
Chapter 11

Tests for the Effects of Two Factors

Chapter Objectives

• State and interpret the two-factor ANOVA models with and without the interaction effect.
• Interpret sums of squares, degrees of freedom, and mean squares.
• Carry out two-factor ANOVA F tests for the main effects of two factors and for their interaction

effect.
• Obtain and interpret fitted values and residuals associated with the ANOVA model.
• Carry out a Friedman test for main effects in a two-factor study.
• Decide which test (the two-factor ANOVA F test or the Friedman test) is more appropriate for a

given set of data.
• Carry out a Bonferroni multiple comparison procedure to identify which of levels of a given factor

differ from each other.

Key Takeaways

• The two-factor ANOVA F tests are parametric tests for main effects of two factors and for their
interaction effect. They require either that the samples are from normal populations or the sample
sizes are all large. A log transformation can make right-skewed data more normal prior to conducting
the ANOVA F tests.
• A two-factor ANOVA model describes several sources variation in a response variable: the non-

random main effects of two factors, their non-random interaction effect, and within-groups random
error.
• Sums of squares in two-factor ANOVA are statistics that measure between-rows, between-columns,

interaction, and within-groups variation in the observed values of a response variable.
• Mean squares are another way to measure between-rows, between-columns, interaction, and within-

groups variation. They’re obtained by dividing sums of squares by their degrees of freedom. The
degrees of freedom associated with a sum of squares is determined by how many of its squared
deviations are ”free to vary.” The values of two mean squares are directly comparable, but the values
of two sums of squares aren’t necessarily comparable.
• The two-factor ANOVA F test statistics are ratios of two mean squares. Their numerator measures

either between-rows, between-columns, or interaction variation and their denominator within-groups
variation.
• Blocking can be used to control for variation in a response variable due to extraneous factors that

aren’t necessarily of interest in a study.
• The Friedman test is a nonparametric test for the effects of two factors that doesn’t require a normality

assumption or large sample sizes.
• A multiple comparison procedure, such as the Bonferroni procedure, is used to identify which factor
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levels differ from each other after a two-factor ANOVA F test (or Friedman test) has indicated that
such differences exist.

11.1 Introduction

Environmental studies often involve simultaneously investigating the effects of two factors (categorical
explanatory variables) on a response variable. These studies can arise in the context of taking samples
from populations as well as in the context of conducting experiments. Here are a few examples.

Example 11.1: Two-Factor Studies

Enrichment of soils by nutrients such as phosphorus can lead to invasion by exotic weeds that
spread quickly (because they have few predators, competitors, parasites, and diseases) and then
replace native species that have important ecological functions.

To investigate the role that topography and soil type play in soil phosphorus levels, a study was
carried out in three national parks outside of Sydney, Australia [3]. Two soil types, shale-derived
and sandstone-derived, were examined in each of four topographies, valleys, north-facing slopes,
south-facing slopes, and hilltops. In each of the eight combinations of soil type and topography,
three 250 m2 quadrats were selected. From each quadrat, five soil cores were collected from ran-
domly selected locations, then composited (combined), and the phosphorus (ppm) was determined
for each of the 24 composited specimens.

The phosphorus concentrations are shown in the two-way layout below, where the the two factors,
soil type, which has two levels, and topography, which has four levels, are represented by the margins
of the table.

Factor B: Topography

North- South-
Valley Facing Facing Hilltop
(j=1) (j=2) (j=3) (j=4)

Shale 98 78 117 83
Factor (i=1) 172 77 54 12 Ȳ1· = 90.5
A: Soil 185 100 96 14
Type Sand- 19 27 28 55

stone 39 49 53 21 Ȳ2· = 35.9
(i=2) 25 24 72 19

Ȳ·1 = 89.7 Ȳ·2 = 59.2 Ȳ·3 = 70.0 Ȳ·4 = 34.0 Ȳ = 63.2

There were three research questions:

1. Is there a significant difference between phosphorus concentrations for the two soils types?

2. Are there significant differences in phosphorus concentrations among the four topographies?

3. Does the effect of soil type (if any) on phosphorus concentrations differ depending on the
topography?

These three research questions refer to a soil type main effect, a topography main effect, and
the effect of an interaction between soil type and topography, respectively.

A bar plot, side-by-side boxplots, and a three-dimensional individual value plot of the data are
shown below.
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Figure 11.1: Bar plot (left) and boxplots (right) of phosphorus concentrations for two soil types and
four topographies.
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Figure 11.2: Three dimensional individual value plot of phosphorus concentrations for two soil types
and four topographies. Sample means are depicted as blue asterisks.

Example 11.2: Two-Factor Studies

In quality assurance studies at wastewater treatment laboratories, a quality assurance engineer will
often ”spike” water specimens by adding a known concentration of an analyte before the specimen is
processed. The goal is to determine whether any inaccuracy, or bias, exists in the analysis methods.
The response variable is the percent recovery, defined as

Percent Recovery =
Measured− Background

Spike Amount
· 100% ,

where

Measured = The measured concentration in the spiked specimen (mg/L)
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Background = The measured concentration in the unspiked specimen (mg/L)
Spike Amount = The concentration of spike added to the specimen (mg/L)

In one study, lab technicians analyzed spiked samples for two types of water, wastewater effluent and
tap water, and three different pH levels, 6.0, 7.0 and 8.0 [1]. For each pH level, three specimens of
each type of water were spiked with ammonia (as NH3−N), and the percent recovery was determined
for each specimen. The table below shows the data.

Factor B: pH

pH=6.0 pH=7.0 pH=8.0
(j=1) (j=2) (j=3)

Effluent 100 98 102
Factor A: (i=1) 88 99 101 Ȳ1· = 98.6
Water 101 99 99
Type Tap 98 95 95

Water 96 95 98 Ȳ2· = 96.0
(i=2) 96 97 94

Ȳ·1 = 96.5 Ȳ·2 = 97.2 Ȳ·3 = 98.2 Ȳ = 97.3

The questions to be addressed by the quality assurance were:

1. Is there a significant difference between the percent recoveries for the two types of water?

2. Are there significant differences in the percent recoveries among the three pH levels?

3. Does the effect of pH (if any) on percent recovery differ depending on the type of water being
analyzed?

These three questions refer to a water type main effect, a pH main effect, and the effect of an
interaction between water type and pH, respectively.

In this chapter we’ll look at two hypothesis test procedures for data involving two factors:

1. The two-factor analysis of variance (ANOVA) F tests.

2. The Friedman test.

Both tests are applicable to observational studies (as in Example 11.1) and experiments (as in Example
11.2). The first is parametric, assuming normality of the response variable, and is used to test for the
so-called main effects of the two factors and their interaction effect. The second test is nonparametric,
making no normality assumption about the response variable, but its use is restricted to data with only
one observation per combination of the levels of the two factors, and when applied to experiments is only
applicable when a so-called randomized block design was used.

11.2 Two-Factor Analysis of Variance

11.2.1 Introduction

We’ll call the factors in a two-factor study factor A and factor B, and we’ll denote the number of levels
of factor A by a and the number of levels of factor B by b. We can think of the factors as two explanatory
variables in the study, both of which are categorical.
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In the context of sampling from populations, the two factors are used to define the populations, and
each combination of a factor A level with a factor B level defines a population from which a sample is
drawn.

In a randomized experiment, both factors are manipulated by the experimenter, and each combination
of a factor A level with a factor B level is one set of experimental conditions to which individuals may be
randomly assigned.

When the data are organized in a two-way table as in Examples 11.1 and 11.2, with rows representing
levels of factor A and columns levels of factor B, each of the ab row-column intersections is called cell
of the table. Each cell corresponds to a population, and the individual observations within the cell are
the sample, which we’ll refer to as a group. In a two-factor experiment, each cell corresponds to a set of
experimental conditions, or treatment, and the individuals within that cell form the treatment group.

Two-factor analysis of variance (or ANOVA) is a procedure for deciding if either of the factors
affects the response variable. We refer to the effect of factor A as the factor A main effect and the effect
of factor B as the factor B main effect. Later, starting with Section 11.2.7, we’ll see that two-factor
ANOVA can also be used to decide whether the effect of one factor is different depending on the level of
the other one. If it is, we say there’s an interaction between the effects of the two factors.

11.2.2 Notation

Suppose that we have independent random samples from ab populations defined by the levels of two factors
in a in a two-way table like the ones in Examples 11.1 and 11.2, where rows represent levels of factor A
and columns levels of factor B. The group sample sizes sizes don’t necessarily all have to be the same.

Note: Although two-factor ANOVA can be carried out when the sample sizes or group sizes are unequal,
we’ll only examine details of two-factor ANOVA for the case in which they’re equal. Thus, for the remainder
of this chapter, we’ll let

n = The common sample size for the ab groups,

with the understanding that in practice they don’t necessarily all have to have the same size.

As was done in Examples 11.1 and 11.2, it’s useful to organize the data in a two-way table having the
form shown below.
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Factor B

Level j = 1 Level j = 2 · · · Level j = b

Level i = 1

Y111

Y112

...

Y11n

 Ȳ11

Y121

Y122

...

