg biomass-C/h).

Metabolic Quotient

Mild Acidification Strong Acidification Extreme Acidification

2.20 4.8 2.0
0.78 5.2 3.8
0.86 2.4 5.9

a) Write out the group means version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population means µ1, µ2 and µ3.

c) Carry out a one-factor ANOVA and write out the resulting ANOVA table.

d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, does acidification have any effect on metabolic quotient?

e) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the three groups appear to be met?

g) Assuming that σ is the same for the three groups, what’s the estimated value of σ?

h) You should have found no significant differences among the three mean metabolic quotients. Would
it make sense to carry out Bonferroni multiple comparison tests to determine which of the three
means differ from each other?

10.7 Example 5.1 in Chapter 5 described an experiment to asses the toxic effects of heavy metal pollutants
on aquatic life. Giant kelp (Mactocystis pyrifera) were exposed to copper (Cu) at five concentrations, and
the lengths of their embryonic gametophyte germination tubes were measured. Smaller tube lengths
indicate more severe toxic responses and are an indicator of potential toxicity to other aquatic organisms.
Five replicate observations were made at each exposure concentration. The table below shows the tube
lengths (mm).

Tube Lengths for Five Cu

Exposure Concentrations

0.0 µg/L 5.6 µg/L 10.0 µg/L 18.0 µg/L 32.0 µg/L
19.58 18.26 13.31 18.59 12.54
18.75 16.25 18.92 12.88 10.67
19.14 16.39 15.62 16.28 15.95
16.50 18.70 14.30 15.38 12.54
17.93 15.62 15.29 19.75 11.66
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Side-by-side boxplots of the tube lengths for the five treatment groups are below.
We want to decide if there are any significant differences among the mean tube lengths for the five Cu
concentrations.

a) Write out the treatment effects version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
treatment effects α1, α2, . . . , α5.

c) Carry out a one-factor ANOVA and write out the resulting ANOVA table.

d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, does copper have any effect on tube length?

e) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the five groups appear to be met?

g) Assuming that σ is the same for the five groups, what’s the estimated value of σ?

h) You should have found that there are significant differences among the mean tube lengths for the five
Cu concentrations. Carry out a Bonferroni multiple comparison procedure, controlling the overall
familywise Type I error rate at 0.05, to determine which means differ from each other.

10.8 An experiment was carried out to study the effects of two forest insecticides on aquatic insects [14],
[10]. Fifteen 5-liter aquariums, each containing 10 aquatic insects in natural water, were randomized to
three treatment groups, five aquariums to each group. The first, serving as a control group, received no
insecticide. The second received insecticide A and the third insecticide B. After a 28-day period the number
of deceased insects was recorded for each aquarium. The data are below.

Number of Deceased Insects
Control Insecticide A Insecticide B

2 3 3
2 2 1
1 2 5
3 1 5
0 0 9

We want to decide if there are any differences in the effects of the three treatments on the number of insects
that die.

a) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population mean numbers of insects that die, µ1, µ2, and µ3, when ten of them are exposed to each
of the three experimental conditions.

b) Carry out a one-factor ANOVA and write out the resulting ANOVA table.

c) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, are there any differences in the effects of the three experimental conditions on insect mortality?

10.9 In a laboratory quality assurance study, five standard water specimens containing a known concen-
tration 20 µg/L of cadmium (Cd) were sent to each of five labs for analysis [16]. Each lab was also sent
five specimens containing 100 µg/L of Cd.

The goal of the study was to find out if there are any differences among the five labs’ results for either
concentration. The tables below show the data.
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Cd (Concentration = 20) Cd (Concentration = 100)

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
10.0 17.8 27.1 21.0 18.0 92.0 90.5 107.4 96.0 91.0
20.0 17.3 19.4 16.0 19.0 100.0 87.6 108.1 90.7 101.0
17.2 16.6 9.0 16.1 19.0 97.8 85.6 83.8 89.4 102.0
24.0 17.4 10.5 17.0 18.7 100.0 89.9 81.9 91.0 92.7
19.1 18.1 19.3 15.5 19.8 109.0 90.1 94.2 85.9 99.9

In this problem, we’ll analyze the 20 µg/L data. (The 100 µg/L data will be analyzed in Problem 10.10.)
Side-by-side boxplots of the Cd measurements for the five labs are below.
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a) Write out the group means version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population mean Cd measurements µ1, µ2, . . . , µ5 at the five labs.

c) Carry out a one-factor ANOVA (on the 20 µg/L data) and write out the resulting ANOVA table.

d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, are there any statistically significant differences among the five labs’ results?

e) A normal probability plot of the residuals is below.

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

−2 −1 0 1 2

−5
0

5
10

Normal Probability Plot of Residuals

Theoretical Z Value

S
am

pl
e 

Va
lu

e

Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.

Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the five labs appear to be met?
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g) Assuming that σ is the same for the five labs, what’s the estimated value of σ?

h) You should have found that there are no significant differences among the five labs’ results. Would it
make sense to carry out Bonferroni multiple comparison tests to determine which of the five means
differ from each other?

10.10 Refer to the laboratory quality assurance study in which standard water specimens containing
known concentrations 20 and 100 µg/L of cadmium (Cd) were sent to each of five labs for analysis, as
described in Problem 10.9.

In this problem, we’ll analyze the 100 µg/L data. The goal of the study was to find out if there are any
differences among the five labs’ results. Side-by-side boxplots of the Cd measurements for the five labs are
below.
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a) Write out the group means version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population mean Cd measurements µ1, µ2, . . . , µ5 at the five labs.

c) Carry out a one-factor ANOVA (on the 100 µg/L data) and write out the resulting ANOVA table.

d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, are there any statistically significant differences among the five labs’ results?

e) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the five labs appear to be met?

g) Assuming that σ is the same for the five labs, what’s the estimated value of σ?

h) You should have found that there are no significant differences among the five labs’ results. Would it
make sense to carry out Bonferroni multiple comparison tests to determine which of the five means
differ from each other?

10.11 A study was conducted between 1977 and 1980 to establish baseline levels of various hydrocarbons
prior to the start of oil tanker movement through Prince William Sound on the southern coast of Alaska
[9]. The hydrocarbons were measured in sediment specimens and mussels at eight stations along the sound.
In addition, grain size and other sediment qualities were measured to facilitate comparison to future work.

At each station, two line transects (30 m) were selected parallel to the water line. Along each transect,
sediment cores were taken at 10 randomly selected points and then composited (combined). The table
below shows the sediment grain size (on the log2(mm) scale) for each transect in June, 1978.
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Grain Size in
Prince William Sound

Sampling Station Grain Size
Bligh Island 3.0
Bligh Island 3.0
Constantine Harbor 3.6
Constantine Harbor 3.9
Dayville Flats 5.4
Dayville Flats 5.5
Mineral Flats 2.0
Mineral Flats 2.8
Naked Island 1.6
Naked Island 1.4
Olsen Bay 3.5
Olsen Bay 3.3
Rocky Bay 2.9
Rocky Bay 2.8
Siwash Bay 4.9
Siwash Bay 4.9

Side-by-side boxplots of the grain sizes for the eight stations are below.
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a) Write out the group means version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population mean grain sizes µ1, µ2, . . . , µ8 at the eight stations.

c) Carry out a one-factor ANOVA and write out the resulting ANOVA table.

d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, are there any statistically significant differences among the eight stations’ grain sizes?

e) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the eight stations appear to be met?

g) Assuming that σ is the same for the eight stations, what’s the estimated value of σ?

10.12 The decomposition rate of tree leaf litter is determined in part by the litter chemistry, especially
nitrogen and lignin concentrations. Because forest stands near urban areas can be highly polluted, plant
foliage in these areas may be exposed to O3, SOx, and NOx gases, among other pollutants, and therefore
leaf litter decay rates in urban areas may differ from those in suburban and rural areas.

In a study of oak leaf decay rates in urban, suburban, and rural areas around New York City, nitrogen (N,
percent) and the carbon-to-nitrogen ratio (C:N) were measured in leaf litter at each of 12 oak plots, four
in each area type [15]. The data are below.
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Nitrogen Percents
and Carbon-Nitrogen Ratios
Plot Area Type N C:N
1 Urban 0.93 55.1
2 Urban 1.03 51.7
3 Urban 0.92 55.0
4 Urban 1.05 51.3
5 Suburban 0.81 65.3
6 Suburban 0.96 55.7
7 Suburban 0.81 63.7
8 Suburban 1.04 50.8
9 Rural 0.84 61.9
10 Rural 0.88 58.5
11 Rural 0.97 54.6
12 Rural 0.93 55.5

In this problem, we’ll analyze the N concentrations. (The C:N data will be analyzed in Problem 10.13.)
We want to know if there are statistically significant differences among the mean N concentrations for the
three area types. Side-by-side boxplots of the data are below.