Y12n

 Ȳ12 · · ·

Y1b1

Y1b2

...

Y1bn

 Ȳ1b Ȳ1·

Factor

A

Level i = 2

Y211

Y212

...

Y21n

 Ȳ21

Y221

Y222

...

Y22n

 Ȳ22 · · ·

Y2b1

Y2b2

...

Y2bn

 Ȳ2b Ȳ2·

...
...

... . . .
...

...

Level i = a

Ya11

Ya12

...

Ya1n

 Ȳa1

Ya21

Ya22

...

Ya2n

 Ȳa2 · · ·

Yab1

Yab2
...

Yabn

 Ȳab Ȳa·

Ȳ·1 Ȳ·2 · · · Ȳ·b Ȳ

As seen in the table, we use the notation

Yijk = The kth observation at the ith level of factor A and jth level of factor B.

The first subscript, i, indicates the row (factor A level) and takes the values 1, 2, . . . , a. The second, j,
indicates the column (factor B level) and takes the values 1, 2, . . . , b. The third subscript, k, distinguishes
among individuals within a group, and takes the values 1, 2, . . . , n.

In the margins of the table are the following means.

Ȳi· = The sample mean of the observations made at the ith level of factor A,
called the ith row mean or ith factor A level mean.

Ȳ·j = The sample mean of the observations made at the jth level of factor B,
called the jth column mean or jth factor B level mean.

The ”dot” in a subscript indicates that we’re averaging over the levels of that factor. For example, for the
ith factor A level mean Ȳi·, the ”dot” indicates that we’re averaging over the levels of factor B, or columns
in the table. Likewise, for the jth factor B level mean Ȳ·j , the ”dot” indicates that we’re averaging over
the levels of factor A, or rows in the table.

Another set of means, shown in the cells of the table above, are defined by the following.

Ȳij = The sample mean of the n observations at the ith level of factor A and
jth level of factor B, called the sample group mean.

We’ll also let
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N = The overall sample size, or total number of observations in all ab
groups combined.

Since there are ab groups, each of which has n observations,

N = abn.

Lastly, we’ll let

Ȳ = The overall sample mean, that is, the mean of all N observations in
the ab groups combined.

The next fact says that the overall mean can be obtained by averaging row means, column means,
group means.

Fact 11.1 When the group sample sizes are all the same, the overall mean Ȳ is equal to all of the
following:

1. The average of the a row means Ȳ1·, Ȳ2·, . . . , Ȳa· .

2. The average of the b column means Ȳ·1, Ȳ·2, . . . , Ȳ·b .

3. The average of all ab group means Ȳij .

Example 11.3: Two-Factor ANOVA Means

For the study of phosphorus in two soil types and four topographies (Example 11.1), the common
sample size per group and overall sample size are

n = 3 and N = 24,

and the overall mean is obtained by averaging either the 24 phosphorus observations, the eight group
means (given in Example 11.6), the two row means (from Example 11.1), as below,

Ȳ =
1

2
(Ȳ1· + Ȳ2·) =

1

2
(90.5 + 35.9) = 63.2,

or the four column means (also from Example 11.1), as below.

Ȳ =
1

4
(Ȳ·1 + Ȳ·2 + Ȳ·3 + Ȳ·4) =

1

4
(89.7 + 59.2 + 70.0 + 34.0) = 63.2 .

11.2.3 Variation Between Rows, Between Columns, and Within Groups

The two row means given in Example 11.1 aren’t equal, so there’s evidence that soil type affects phosphorus
concentrations. But we wouldn’t expect them to be equal, even if soil type had no effect, because naturally
occurring spatial variation in phosphorus leads to random sampling error. Likewise, there’s evidence for a
topography effect because the four column means aren’t equal, but we wouldn’t expect them to be equal
either, even in the absence of a topography effect, for the same reason. So in order to decide if either factor
has an effect, we’ll need to be able to tell if the differences among row or column means are larger than
can be explained by chance variation (sampling error).

We can visually inspect for factor A or factor B main effects by graphing the row or column means in
a so-called main effects plot (or level means plot), as in the next example.
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Example 11.4: Main Effects Plots

For the study of phosphorus in two soil types and four topographies, the main effects plots, using
the row means Ȳ1· = 90.5 and Ȳ2· = 35.9 and the column means Ȳ·1 = 89.7, Ȳ·2 = 59.2, Ȳ·3 = 70.0,
and Ȳ·4 = 34.0 from Example 11.1, are shown below.
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Figure 11.3: Plots of the main effects of soil type (left) and topography (right) on phosphorus
concentrations.

The left plot shows that shale-based soil has a higher mean phosphorus concentration than sandstone-
based soil. The right one shows that the phosphorus is highest in the valley and lowest on the hilltop.

The variation among row means is called between-rows variation (or factor A variation), and
the variation among column means is called between-columns variation (or factor B variation). To
decide if the between-rows or between-columns variation is more than can be explained by chance alone,
measures of these types of variation will be compared to a measure of the variation that’s due purely to
random fluctuations in the response variable, called within-groups variation.

11.2.4 Two-Factor ANOVA Model (Group Means Version)

We’ll describe data from a two-factor study using a statistical model with nonrandom parts representing
the between-rows and between columns variation in the data, that is, variation due to factor A and B
main effects, and random part representing variation of individual observations within groups. The model
will be consistent with the assumption that the observations in each group are a random sample from a
normal population. The table below is a schematic of the normality assumption and depicts some of the
notation we’ll use for the model.
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Factor B

Level j = 1 Level j = 2 · · · Level j = b

Level

i = 1

Y111

Y112

...

Y11n

 ∼ N(µ11, σ)

Y121

Y122

...

Y12n

 ∼ N(µ12, σ) · · ·

Y1b1

Y1b2

...

Y1bn

 ∼ N(µ1b, σ) µ1·

Factor

A

Level

i = 2

Y211

Y212

...

Y21n

 ∼ N(µ21, σ)

Y221

Y222

...

Y22n

 ∼ N(µ22, σ) · · ·

Y2b1

Y2b2

...

Y2bn

 ∼ N(µ2b, σ) µ2·

...
...

... . . .
...

...

Level

i = a

Ya11

Ya12

...

Ya1n

 ∼ N(µa1, σ)

Ya21

Ya22

...

Ya2n

 ∼ N(µa2, σ) · · ·

Yab1

Yab2
...

Yabn

 ∼ N(µab, σ) µa·

µ·1 µ·2 · · · µ·b µ

Note that the population means µij depend on the level i of factor A and the level j of factor B, but
population standard deviations are the same, σ, regardless of the levels of the two factors. We call µij the
group true mean.

The assumption that the observations in each group are a random sample from a normal population
can be stated much more succinctly by saying that for each i and j, within the i, jth group,

Yijk ∼ N(µij , σ),

with k taking the values 1, 2, . . . , n, and the observations Yijk are collected independently of each other.
Another way to state the assumption that the observations in each group are a random sample from a

normal population is via the group means version of the two-factor ANOVA model.

Two-Factor ANOVA Model (Group Means Version): A statistical model for describing data
in random samples in a two-factor study (or randomized groups in a two-factor experiment) is:

Yijk = µij + εijk , (11.1)

where

Yijk is the kth observation (k = 1, 2, . . . , n) at the ith level of factor A (i = 1,
2, . . . , a) and jth level of factor B (j = 1, 2, . . . , b).

µij is the mean of the population corresponding to the ith level of factor A
and jth level of factor B (or the true mean response to the i, jth treat-
ment) and is called the i, jth true group mean.

εijk is a random error term following a N(0, σ) distribution, and the εijk’s are
independent of each other.
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The unknown model parameters are the group means µ11, µ12, . . . , µab, and the standard deviation σ. In
practice, these will need to be estimated from the data. We’ll see how to estimate them in Section 11.2.8.

11.2.5 Additive Effects Two-Factor ANOVA Model

In the group means version of the ANOVA model, the group means µij may differ with the levels of the
two factors i and j, so effects of the factors are modeled via differences among the group means. If neither
factor had an effect, the group means would all be equal.

Thus we could consider the ab groups as levels of a single factor and carry out a one-factor ANOVA F
test of

H0 : µ11 = µ12 = · · · = µab

Ha : Not all µij ’s are equal,

But by doing it this way, even if we rejected the null hypothesis, we couldn’t tell from that result alone
which factor has an effect, only that at least one of them does.

Thus the group means version of the two-factor ANOVA model turns out to not be very useful. Instead,
we’ll use a version of the model that allows us to test separately for effects of the two factors. The model
will have the form

Y = Overall Mean + Factor A Effect + Factor B Effect + Error

The model is called the additive effects two-factor ANOVA model, and is defined more formally
below. Later, in Section 11.2.7, we’ll look at another version of the model for which the effects aren’t
additive.

Additive Effects Two-Factor ANOVA Model: Another statistical model for describing data
in random samples in a two-factor study (or randomized groups in a two-factor experiment) is:

Yijk = µ + αi + βj︸ ︷︷ ︸
This is µij

+ εijk , (11.2)

where

Yijk is the kth observation (k = 1, 2, . . . , n) at the ith level of factor A (i = 1,
2, . . . , a) and jth level of factor B (j = 1, 2, . . . , b).