Rural Suburban Urban

0.
85

0.
90

0.
95

1.
00

1.
05

Boxplots of Nitrogen for 3 Area Types

N
itr

og
en

a) Write out the group means version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population mean N concentrations µ1, µ2, and µ3 for the three area types.

c) Carry out a one-factor ANOVA and write out the resulting ANOVA table.

d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, are there any statistically significant differences among the mean N concentrations for the three
area types?
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e) A normal probability plot of the residuals is below.

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Normal Probability Plot of Residuals

Theoretical Z Value

S
am

pl
e 

Va
lu

e

Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.

●

●

●

●

●

●

●

●

●

●

●

●

0.92 0.94 0.96 0.98

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Residuals Versus Fitted Values

Fitted Value

R
es

id
ua

l

Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the three area types appear to be met?

g) Assuming that σ is the same for the eight stations, what’s the estimated value of σ?

h) You should have found no significant differences among the mean N concentrations for the three area
types. Would it make sense to carry out Bonferroni multiple comparison tests to determine which of
the three means differ from each other?

10.13 Refer to the study of oak leaf decay rates in urban, suburban, and rural areas around New York
City, in which nitrogen (N) and the carbon-to-nitrogen ratio (C:N) were measured at four plots in each
area type, as described in Problem 10.12.

In this problem, we’ll analyze the C:N ratios. We want to know if there are statistically significant
differences among the mean C:N ratios for the three area types. Side-by-side boxplots of the data are
below.

a) Write out the group means version of the ANOVA model for the data, including any assumptions
about the random error term ε in the model.

b) State the null and alternative hypotheses for the ANOVA F test in terms of the true (unknown)
population mean C:N ratios µ1, µ2, and µ3 for the three area types.

c) Carry out a one-factor ANOVA and write out the resulting ANOVA table.
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d) State the conclusion of the ANOVA F test using a level of significance α = 0.05. Based on the F
test, are there any statistically significant differences among the mean C:N ratios for the three area
types?

e) A normal probability plot of the residuals is below.

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−5
0

5

Normal Probability Plot of Residuals

Theoretical Z Value

S
am

pl
e 

Va
lu

e

Based on the plot, does the assumption, required by the F test, that the error term ε is normally
distributed appear to be met?

f) A plot the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F test, that the standard deviation σ of the
error distribution is the same for the three area types appear to be met?

g) Assuming that σ is the same for the eight stations, what’s the estimated value of σ?

h) You should have found no significant differences among the mean C:N ratios for the three area types.
Would it make sense to carry out Bonferroni multiple comparison tests to determine which of the
three means differ from each other?
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10.14 In a study of the effects of logging in Borneo, data were collected on the number of tree species
in 12 unlogged forest plots, 12 similar plots logged just one year earlier, and 9 similar plots logged eight
years earlier [4]. The tree-species counts are below.

Number of Species
Unlogged Logged 1 Year Ago Logged 8 Years Ago

22 11 17
18 11 4
22 14 18
20 7 14
15 18 18
21 15 15
13 15 15
13 12 10
19 13 12
13 2
19 15
15 8

We want to decide if there are differences among the true population mean numbers of species per plot for
the three types of forests. Dot plots of the data are below.
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The dot plots show that two of the three samples have mild outliers on the left side, so rather than carrying
out an ANOVA F test, whose results can be influenced by outliers, we’ll carry out the nonparametric
Kruskal-Wallis test.

a) Carry out a Kruskal-Wallis test to decide if there are differences among the true population mean
numbers of species per plot for the three forest types. Use a level of significance α = 0.05.

b) In part a, you should have found that there are significant differences among three types of forests.
Carry out a Bonferroni multiple comparison procedure, controlling the overall familywise Type I error
rate at 0.05, by conducting three rank sum tests, one for each of the three pairs of forest types, using
the Bonferroni-corrected level of significance. State which of pairs of forest types differ significantly
from each other.

10.15 Different varieties of the tropical flower Heliconia are fertilized by different species of humming-
birds. Over time, the lengths of the flowers and the forms of the hummingbirds’ beaks have evolved to
match each other.
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The table below shows data on the lengths (mm) of three varieties of these flowers (H. bihai, H. caribaea
red, and H. caribaea yellow) on the island of Dominica in the Caribbean Sea [18].

Length of Flower (mm)

H. bihai H. caribaea red H. caribaea yellow
47.12 41.90 36.78
46.75 42.01 37.02
46.81 41.93 36.52
47.12 43.09 36.11
46.67 41.47 36.03
47.43 41.69 35.45
46.44 39.78 38.13
46.64 40.57 37.10
48.07 39.63 35.17
48.34 42.18 36.82
48.15 40.66 36.66
50.26 37.87 35.68
50.12 39.16 36.03
46.34 37.40 34.57
46.94 38.20 34.63
48.36 38.07

38.10
37.97
38.79
38.23
38.87
37.78
38.01

We want to decide if there are differences among the true population mean lengths of flowers for the
three species. Histograms of the data (below) hint that the lengths of the flowers follow right skewed
distributions, so a one-factor ANOVA might not be appropriate.
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Instead, we’ll carry out a Kruskal-Wallis test.

a) Carry out the Kruskal-Wallis test using a level of significance α = 0.05.

b) In part a, you should have found that there are significant differences among the three mean flower
lengths. Carry out a Bonferroni multiple comparison procedure, controlling the overall familywise
Type I error rate at 0.05, by conducting three rank sum tests, one for each of the three pairs of flower
varieties, using the Bonferroni-corrected level of significance. State which of pairs of flower varieties
differ significantly from each other.
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10.16 A study was carried out to investigate the vertical distribution patterns of several species of large
zooplankton in the Wilkinson Basin, Gulf of Maine [6].

To collect abundance data on shrimp and gelatinous zooplankton, researchers were lowered in a five foot
diameter spherical Plexiglas submersible known as the Johnson-Sea-Link. At the desired depth, the sub-
mersible moved forward along a transect at 0.5 knots for four minutes. As it did so, the researchers
identified organisms passing through bars demarcating a 2.65 m2 area on the port side of the submersible.
Video recordings were also made for later viewing to help with the zooplankton identification and quan-
tification. This scheme was repeated at three depth categories, shallow (200 - 220 m), medium (220 - 240
m), and deep (240 - 260 m).

The table below shows the data (number of individuals per m3) for the genus Euplokamis (gelatinous
ctenophores), the species M. norvegica (a krill), and caridean shrimp.

Individuals per m3

Depth Euplokamis M. norvegica Carideans
Shallow 0.19 0.040 0.000
Shallow 0.00 0.000 0.000
Shallow 0.00 0.000 0.000
Shallow 0.09 0.000 0.000
Shallow 0.28 0.115 0.000
Medium 1.17 0.061 0.018
Medium 1.08 0.061 0.015
Deep 11.80 0.012 0.000
Deep 11.00 0.000 0.024
Deep 8.91 0.015 0.000
Deep 5.44 0.008 0.120
Deep 9.90 0.031 0.012

After analyzing the Euplokamis data, the authors of the study concluded that

”Euplokamis remained primarily between 240 and 260 m depth.”

We want to decide if the data provide statistically significant evidence to support this claim. Side-by-side
boxplots of the Euplokamis abundance data for the three depth categories are below.
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a) Which test, the one-factor ANOVA F test or the Kruskal-Wallis test, would be most appropriate
for deciding if there are any differences among the mean Euplokamis abundances for the three depth
categories?

b) Carry out the test you chose in part a. Use a level of significance α = 0.05.
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c) If you found significant differences in part b, carry out an appropriate multiple comparison procedure
to decide which depth categories’ means differ from each other.

10.17 Refer to the study to investigate the vertical distribution patterns of zooplankton in the Wilkinson
Basin, Gulf of Maine, described in Problem 10.16.

After analyzing the M. norvegica data, the authors of the study concluded that

”M. norvegica had a fairly broad daytime depth distribution, being equally abundant between
200 and 260 m depth.”

We want to decide if the data provide statistically significant evidence against this claim. Side-by-side
boxplots of the M. norvegica abundance data for the three depth categories are below.
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a) Which test, the one-factor ANOVA F test or the Kruskal-Wallis test, would be most appropriate for
deciding if there are any differences among the mean M. norvegica abundances for the three depth
categories?

b) Carry out the test you chose in part a. Use a level of significance α = 0.05.

c) If you found significant differences in part b, carry out an appropriate multiple comparison procedure
to decide which depth categories’ means differ from each other.

10.18 Refer to the study to investigate the vertical distribution patterns of zooplankton in the Wilkinson
Basin, Gulf of Maine, described in Problem 10.16.