µ is a constant called the overall true mean.
αi is the effect of the ith level of factor A.
βj is the effect of the jth level of factor B.
εijk is a random error term following a N(0, σ) distribution, and the εijk’s

are independent of each other.

In this model, the (unknown) model parameters are µ, α1, α2, . . . , αa, β1, β2, . . . , βa, and σ. In practice,
their values will have to be estimated from the data. Their formal definitions will be given along with their
estimators in Section 11.2.8.

The additive effects model re-expresses each group mean µij in the group means version as an overall
mean plus an effect of factor A plus an effect of factor B:

µij = µ + αi + βj .

This is the nonrandom part of the model, the random part being the error term. In practice, we’re usually
most interested the effects of factors A and B and generally not too interested in the overall mean µ. Later,
we’ll see how to carry out separate hypothesis tests for the effects of the two factors.
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Example 11.5: Additive Two-Factor ANOVA Model

For the soil phosphorus study (Example 11.1), the additive effects two-factor ANOVA model for
describing a phosphorus concentration Y is of the form

Y = Overall Mean + Soil Type Effect + Topography Effect + Error

In order for the additive effects model to accurately describe the variation a set of two-factor data, the
effects of the two factors should truly be additive. We’ll see what this means in the next section, and we’ll
also see how to check whether it’s the case. In Section 11.2.7, we’ll look at a different model that doesn’t
require the additivity assumption and which should be used if we have any doubt as to whether or not the
effects of the two factors are additive.

11.2.6 Checking for Additivity of Effects

In order for the additive effects two-factor ANOVA model to accurately describe a set of two-factor data,
the effects of the two factors should be additive. We say that the effects of factors A and B are additive
if the effect of factor A is the same regardless of the level of factor B, and the effect of factor B is the
same regardless of the level of factor A. For the soil phosphorus study, this would mean that the difference
in phosphorus concentrations for the two soil types is the same regardless of whether it’s on a hilltop,
in a valley, or on a north- or south-facing slope, and the differences among concentrations for the four
topographies are the same regardless of whether they’re in shale- or sandstone-based soil.

When the effects of two factors aren’t additive, we say that there’s an interaction effect between them.
An interaction effect is present when the effect of each factor is different depending on the level of the
other factor.

To check for an interaction effect, we use a graph called an interaction plot, which shows the group
means (y axis) versus the levels of one of the factors (x axis), and connecting lines distinguishing levels
of the other factor. As it turns out, there is an interaction effect between soil type and topography on
phosphorus, as the interaction plot in the next example illustrates, and the hypothesis test in Example
11.11 will confirm.

Example 11.6: Interaction Plots

The eight group means for the soil phosphorus study (Examples 11.1 and 11.4) are shown in the
main body of the table below.

Factor B: Topography

North- South-
Valley Facing Facing Hilltop
(j=1) (j=2) (j=3) (j=4)

Shale
Factor (i=1) Ȳ11 = 151.7 Ȳ12 = 85.0 Ȳ13 = 89.0 Ȳ14 = 36.3 Ȳ1· = 90.5
A: Soil
Type Sand-

stone Ȳ21 = 27.7 Ȳ22 = 33.3 Ȳ23 = 51.0 Ȳ24 = 31.7 Ȳ2· = 35.9
(i=2)

Ȳ·1 = 89.7 Ȳ·2 = 59.2 Ȳ·3 = 70.0 Ȳ·4 = 34.0 Ȳ = 63.2

These means are graphed in interaction plots below.
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Figure 11.4: Interaction plots showing the effects of soil type on phosphorus for different topographies
(left) and the effects of topography on phosphorus for different soil types (right).

In the left plot, each line connects the group means for the two soil types in a given topography.
Because the lines aren’t parallel, the effect of soil type appears to be different depending on the
topography, that is, the effects of the two factors appear to be non-additive.

In the right plot, each line connects the group means for the four topographies in a given soil type.
The lines aren’t parallel, and it appears that the effect of topography is more pronounced in shale-
based soil than in sandstone-based soil. This indicates (again) that the effects of the two factors are
aren’t additive.

The last example showed how to use interaction plots to check whether the effects of two factors are
additive:

• If the lines in an interaction plot are (approximately) parallel, it suggests that the effects of the two
factors are additive.

• If the lines are very non-parallel, it suggests that the effects are not additive, in other words, that
there’s an interaction effect between the two factors.

Here’s an example in which the effects are additive.

Example 11.7: Interaction Plots

Consider the following (hypothetical) true group means.

Factor B

Level j = 1 Level j = 2 Level j = 3
Factor Level i = 1 µ11 = 7.2 µ12 = 7.8 µ13 = 9.6

A
Level i = 2 µ21 = 9.6 µ22 = 10.2 µ23 = 12.0
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These group means µij were generated from

µij = µ+ αi + βj ,

with µ = 9.4, α1 = −1.2, α2 = 1.2, β1 = −1.0, β2 = −0.4, and β3 = 1.4, so they’re consistent with
an additive effects model. Their interaction plots are below.
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Figure 11.5: Interaction plots when the effects of factors A and B are additive.

In the left plot the ”trend” is the same for both lines, showing that the effect of factor B is the same
regardless of the level of factor A. In the right plot the slopes of the lines are the same, which shows
that factor B has the same effect regardless of the level of factor A.

Before turning to a model for non-additive factor effects, a few comments about the practical use of
interaction plots are worth mentioning. First, for a given set of data, we’d only need to look at one of
the interaction plots, not both, because it turns out that they’ll always be in agreement regarding whether
they suggest the effects are additive or not. Second, for real data the lines, in the plot will almost never
be exactly parallel, even when the effects are additive, because of sampling error in the values of the group
means. Later we’ll see how to perform an F test to decide if an observed interaction effect is more than
can be explained by chance variation.

11.2.7 Two-Factor ANOVA Model With Interaction Effect

When we suspect that there may be an interaction effect between two factors, the additive model won’t
adequately describe the data. Instead, we’ll need to include in the model a term that represents the
interaction effect that may be present.

Example 11.8: Two-Factor ANOVA Model With Interaction

Because the interaction plots of Example 11.5 suggest that the effects of soil type and topography
aren’t additive, we’ll model a phosphorus concentration Y using a model having the form

Y = Overall Mean + Soil Type Effect + Topography Effect + Interaction Effect + Error

The model we’ll use when the effects of two factors aren’t additive is the two-factor ANOVA model
with interaction effect.
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Two-Factor ANOVA Model With Interaction Effect: Another statistical model for describing
data in random samples in a two-factor study (or randomized groups in a two-factor experiment) is:

Yijk = µ+ αi + βj + (αβ)ij︸ ︷︷ ︸
This is µij

+εijk , (11.3)

where

Yijk is the kth observation (k = 1, 2, . . . , n) at the ith level of factor A (i = 1,
2, . . . , a) and jth level of factor B (j = 1, 2, . . . , b).

µ is a constant called the overall true mean.
αi is the effect of the ith level of factor A.
βj is the effect of the jth level of factor B.
(αβ)ij is called the interaction effect and represents the combined effect

of the ith level of factor A and jth level of factor B above and beyond
their additive effects.

εijk is a random error term following a N(0, σ) distribution, and the εijk’s
are independent of each other.

In this model, the (unknown) model parameters are µ, α1, α2, . . . , αa, β1, β2, . . . , βa, and now the ab
interaction terms (αβ)11, (αβ)12, . . . , (αβ)ab, and σ. In practice, their values will have to be estimated
from the data. Their formal definitions and their estimators will be given in Section 11.2.8.

The model with interaction effect modifies the additive effects version of the model by adding on a
so-called interaction effect (αβ)ij when re-expressing each group mean µij in terms of the effects of the
two factors,

µij = µ + αi + βj + (αβ)ij .

This is the nonrandom part of the model. The random part is the error term. Later, we’ll see how to carry
out separate hypothesis tests for the main effects and the interaction effect of the two factors.

The interaction effect can take a different for each of the ab groups. Writing it as

(αβ)ij = µij − (µ+ αi + βj)

shows that it’s the amount by which the true mean response in the i, jth group is heightened above and
beyond the additive effects of the ith level of factor A and jth of factor B.

If the ab interaction effects (αβ)11, (αβ)12, . . . , (αβ)ab are all equal to zero, the interaction model reduces
to the additive effects version. In other word, the additive effects version is a special case of the interaction
effects model (for which the interaction effects are all zero). This means that the interaction effects model
is more widely applicable – it can be used regardless of whether or not the effects are additive – so it’s
generally preferred over the additive model for describing data from two-factor studies.

For this reason, the remainder of this chapter is focused mainly on the interaction effect model. We’ll
see later how to test the hypothesis that the interaction effects are all zero.

11.2.8 Model Parameter Estimates, Fitted Values, and Residuals

Because the two-factor ANOVA model with the interaction term can be used to describe data regardless of
whether or not the effects of the factors are additive, we’ll focus on that model. Thus from this point on,
unless otherwise stated, all computational formulas and hypothesis test procedures given in this section
are pertinent to the interaction effects version of the model, but not necessarily to the additive model.
Computations and test procedures for the additive model, though, are similar.
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Model Parameters and Their Estimators

As mentioned in Chapter 10, when a statistical model accurately reflects the true underlying process that
generated a set of data, then estimates of the (unknown) model parameters will inform us about that
process. For the two-factor ANOVA model, in order to be able to estimate the parameters, we’ll need
precise definitions of what they are.

We define

µi· = The average of the group means µij at the ith level of factor A, called
the ith true row mean or ith true factor A level mean.

µ·j = The average of the group means µij at the jth level of factor B, called
the jth true column mean or jth true factor B level mean.

We also define

µ = The average of all ab group means µij , called the overall true mean.

These true means are shown in the margins of the table in Subsection 11.2.4.
The definitions of the parameters αi, βj , and (αβ)ij are given below, along with their estimators based

on the data and an alternative notational form for the estimators that will be useful later.

Model Parameter Estimators
Alternate

Notation for
Model Parameter Estimator the Estimator

µij Ȳij µ̂ij
µ Ȳ µ̂
αi = µi· − µ Ȳi· − Ȳ α̂i
βj = µ·j − µ Ȳ·j − Ȳ β̂j
(αβ)ij = µij − (µ+ αi + βj) Ȳij − Ȳi· − Ȳ·j + Ȳ ˆ(αβ)ij = µ̂ij − (µ̂+ α̂i + β̂j)

Estimation of the parameter σ, the standard deviation of the N(0, σ) error distribution, will be covered in
Subsection 11.2.13.

Comment: Formally, the true row, column, and overall means given above are defined by

µi· =

∑b
j=1 µij

b
, µ·j =

∑a
i=1 µij
a

, and µ =

∑a
i=1

∑b
j=1 µij

ab
.

Fitted Values

Once the parameters of the two-factor ANOVA model have been estimated, we say that the model has
been fitted to the data.

For each of the n individuals in a given group, we define the individual’s fitted value (or predicted
value) to be the estimate of µ+ αi + βj + (αβ)ij .
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Fitted Values (Two-Factor ANOVA Model With Interaction Effect):

Fitted Values for

Individuals in i, jth Group = µ̂+ α̂i + β̂j + ˆ(αβ)ij

= Ȳ + (Ȳi· − Ȳ ) + (Ȳ·j − Ȳ ) + (Ȳij − Ȳi· − Ȳ·j + Ȳ )

= Ȳij

Note that the fitted values are just the group means Ȳ11, Ȳ12, . . . , Ȳab. For the study of phosphorus in soil,
the fitted values are the blue asterisks in the three-dimensional individual value plot in Fig. 11.2.

Residuals

The fitted values provide estimates of the nonrandom ”overall pattern” part of the two-factor ANOVA
model. We’ll also be interested in evaluating the random ”deviations” away from that pattern corresponding
to the error term ε in the model.

The residual associated with the kth individual in the i, jth group, denoted eijk, is the deviation of
that individual’s observed response away from its fitted value.

Residuals (Two-Factor ANOVA Model With Interaction Effect):

eijk = Yijk − (µ̂+ α̂i + β̂j + ˆ(αβ)ij)

= Yijk − Ȳij . (11.4)

Thus a residual is just a deviation of an observation Yijk away from its corresponding group mean Ȳij . In
Fig. 11.2, the residuals are the vertical gaps between the points and the asterisks, and they correspond to
random experimental error in the phosphorus measurements.

Note: Rearranging (11.4), we can write an observation Yijk as

Yijk = µ̂+ α̂i + β̂j + ˆ(αβ)ij + eijk ,

which has the form
Observed Value = Fitted Value + Residual.

Comparing this to the interaction two-factor ANOVA model (11.3) makes it clear that the residual eijk
approximates the random error term εijk. In Section 11.2.13, we’ll use the residuals to estimate the standard
deviation σ of the N(0, σ) error distribution, and in Section 11.2.20 we’ll use them to check the normality
assumption.

Because residuals are deviations away from group means, they sum to zero within each group.

Fact 11.2 In a two-factor study, for each i = 1, 2, . . . , a and j = 1, 2, . . . , b, the residuals within the
i, jth group sum to zero, that is,

n∑
k=1

eijk = 0

for each fixed i and j.
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11.2.9 The Triple Summation Notation

The triple summation notation is a convenient way to express a sum that’s carried out over all rows (the
leftmost

∑
), columns (the middle

∑
), and individuals within groups (rightmost

∑
). As shown below, the

operation can be carried out by first summing within each of the ab groups, calling the results Tij , and
then summing those group totals over all rows and columns.

a∑
i=1

b∑
j=1

n∑
k=1

Yijk =

a∑
i=1

b∑
j=1

(
n∑
k=1

Yijk

)
=

a∑
i=1

b∑
j=1

Tij

11.2.10 Sums of Squares

Introduction

To decide if there’s a statistically significant main effect of factor A, we’ll compare the between-rows
variation among the row means to the within-groups variation among individual observations within groups,
and to decide if there’s a statistically significant factor B main effect, we’ll compare the between-columns
variation to the within-groups variation. In this section, we’ll look at sums of squares that measure these
types of variation. We’ll also look at a sum of squares that will be used to test for an interaction effect.

Between-Rows Variation

Between-rows variation refers to variation in the row means Ȳ1·, Ȳ2·, . . . , Ȳa·. In two-factor ANOVA, we
measure this variation using the factor A sum of squares, denoted SSA and defined as follows (where
we invoke the alternate notation for the model parameter estimators given in Section 11.2.8).

Factor A Sum of Squares:

SSA = nb
a∑
i=1

(Ȳi· − Ȳ )2 = nb
a∑
i=1

α̂2
i .

The nb in front serves a purpose similar to that of the n in front of the treatment sum of squares in
one-factor ANOVA – it helps make the between-rows variation comparable to the within-groups variation
(see Section 10.2.11 of Chapter 10). The larger the differences are among the row means, the larger SSA
will be, and it’s in this sense that measures between-rows variation.

Between-Columns Variation

Between-columns variation refers to variation in the column means Ȳ·1, Ȳ·2, . . . , Ȳ·b. We measure of this
variation using the factor B sum of squares, denoted SSB and defined as follows.

Factor B Sum of Squares:

SSB = na

b∑
j=1

(Ȳ·j − Ȳ )2 = na

b∑
j=1

β̂2
j .

The larger the differences are among the column means, the larger SSB will be, and it’s in this sense that
measures between-columns variation.
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Nonadditive Between-Groups Variation

Nonadditive between-groups variation refers to variation among the group means Ȳ11, Ȳ12, . . . , Ȳab above
and beyond the variation that can be explained by the addititve effects of the two factors. We measure this
variations by the AB interaction sum of squares, denoted SSAB and defined by the following.

AB Interaction Sum of Squares:

SSAB = n

a∑
i=1

b∑
j=1

(Ȳij − Ȳi· − Ȳ·j + Ȳ )2 = n

a∑
i=1

b∑
j=1

ˆ(αβ)
2

ij .

This sum of squares will be large when the group means aren’t consistent with an additive model, which
will be the case when the there’s an interaction effect. Thus a large SSAB is an indication of an interaction
effect.

Within-Groups Variation

Finally, the within-groups variation refers to variation of individual observations away from their corre-
sponding group means or, put another way, variation in the residuals. This variation is measured by
the error sum of squares, also called the residual sum of squares, denoted SSE and given by the
following.

Error Sum of Squares:

SSE =
a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Ȳij)2 =
a∑
i=1

b∑
j=1

n∑
k=1

e2
ijk .

The triple summation is needed because we’re summing squared residuals for all N individuals, that is,
for all n individuals (k = 1, 2, . . . , n) in every combination of the a rows (i = 1, 2, . . . , a) and b columns
(j = 1, 2, . . . , b). The larger the residuals are, the larger SSE will be, and so SSE measures variation among
individual observations within-groups due purely to random experimental error.

11.2.11 The Two-Factor ANOVA Partition of the Variation in the Data

Total Variation

In a two-factor study, we can think of variation in the data as arising either from one of the nonrandom
effects of the two factors or from random experimental error due to heterogeneity among individuals in
the samples and measurement error. The factor A effect (if any) contributes to between-rows variation,
the factor B effect to between-columns variation, the interaction effect to nonadditive between-groups
variation, and the random experimental error to within-groups variation (but it contributes to the other
types of variation too).

We’ll see shortly that if we were to combine the observations from all ab samples into one big sample,
all of the variation in the data can be attributed either to the effects of the factors or to the random error.

The total variation in the data is measured by squaring the deviations of individual observations Yijk
away from the overall mean Ȳ and summing them, giving the total sum of squares, denoted SSTo, as
follows.
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Total Sum of Squares:

SSTo =

a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Ȳ )2 .

Because SSTo measures total variation in the data, it will be large if either the row, column, or group means
differ substantially from each other or the observations within each group vary substantially. Therefore,
SSTo reflects between-rows, between columns, nonadditive between-groups, and within-groups variation.