After analyzing the carideans data, the authors of the study concluded that

”The carideans were primarily distributed between 220 and 240 m depth.”

We want to decide if the data provide statistically significant evidence to support this claim. Side-by-side
boxplots of the carideans abundance data for the three depth categories are below.

a) Which test, the one-factor ANOVA F test or the Kruskal-Wallis test, would be most appropriate
for deciding if there are any differences among the mean carideans abundances for the three depth
categories?

b) Carry out the test you chose in part a. Use a level of significance α = 0.05.

c) If you found significant differences in part b, carry out an appropriate multiple comparison procedure
to decide which depth categories’ means differ from each other.
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10.19 Dams are built on streams for a variety of reasons, such as flow control, aesthetic appeal in parks,
etc., but they can also impact the stream’s water quality. Particularly vulnerable is the stream’s dissolved
oxygen concentration. Pools created by dams often have dissolved oxygen concentrations that fall below
desired levels because the physical reaeration capabilities in pools may be much lower than those of free-
flowing water.

A study was carried out to determine the effects of dams on dissolved oxygen along a 300 mile stretch
of the Illinois Waterway between its confluence with the Mississippi River at Grafton, Illinois to just
south of Chicago [3]. For each of seven dams, dissolved oxygen concentrations (mg/L) were measured
at several places above and below the dam during summer and fall. Water temperatures (◦C) were also
measured because temperature had been shown in experiments to be related to aeration, with warmer
water reaerating faster than cool water. The table below shows the data and collection dates.