Partition of the Total Variation

The dissecting of the total variation in the data into parts attributable to effects of the factors and random
error, described at the beginning of this section, is called the two-factor ANOVA partition of the total
variation, and is stated formally in the following fact.

Fact 11.3 The sums of squares defined above satisfy the following relation.

SSTo = SSA + SSB + SSAB + SSE. (11.5)

This decomposes the variation in the data as:

Total Variation = Between-Rows Variation + Between-Columns Variation

+ Nonadditive Between-Groups Variation + Within-Groups Variation

A mathematical verification of the two-factor ANOVA partition is given in Subsection 11.2.21.

Example 11.9: Sums of Squares and the ANOVA Partition

For the data from the soil phosphorus study (Example 11.1), statistical software reports the following
sums of squares.

SSTo = 51406.0 (Total variation)
SSA = 17876.0 (Variation due to soil type)
SSB = 9693.8 (Variation due to topography)

SSAB = 11390.8 (Variation due to soil type, topography interaction)
SSE = 12445.3 (Variation due to random error)

We see that the two-factor ANOVA partition holds since

51406.0 = 17876.0 + 9693.8 + 11390.8 + 12445.3.

11.2.12 Degrees of Freedom

As for one-factor ANOVA, the degrees of freedom (or df) associated with a sum of squares is the number
of deviations, among those used to compute the sum of squares, that are ”free to vary.” The reason why
degrees of freedom are important is because later, when we carry out hypothesis tests for factor effects,
they’ll determine the F distributions from which p-values are obtained.

Here are the degrees of freedom associated with the sums of squares in two-factor ANOVA.
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Degrees of Freedom: For two-factor ANOVA, the degrees of freedom are:

df for SSTo = N − 1
df for SSA = a− 1
df for SSB = b− 1
df for SSAB = (a− 1)(b− 1)
df for SSE = ab(n− 1) = N − ab

An explanation for why these degrees of freedom correctly reflect the number of deviations that are ”free
to vary” will be given in Subsection 11.2.22.

As was the case for one-factor ANOVA, the degrees of freedom, like their corresponding sums of squares,
are additive in the following sense.

Fact 11.4 The degrees of freedom given above satisfy the following relation.

df for SSTo = df for SSA + df for SSB + df for SSAB + df for SSE. (11.6)

Example 11.10: Degrees of Freedom

Continuing from the previous soil phosphorus example, we have a = 2 soil types, b = 4 topographies,
and n = 3 phosphorus observations per group. Thus the total number of phosphorus observations
is N = 24, and we have

df for SSTo = 23

df for SSA = 1

df for SSB = 3

df for SSAB = 3

df for SSE = 16.

As expected, (11.6) holds because 23 = 1 + 3 + 3 + 16.

11.2.13 Mean Squares

Introduction

As for one-factor ANOVA, a mean square for two-factor ANOVA is defined as a sum of squares divided
by its degrees of freedom. The mean square for factor A, denoted MSA, mean square for factor
B, denoted MSB, mean square for an AB interaction, denoted MSAB, and mean squared error,
denoted MSE, are defined below.

Mean Squares: For two-factor ANOVA, the mean squares are

MSA = SSA
a−1 MSB = SSB

b−1

MSAB = SSAB
(a−1)(b−1) MSE = SSE

ab(n−1)
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MSA, MSB, MSAB, and MSE Under H0 and Ha

The factor A mean square MSA measures variation among the row means Ȳ1·, Ȳ2·, . . . , Ȳa·, which will vary
when there’s a factor A effect, but also to a lesser extent just due to random sampling error. Therefore, to
test for a factor A effect, we’ll need to distinguish between variation in Ȳi·’s that’s due purely to sampling
error and variation that’s due a factor A effect (in addition to sampling error). We’ll do this by comparing
the MSA to the MSE, which measures variation that’s due purely to random error. Likewise, to test for a
factor B effect and an AB interaction effect, we’ll compare the MSB and MSAB, respectively, to the MSE.

More formally, consider the following three sets of hypotheses, for which the null hypothesis in each
case says there’s no effect and the alternative says there’s an effect:

1. Concerning a factor A main effect:

HA
0 : µ1· = µ2· = · · · = µa· or HA

0 : α1 = α2 = · · · = αa = 0
HA
a : Not all µi·’s are equal HA

a : Not all αi’s equal 0

2. Concerning a factor B main effect:

HB
0 : µ·1 = µ·2 = · · · = µ·b or HB

0 : β1 = β2 = · · · = βb = 0
HB
a : Not all µ·j ’s are equal HB

a : Not all βi’s equal 0

3. Concerning an AB interaction effect:

HAB
0 : (αβ)11 = (αβ)12 = · · · = (αβ)ab = 0

HAB
a : Not all (αβ)ij ’s equal 0

The following facts will be used later to test these hypotheses.

Fact 11.5 Consider random samples from ab populations in a two-factor study. Suppose that
the two-factor ANOVA model (11.3) is appropriate and that the εijk’s are independent and
εijk ∼ N(0, σ).

Then the MSE is always an unbiased estimator of σ2 (regardless of which of the above hypotheses
are true). On the other hand,

1. • MSA is an unbiased estimator of σ2 when HA
0 is true.

• But MSA will tend to overestimate σ2 when HA
a is true.

2. • MSB is an unbiased estimator of σ2 when HB
0 is true.

• But MSB will tend to overestimate σ2 when HB
a is true.

3. • MSAB is an unbiased estimator of σ2 when HAB
0 is true.

• MSAB will tend to overestimate σ2 when HAB
a is true.

Estimating σ

Because the MSE estimates σ2, the common population variance, or equivalently, the variance of the
N(0, σ) distribution of the error term ε in the ANOVA model, regardless of whether or not either of the
factors has an effect, its square root estimates σ.
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Estimator of σ: For a two-factor study, the estimator of σ, denoted σ̂, is

σ̂ =
√

MSE.

11.2.14 Two-Factor ANOVA F Tests

Hypotheses and Test Statistics

For the three sets of hypotheses given in the previous section, here are the corresponding two-factor
ANOVA F test statistics.

Two-Factor ANOVA F Test Statistics:

1. For a factor A main effect:

Two-Factor ANOVA F Test Statistic for Factor A:

FA =
MSA

MSE

2. For a factor B main effect:

Two-Factor ANOVA F Test Statistic for Factor B:

FB =
MSB

MSE

3. For an AB interaction effect: Two-Factor ANOVA F Test Statistic for the AB
Interaction:

FAB =
MSAB

MSE

Properties of the F Test Statistics: The following will help us interpret the observed values of the F
test statistics.

1. • We can think of FA as

FA =
Between-Rows Variation

Within-Groups Variation

• If HA
0 was true, we’d expect FA ≈ 1 because MSA and MSE would both estimate σ2.

• But if HA
a was true, we’d expect FA > 1 because MSE would estimate σ2 (still) but MSA would

likely overestimate σ2.

2. • We can think of FB as

FB =
Between-Columns Variation

Within-Groups Variation

• If HB
0 was true, we’d expect FB ≈ 1 because MSB and MSE would both estimate σ2.

• But if HB
a was true, we’d expect FB > 1 because MSE would estimate σ2 (still) but MSB would

likely overestimate σ2.

3. • We can think of FAB as

FAB =
Nonadditive Between-Groups Variation

Within-Groups Variation
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• If HAB
0 was true, we’d expect FAB ≈ 1 because MSAB and MSE would both estimate σ2.

• But if HAB
a was true, we’d expect FAB > 1 because MSE would estimate σ2 (still) but MSAB

would likely overestimate σ2.

Therefore,

Large values of FA, FB, and FAB (larger than about 1) provide evidence in favor of HA
a , HB

a , or
HAB
a , respectively.

P-Values

To decide whether an observed value of FA, FB, or FAB provides statistically significant evidence in support
of the alternative hypothesis, we’ll need to know their sampling distributions under the null hypotheses.

Sampling Distributions of FA, FB, and FAB under HA
0 , HB

0 , and HAB
0 : Consider random

samples from ab populations in a two-factor study. Suppose that the two-factor ANOVA model
(11.3) is appropriate and that the εijk’s are independent and εijk ∼ N(0, σ). Then

1. When HA
0 is true (so there’s no factor A effect),

FA ∼ F (a− 1, ab(n− 1)).

2. When HB
0 is true (so there’s no factor B effect),

FB ∼ F (b− 1, ab(n− 1)).

3. When HAB
0 is true (so there’s no AB interaction effect),

FAB ∼ F ((a− 1)(b− 1), ab(n− 1)).

Because large values of the F statistics provide evidence against the null hypotheses, the rejection regions
for the ANOVA F tests are comprised of F values in the rightmost 100α% of the F distributions, and the
p-values are the tail probabilities to the right of the observed F values.

The Two-Factor ANOVA F Test Procedures

The two-factor ANOVA F test procedures are summarized in the table below.
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Two-Factor ANOVA F Tests

Assumptions: Data are random samples from ab populations corresponding to
combinations of the levels of two factors A and B (or they’re responses to treat-
ments in a randomized two-factor experiment), the two-factor ANOVA model (11.3)
is appropriate, the εijk’s are independent and either they follow a N(0, σ) distribu-
tion or the ab sample sizes n are all large.*

Null hypotheses:
1. HA

0 : α1 = α2 = . . . = αa = 0.
2. HB

0 : β1 = β2 = . . . = βb = 0.
3. HAB

0 : (αβ)11 = (αβ)12 = . . . = (αβ)ab = 0.

Test statistic values: FA = MSA
MSE , FB = MSB

MSE, FAB = MSAB
MSE .

Decision rule: Reject any H0 if corresponding p-value < α or F is in rejection
region.

Alternative
hypotheses P-value = area Rejection region = **

1. Ha : Not all αi’s equal 0. to the right of FA under FA values such that
F (a− 1, N − ab) FA ≥ Fα,a−1,N−ab
distribution

2. Ha : Not all βj ’s equal 0. to the right of FB under FB values such that
F (b− 1, N − ab) FB ≥ Fα,b−1,N−ab
distribution

3. Ha : Not all (αβ)ij ’s to the right of FAB under FAB values such that
equal 0. F ((a− 1)(b− 1), N − ab) FAB ≥ Fα,(a−1)(b−1),N−ab

distribution

* Two-factor ANOVA F tests can also be carried out (using statistical software)
when the ab sample sizes n11, n12, . . . , nab aren’t all the same. The sample sizes
are considered to be large if they’re all at least 15, unless the samples exhibit
strong skewness, in which case they should all be at least 40.

** Fα,m,n is the 100(1− α)th percentile of the F distribution with m and n d.f.

11.2.15 The ANOVA Table

The results of a two-factor analysis of variance (degrees of freedom, sums of squares, mean squares, observed
F test statistic values, and p-values) are usually summarized in a two-factor ANOVA table having the
form shown below.
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Source DF SS MS F P-value

Factor A a− 1 SSA MSA = SSA/(a− 1) F =MSA/MSE p
Factor B b− 1 SSB MSB = SSB/(b− 1) F =MSB/MSE p
Interaction (a− 1)(b− 1) SSAB MSAB = SSAB/((a− 1)(b− 1)) F =MSAB/MSE p
Error N − ab SSE MSE = SSE/(N − ab)
Total N − 1 SSTo

The table is arranged so that the first row (labeled ”Factor A”) pertains to between-rows variation, the
second row (”Factor B”) to between-columns variation, the third (”Interaction”) to nonadditive between-
groups variation, the fourth (”Error”) to within-groups variation, and the last (”Total”) to total variation.

11.2.16 Procedure for Reading the ANOVA Table

It’s important to use the following procedure when assessing significance of effects in a two-factor ANOVA.
First look at the test results for the AB interaction effect.

1. If the interaction is statistically significant, there’s no need proceed to the tests for main effects because
we already know, regardless of what those test results are, that both factors have effects (but each
factor’s effect differs according to the level of the other factor). Instead, examine the effects of factor
A separately for each level of factor B, or vice versa, for example by performing multiple comparison
tests on the group means as described in Section 11.5.

2. If the interaction isn’t statistically significant, proceed to the tests for main effects. If either main
effect is significant, perform multiple comparison tests on the level means for that factor, as described
in Section 11.5, to decide which levels of the factor differ from each other.

We’ll see later that an interaction effect can ”mask” the effects of the two factors, rendering the main
effect test results not statistically significant even though both factors have effects. Before looking at the
”masking” problem, though, here are a few examples illustrating the procedure for reading the ANOVA
table.

Example 11.11: Two-Factor ANOVA Table

For the soil phosphorus study (Example 11.1), the ANOVA table (obtained using software) is below.

Source DF SS MS F P-value

Soil Type 1 17876.0 17876.0 22.98 0.000
Topography Type 3 9693.8 3231.3 4.15 0.024
Interaction 3 11390.8 3796.9 4.88 0.013
Error 16 12445.3 777.8

Total 23 51406.0

We first look at the results of the F test for an interaction effect between soil type by topography.
The null hypothesis is that there’s no interaction effect, that is, that the effects of soil type and
topography and are additive. The observed test statistic value is F = 4.88 and the p-value, from
the right tail of the F (3, 16) distribution, is 0.013. Thus, using level of significance α = 0.05, the
interaction effect is statistically significant. In other words, the effects of topography and soil type
aren’t additive, meaning that the effect of soil type on phosphorus is different depending on the
topography (and the effect of topography is different depending on the soil type).

At this point there’s no need to proceed with the tests for main effects because we already know,
no matter what the results of those tests say, that both soil type and topography have effects, but
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their effects are different depending on the level of the other factor. Instead we should investigate
the effect of soil type separately for each topography (or the effect of topography separately for each
soil type).

Example 11.12: Two-Factor ANOVA Table

For the study of the effects of water type and pH on percent recovery of ammonia (Example 11.2),
the ANOVA table (obtained using software) is below.

Source DF SS MS F P-value

Water Type 1 29.4 29.4 2.84 0.118
PH Level 2 8.4 4.2 0.41 0.673
Interaction 2 21.8 10.9 1.05 0.379
Error 12 124.0 10.3

Total 17 183.6

The first step is to examine the results of the F test for an interaction effect between water type
and pH level. The null hypothesis is that there’s no interaction effect, that is, that the effects of
water type and pH are additive. The observed test statistic value is F = 1.05 and the p-value, from
the F (2, 12) distribution, is 0.379. Thus, using α = 0.05, we fail to reject the null hypothesis and
conclude that there’s no interaction effect between water type and pH. In other word, their effects
are additive.

Because there’s no interaction effect, it makes sense to proceed to the tests for main effects. For
the pH main effect, the null hypothesis says pH has no effect. The observed test statistic value is
F = 0.41 and the p-value, from the F (2, 12) distribution, is 0.673. Thus, using α = 0.05, we fail
to reject the null hypothesis and conclude that the pH level has no effect on the ammonia percent
recovery.

Finally, for the water type main effect, the null hypothesis says water type has no effect. The test
statistic value is F = 2.84 and the p-value, from the F (1, 12) distribution, is 0.118. Using α = 0.05,
we again fail to reject the null hypothesis and conclude that water type has no effect on the ammonia
percent recovery.

11.2.17 Main Effects Masked by an Interaction Effect

The next example shows how main effects can be ”masked” by an interaction effect when the effects of a
factor are discordant depending on the level of the other factor.

Example 11.13: Main Effects Masked by Interaction

On June 8, 2000 the oil tanker T/V Posavina was rammed and punctured by its own tug, spilling
59,000 gallons of oil into the Chelsea River, Chelsea, Massachusetts, oiling a substantial stretch of
shoreline. The response to the oil spill included restoration in fall, 2005 of a degraded 1.5-acre salt
marsh along Mill Creek, located on the upper reach of the Chelsea River. The marsh restoration
involved removal of roots and rhizomes of the invasive reed Phragmites australis.
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A before-after-control-impact study was carried out to examine the effectiveness of the restoration
project in decreasing Phragmites cover and increasing the cover of native plants. Heights of
Phragmites’ were measured in the Mill Creek marsh and an adjacent, unrestored control marsh on
September 1, 2005, just before the restoration of the Mill Creek marsh, and again in 2007, two
years after the restoration [2].

The table below shows, for three 1 m2 quadrats selected from each marsh before the restoration
and three selected from each marsh after the restoration, the mean height (cm) of the three tallest
Phragmites plants in the quadrat.

Period

Before After
64 179

Control 80 300 Ȳ1· = 201.8
Site 282 306

254 210
Mill Creek 300 154 Ȳ2· = 225.5

284 154

Ȳ·1 = 210.7 Ȳ·2 = 216.7

The goal is to decide if the heights of Phragmites decreased more at the restored Mill Creek site
than at the unrestored control site. A bar plot of the group means is below.
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The ANOVA table (obtained using software) is below.

Source DF SS MS F P-value

Period 1 108 108 0.020 0.8909
Site 1 1680 1680 0.312 0.5918
Interaction 1 38760 38760 7.195 0.0278
Error 8 43096 5387

Total 11 83644

The interaction effect is statistically significant, indicating that Phragmites heights decreased more
at the Mill Creek site than at the control site.
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Notice, though, that neither the period nor the site main effect is significant. It’s tempting to
conclude that neither of these factors has any effect, but because the interaction is significant, we
know that they both have effects, but the effect of each is different depending on the level of the other.

To see why neither main effect was statistically significant, we can look at the group means, row
means, and column means, shown in the table below, and at an interaction plot and the level means
plots, also below.

Period

Before After

Control Ȳ11 = Ȳ12 = Ȳ1· =
142.0 261.7 201.8

Site

Mill Ȳ21 = Ȳ22 = Ȳ2· =
Creek 279.3 171.7 225.5

Ȳ·1 = Ȳ·2 =
210.7 216.7
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During a given period, the means for the two sites are very different, but when averaged over the
two periods, the discordance in the effects of period for the two sites lead to site means that are so
close that the site main effect isn’t significant. We say that the effect of site is ”masked” by the
interaction. A similar phenomenon explains why the period effect is ”masked.”