10.8. PROBLEMS 359

Temperature and Dissolved Oxygen

Dam Date Temp Above Temp Below DO Above DO Below
Lockport 9/13/78 27.20 26.00 1.80 2.22
Lockport 10/13/78 20.31 19.80 2.47 2.46
Lockport 8/16/79 26.00 25.81 0.81 0.98
Brandon Road 9/12/78 27.32 27.50 3.18 6.57
Brandon Road 10/12/78 19.55 19.00 3.40 7.15
Brandon Road 8/15/79 24.50 23.80 0.70 6.78
Brandon Road 8/15/79 25.00 23.80 0.56 6.78
Brandon Road 8/15/79 25.00 23.80 0.56 6.88
Brandon Road 8/29/79 26.12 24.80 1.88 6.53
Brandon Road 8/29/79 25.40 24.80 1.52 6.28
Brandon Road 9/11/79 26.00 25.90 1.88 7.42
Brandon Road 9/11/79 26.00 25.90 1.51 7.30
Brandon Road 9/11/79 26.00 25.90 1.55 6.40
Dresden Island 8/25/78 26.23 27.30 5.66 7.24
Dresden Island 8/25/78 26.12 27.30 5.62 7.33
Dresden Island 9/14/78 26.20 27.00 4.50 6.85
Dresden Island 9/14/78 26.20 27.00 4.53 6.58
Dresden Island 9/14/78 26.40 27.20 4.56 6.78
Dresden Island 8/08/79 30.74 30.05 5.49 6.77
Dresden Island 8/08/79 30.37 30.83 5.00 6.60
Dresden Island 8/08/79 30.39 30.17 5.20 6.70
Dresden Island 8/14/79 25.18 24.80 5.67 7.78
Dresden Island 8/14/79 25.04 24.80 5.65 7.60
Dresden Island 8/14/79 24.85 24.80 5.55 7.90
Dresden Island 9/05/79 28.22 27.97 5.76 7.10
Dresden Island 9/05/79 27.85 29.00 5.68 7.10
Marseilles 8/24/78 28.00 27.47 6.60 7.10
Marseilles 9/19/78 25.02 25.00 4.68 6.53
Marseilles 9/19/78 24.65 25.00 4.61 6.43
Marseilles 8/06/79 28.87 29.50 4.70 6.13
Marseilles 8/06/79 28.90 29.50 4.80 6.13
Marseilles 8/06/79 29.08 29.00 5.00 6.23
Marseilles 9/06/79 27.50 27.90 5.51 7.05
Marseilles 9/06/79 27.50 27.90 5.47 7.20
Marseilles 9/06/79 27.50 27.80 5.47 6.80
Marseilles 9/12/79 25.50 25.50 6.33 7.70
Marseilles 9/12/79 25.30 25.40 6.36 7.47
Marseilles 9/12/79 25.37 25.33 6.54 7.57
Starved Rock 8/23/78 25.80 27.20 7.01 7.90
Starved Rock 8/23/78 26.52 27.20 7.21 7.80
Starved Rock 8/23/78 26.44 27.20 7.96 8.00
Starved Rock 8/23/78 25.94 27.20 7.14 7.90
Starved Rock 9/20/78 24.80 25.00 5.90 6.93
Starved Rock 9/20/78 25.52 25.00 5.53 6.50
Starved Rock 8/03/79 28.93 28.20 6.94 6.73
Starved Rock 8/03/79 28.44 27.00 6.47 6.92
Starved Rock 8/03/79 28.17 27.20 6.19 6.93
Starved Rock 9/07/79 26.00 25.50 8.04 7.93
Starved Rock 9/07/79 25.02 25.10 7.18 8.07
Starved Rock 9/07/79 25.11 25.00 7.44 8.10
Starved Rock 9/14/79 23.40 23.10 7.29 8.70
Starved Rock 9/14/79 22.68 22.50 8.13 8.77
Starved Rock 9/14/79 22.52 22.50 8.05 8.67
Peoria 8/12/78 25.21 26.23 6.24 6.55
Peoria 8/12/78 25.20 26.20 6.80 6.55
Peoria 8/12/78 25.19 26.05 6.47 6.62
Peoria 8/12/78 25.24 26.20 6.60 6.74
Peoria 8/12/78 25.66 26.20 6.47 6.71
Peoria 10/02/78 20.09 18.90 6.95 7.42
Peoria 10/02/78 19.34 18.90 7.10 7.42
Peoria 10/02/78 19.17 18.90 7.06 7.40
Peoria 10/02/78 19.21 18.90 7.27 7.39
Peoria 10/02/78 19.16 18.90 7.10 7.43
Peoria 7/27/79 29.71 28.12 6.01 6.30
Peoria 7/27/79 29.47 28.32 6.17 6.17
Peoria 7/27/79 29.08 28.24 6.31 6.43
Peoria 8/01/79 26.59 26.49 6.43 6.45
Peoria 8/01/79 26.69 26.32 6.02 6.64
Peoria 8/01/79 26.85 26.50 6.20 6.70
Peoria 10/10/79 14.47 14.20 9.06 9.61
Peoria 10/10/79 14.50 14.00 8.95 9.74
Peoria 10/10/79 14.46 14.13 9.04 9.75
LaGrange 8/22/79 25.51 26.22 6.28 6.65
LaGrange 8/22/79 25.47 26.87 6.47 6.70
LaGrange 8/22/79 25.37 26.71 6.54 6.75
LaGrange 8/22/79 25.30 26.57 6.47 6.62
LaGrange 8/22/79 25.29 26.51 6.42 6.45
LaGrange 9/21/78 24.07 24.00 2.64 3.16
LaGrange 9/21/78 24.03 24.00 2.52 3.08
LaGrange 9/21/78 23.91 24.00 2.62 3.13
LaGrange 8/07/79 30.07 30.00 5.06 5.22
LaGrange 8/07/79 28.89 30.00 4.86 5.71
LaGrange 8/07/79 29.59 29.50 4.71 5.10
LaGrange 9/18/79 23.56 23.82 6.04 7.45
LaGrange 9/18/79 23.45 23.21 6.10 7.51
LaGrange 9/18/79 23.39 23.02 6.01 7.40
LaGrange 9/26/79 22.73 22.34 6.18 8.08
LaGrange 9/26/79 22.25 21.82 6.58 7.62
LaGrange 9/26/79 21.98 21.48 6.21 7.47
LaGrange 9/26/79 21.98 23.00 6.21 6.10

Although it’s to be expected that a dam will cause abrupt changes in a stream’s dissolved oxygen concen-
tration, the size of that change may differ depending on the dam’s design features (for example the number
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and sizes of flow release gates, the waterfall height, pool depth, etc.).

We want to decide if there are differences among the sizes of the seven dams’ effects on dissolved oxygen.

a) Compute the differences in dissolved oxygen (above the dam minus below) and make side by side
boxplots of the differences for the seven dams.

b) Carry out a one-factor ANOVA to decide if the dissolved oxygen difference (above minus below)
depends on the dam. Use a level of significance α = 0.05.

c) Check the normality assumption for one-factor ANOVA by making a normal probability plot or a
histogram of the residuals.

d) Check the common standard deviation assumption for one-factor ANOVA by making a plot of the
residuals versus the fitted values.
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