11.2.18 One Observation Per Group

Introduction

Occasionally, we’re only able to make one observation at each combination of the levels of the factors in
a two-factor study, so the common sample size is n = 1. This might be the case, for example, when the
data collection process is prohibitively expensive or time consuming.
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Example 11.14: One Observation Per Group

Carbonyls are a group of chemical compounds that play an important role in atmospheric chemical
processes, including the production of smog and ozone.

Atmospheric carbonyls are measured by taking air samples through cartridges that trap the
carbonyls on adsorbent material coated with dinitrophenylhydrazine, where they’re converted to
hydrazone derivatives for later analysis using high performance liquid chromatography.

An experiment was carried out to investigate the potential bias associated with the cartridge-based
sampling method for measuring acetaldehyde, a member of the carbonyls group [7]. Two factors
suspected of influencing measurement bias were sampling volume and concentration level.

A supply of standard gas with known acetaldehyde concentration was purchased for use in the
experiment. Specimens of the standard were then prepared to four concentrations, using dilution
factors of 1000 (S1), 200 (S2), 100 (S3), and 50 (S4), and sampled at four total sampling volumes, 1,
2, 4, and 20 L. One gas specimen was analyzed under each of the 16 experimental conditions, giving
one observation per group. The response variable is the acetaldehyde recovery rate, defined as

Recovery Rate =
Measured Mass (µg)

Known True Mass (µg)
· 100%

The results of the experiment are below.

Sampling Volume

1 L 2 L 4 L 20 L
S1 78 67 78 63 Ȳ1· = 71

Concentration S2 78 73 77 76 Ȳ2· = 76
Level S3 80 81 80 82 Ȳ3· = 81

S4 107 106 106 106 Ȳ4· = 106

Ȳ·1 = 86 Ȳ·2 = 82 Ȳ·3 = 85 Ȳ·4 = 82

Two-Factor ANOVA with One Observation Per Group

When there’s only one observation per group in a two-factor study, it turns out that if the interaction term
is included in the model, we can’t carry out F tests for effects. Thus, if we’re willing to assume that the
effects of the two factors are additive, we use the additive model.

To see why we can’t test for main effects if we include the interaction in the model, note that each
group mean would equal the one observation in the group,

Ȳij = Yijk,

so the residuals would all equal zero,

eijk = Yijk − Ȳij
= Yijk − Yijk
= 0
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This would lead to both an error sum of squares SSE and a mean squared error MSE of zero. In other
words, all of the variation in the data would be explained by the nonrandom part of the model, which
would be said to saturate the variation. Because MSE is the denominator of the F test statistics, we’d
be unable to perform F tests for main effects or an interaction effect.

But if instead we fitted the additive model, the fitted values would be

Fitted Value = µ̂+ α̂i + β̂j

= Ȳ + (Ȳi· − Ȳ ) + (Ȳ·j − Ȳ )

= Ȳi· + Ȳ·j − Ȳ

and thus the residuals would be

eijk = Yijk − (µ̂+ α̂i + β̂j)

= Yijk − (Ȳi· + Ȳ·j − Ȳ ) .

These no longer would all equal zero, and so the F tests (for main effects) could be carried out.

Example 11.15: One Observation Per Group

For the experiment to investigate the bias associated with measuring acetaldehyde, the additive
model was fitted to the data using software, giving the ANOVA table below.

Source DF SS MS F P-value

Concentration Level 3 2916.9 972.3 63.01 0.000
Sampling Volume 3 50.9 17.0 1.10 0.398
Error 9 33.431 8.358

Total 15 3106.7

Because we fitted the additive model, there’s no interaction term in the ANOVA table. Based on
the results, we conclude, using α = 0.05, that sampling volume has no effect on the acetaldehyde
recovery rate, but concentration does have an effect.

11.2.19 Blocking: An Extension of Matched Pairs Study Designs

In Chapter 9, matched pairs study designs were used to ”filter out” from a data set unwanted variation
due to heterogeneity among individuals, such as sites or days, when testing for a difference between two
groups, such as ”before” versus ”after” or ”upstream” versus ”downstream.” In such studies, each pair
is an example of what’s called a block, or set of individuals that are homogeneous with respect to some
characteristic thought to be related to the response variable. The characteristic by which individuals are
matched is an example of a so-called blocking factor.

A block design is an extension of the matched pairs design in which more than two groups are
compared. In a block design, instead of each block consisting of a pair of individuals, it consists of one
individual for each of the groups being compared. In such studies, there’s a factor of interest that
defines the groups and whose effect we want to ascertain, but the blocking factor is of no interest except
to remove its masking of the effect of the factor of interest.

Example 11.16: Blocking

Mercury concentrations were measured in periphyton (freshwater organisms that cling to surfaces)
at six stations along the South River, Virginia, in the vicinity of a large mercury contamination site
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[5]. Measurements were made on six different dates. The data are below.

Mercury

Date Station 1 Station 2 Station 3 Station 4 Station 5 Station 6

1 0.45 3.24 1.33 2.04 3.93 5.93
2 0.10 0.10 0.99 4.31 9.92 6.49
3 0.25 0.25 1.65 3.13 7.39 4.43
4 0.09 0.06 0.92 3.66 7.88 6.24
5 0.15 0.16 2.17 3.50 8.82 5.39
6 0.17 0.39 4.30 2.91 5.50 4.29

Of interest is whether the six stations differ in mercury concentration. Although we could run this
as a one-factor ANOVA, there may be differences among the six dates (for example, the periphyton
may not take up mercury as quickly during some seasons as others). Differences caused by sampling
on six different dates are unwanted noise that contributes to within-groups variation, potentially
making detection of a station effect difficult.

Instead of running the one-factor ANOVA, we’ll consider date to be a blocking factor, and
in order to filter out the unwanted variation due to date, we’ll run a two-factor ANOVA (using
the additive model since there’s only one observation per group), with date and station as the factors.

The resulting ANOVA table is below.

Source DF SS MS F P-value

Date 5 3.26 0.65 0.37 0.864
Station 5 230.13 46.03 26.14 0.000
Error 25 44.02 1.76

Total 35 277.41

To see the benefit of using date in the model as a blocking factor, in comparison, if we had run a
one-factor ANOVA without blocking, the error sum of squares SSE would have been 47.38. With date
included in the model, as above, this SSE is split into two parts, the SSE (for the two-factor model), 44.02,
and the sum of squares for the blocking factor SSA, 3.26. The variation due to heterogeneity between
blocks (dates) is thereby removed from the background noise (MSE). If there is an appreciable block effect,
removal of the SSA lowers the SSE and MSE in comparison to their values for a one-factor ANOVA. This
produces a higher F statistic, allowing the effect of the factor of interest to be more easily discerned.

11.2.20 Using Residuals to Check the ANOVA F Test Assumptions

The ANOVA F tests rely on three assumptions:

1. The observations Yijk in the ab samples are independent of each other, or equivalently, the errors εijk
in the ANOVA model are independent.

2. The observations in the samples (or responses to the treatments) follow normal distributions, or
equivalently, the errors follow a normal distribution.

3. The ab populations (or responses to the ab treatments) have a common standard deviation σ, or
equivalently, the standard deviation σ of the error distribution is the same from one group to the
next.
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The first assumption (independence) is usually addressed in the study design by separating observations
sufficiently in space and time. The other assumptions (normality and common σ) are checked via plots of
the residuals.

Checking the Normality Assumption

Instead of checking the normality assumption separately for each group, it’s usually preferable check it by
plotting the N residuals together in a histogram or normal probability plot. The normality assumption is
tenable as long as the plot doesn’t show strong signs of non-normality.

Checking the Common σ Assumption

There are a few ways to check the common standard deviation assumption.

1. Plot the residuals versus the fitted values: We can look at an individual value plot of the
residuals versus the group means (fitted values), with a horizontal line at y = 0. The amount of
vertical spread above and below the line should be roughly the same from one group to the next, and
in particular, it shouldn’t increase with the mean (fitted value). See Fig. 10.10 in Chapter 10 for an
example.

2. Compare sample standard deviations: Another way to check the common σ assumption is to
compare the sample standard deviations. As stated in Subsection 10.2.13 of Chapter 10, if the largest
of the ab sample standard deviations is less than twice as large as the smallest, then it’s reasonable to
assume that the population standard deviations are equal. This is meant as a rough guideline only.

Example 11.17: Checking Assumptions

For the soil phosphorus study, a histogram and normal probability plot of the residuals are below.
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Figure 11.6: Histogram (left) and normal probability plot (right) of the residuals after fitting the
two-factor ANOVA model to the soil phosphorus data.

The plots show that the normality assumption appears to be met. A plot the residuals versus the
fitted values (group means) is below.
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Figure 11.7: Plot of residuals versus fitted values after fitting the two-factor ANOVA model to the
soil phosphorus data.

The amount of (vertical) spread of the points appears to be roughly constant from left to right, so
it seems reasonable to assume that the true (unknown) standard deviation σ is the same from one
group to the next.

Because the normality and constant standard deviation assumptions appear to be met, the results
of the F tests performed in Example 11.11 are valid.

11.2.21 Comments on the ANOVA Partition of the Total Variation

Before turning to methods of analyzing two-factor data that don’t satisfy the assumptions required for
ANOVA, we’ll look at why the ANOVA partition

SSTo = SSA + SSB + SSAB + SSE. (11.7)

holds is true. We can write a deviation Yijk − Ȳ away from the overall mean as

Yijk − Ȳ︸ ︷︷ ︸
Total deviation

of individual

observation away

from overall

mean

= Ȳi· − Ȳ︸ ︷︷ ︸
Deviation of row

mean away from

overall mean

+ Ȳ·j − Ȳ︸ ︷︷ ︸
Deviation of

column mean

away from

overall mean

+ Ȳij − Ȳi· − Ȳ·j + Ȳ︸ ︷︷ ︸
Deviation of

group mean

above and

beyond additive

row and column

effects

+ Yij − Ȳi︸ ︷︷ ︸
Deviation of

individual

observation away

from group mean

(11.8)
If we square both sides of (11.8) and then sum over all N = abn individuals, it can be shown that all of
the the cross product terms on the right hand side all sum to zero, and we end up with (11.7).

11.2.22 Comments on the Degrees of Freedom

We’ll now see why the degrees of freedom are as given in (11.2.12).
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• SSTo has N − 1 degrees of freedom because only N − 1 of the N deviations Yijk − Ȳ are ”free to
vary” since they sum to zero.

• SSA has a− 1 degrees of freedom because only a− 1 of the deviations Ȳi·− Ȳ are ”free to vary” since
they sum to zero.

• SSB has b− 1 degrees of freedom associated with it because only b− 1 of the deviations Ȳ·j − Ȳ are
”free to vary” since they sum to zero.

• SSE has ab(n − 1) = N − ab degrees of freedom associated with it because within each of the ab
groups, only n− 1 of the deviations Yijk − Ȳij are ”free to vary” since they sum to zero.

• For SSAB, it can be shown that only (a− 1)(b− 1) of the deviations Ȳij − Ȳi· − Ȳ·j + Ȳ are ”free to
vary.” Alternatively, we can use the additive property (11.6) of the degrees of freedom to get

df for SSAB = df for SSA + df for SSB + df for SSE− df for SSTo.

Plugging the in the appropriate values on the right side gives (a− 1)(b− 1).

11.3 Dealing With Unequal Standard Deviations: Transformations

As was the case for data from one-factor studies, when the standard deviation in a two-factor study
increases with the group mean, it’s sometimes possible to stabilize it across the groups by transforming the
data, most commonly by using the log transformation. Because an increasing standard deviation is often
associated with right skewed data, by taking logs we’re able to both stabilize the standard deviation and
transform the data to normality.

11.4 Dealing With Non-Normal Data: Transformations

The two-factor ANOVA F tests are parametric tests because they rely on the normality assumption. When
this assumption isn’t met (and the sample sizes aren’t large), as usual there are two main courses of action:

1. Transform the data to normality: We could transform all ab samples (same transformation on
every sample), for example by taking their logs or using one of the transformations in the Ladder of
Powers, so that the transformed samples are each more normally distributed, and then carry out the
two-factor ANOVA F tests on the transformed data.

2. Carry out a nonparametric test: There are two nonparametric procedures for two-factor data.
The first is to carry out two-factor ANOVA on the rank transformed data. The steps are:

• Combine the ab samples into one big sample, keeping track of which group each observation
originally belonged to.

• Sort and rank the observations in the combined sample from smallest (rank = 1) to largest (rank
= N).

• Carry out a two-factor ANOVA, as described in this chapter, using the ranks of the observations
rather than the observations themselves.

The second nonparametric procedure that’s sometimes applicable is the Friedman test described in
Section 11.6. This test can be used when a so-called randomized block design was used in the study
and there’s only one observation per group.
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11.5 Multiple Comparisons After Two-Factor ANOVA

11.5.1 Introduction

When two-factor ANOVA F tests detect statistically significant effects, we usually want to know more
about the nature of those effects. The way to proceed will depend on whether or not the interaction effect
is significant.

1. Interaction not significant: In this case, if a main effect is significant, we can test for differ-
ences among the row means µ1·, µ2·, . . . , µa· (if factor A is significant) or among the column means
µ·1, µ·2, . . . , µ·b (if factor B is significant) using the multiple comparison procedure described below.

2. Interaction significant: In this case, it usually doesn’t make sense to investigate the main effects
because the effect of each factor will be different depending on the level of the other factor. Instead,
we investigate the effect of a given factor separately for each level of the other factor by performing
multiple comparison tests for differences among individual group means µij as described below.

We’ll look at one multiple comparison procedure for use after two-factor ANOVA, the Bonferroni pro-
cedure, which is almost identical to Bonferroni procedure described in Section 10.7 of Chapter 10, but
with slight modifications. In practice, the other multiple comparison procedures listed in Section 10.7 of
Chapter 10 could also be used.

11.5.2 Multiple Comparisons When the Interaction is Not Significant

Multiple Comparison Tests for Factor A

When the interaction effect isn’t significant, but the factor A main effect is (or both main effects are), to
test for differences among the levels of factor A, that is, among the true row means µ1·, µ2·, . . . , µa·, the
number of pairwise comparisons we’ll need to make is

Number of pairs µi· and µi′· to compare =
a(a− 1)

2
,

where each comparison will be a test of hypotheses of the form

H0 : µi· − µi′· = 0

Ha : µi· − µi′· 6= 0

To control the overall familywise Type I error rate at some level αf using the Bonferroni method, we carry
out each pairwise test using the Bonferroni-corrected level of significance

αp =
αf

a(a− 1)/2
.

The appropriate test statistic for each pairwise test is the Bonferroni pairwise t test statistic defined
below.

Bonferroni Pairwise t Test Statistic for Factor A:

t =
Ȳi· − Ȳi′· − 0√
MSE
bn + MSE

bn

=
Ȳi· − Ȳi′·√

2·MSE
bn

,

where MSE is the mean squared error from the two-factor ANOVA.

Each t statistic is compared to the t(ab(n − 1)) distribution to obtain the p-value for the pairwise test,
which is then compared to αp to reach a decision for that test.
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Multiple Comparison Tests for Factor B

When the interaction isn’t significant, but the factor B main effect is (or both main effects are), the
procedure for testing for differences among the levels of factor B, that is, among the true column means
µ·1, µ·2, . . . , µ·b, is similar to the procedure for testing for differences among the levels of factor A. Now,
though, the number of pairwise comparisons is

Number of pairs µ·j and µ·j′ to compare =
b(b− 1)

2

and the tests are of hypotheses of the form

H0 : µ·j − µ·j′ = 0

Ha : µ·j − µ·j′ 6= 0

To control the overall familywise Type I error rate at some level αf , now we carry out each pairwise test
using the Bonferroni-corrected level of significance

αp =
αf

b(b− 1)/2
.

The test statistic for each pairwise test in this case is the Bonferroni pairwise t test statistic defined
below.

Bonferroni Pairwise t Test Statistic for Factor B:

t =
Ȳ·j − Ȳ·j′ − 0√
MSE
an + MSE

an

=
Ȳ·j − Ȳ·j′√

2·MSE
an

,

where MSE is (again) the mean squared error from the two-factor ANOVA.

Each t statistic is again compared to the t(ab(n − 1)) distribution to obtain the p-value for the pairwise
test, which again is compared to αp.

11.5.3 Multiple Comparisons When the Interaction is Significant

When the interaction is significant, we carry out multiple pairwise comparison tests for differences among
pairs of group means µij . Here, the total number of pairwise comparisons is

Number of pairs µij and µi′j′ to compare =
ab(ab− 1)

2

and each pairwise comparison test is of hypotheses of the form

H0 : µij − µi′j′ = 0

Ha : µij − µi′j′ 6= 0

To control the overall familywise Type I error rate at some level αf , now we carry out each pairwise test
using the Bonferroni-corrected level of significance

αp =
αf

ab(ab− 1)/2
.

The test statistic for each pairwise test in this case is the Bonferroni pairwise t test statistic
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Bonferroni Pairwise t Test Statistic for Group Means:

t =
Ȳij − Ȳi′j′ − 0√

MSE
n + MSE

n

=
Ȳij − Ȳi′j′√

2·MSE
n

.

Each t statistic is again compared to the t(ab(n − 1)) distribution to obtain the p-value for the pairwise
test, which again is compared to αp.

Comment: In practice, we may be only interested in making comparisons of specific pairs of group means,
for example to test for differences among group means within fixed levels of one of the factors. If that’s the
case, we proceed exactly as described in this section, but using the Bonferroni-corrected level of significance
αp = αf/c, where c is the number of pairwise comparisons we’re making.

11.6 The Friedman Test

The Friedman test is a non-parametric alternative to the two-factor ANOVA F test that’s appropriate
when we’re interested in the effect of one factor, but want to control for the effect of the other factor, which
is called the blocking factor. In an experiment, we do this by using a randomized blocks design, that
is, a study design in which individuals are first split into groups, called blocks, according to the levels of
the blocking factor (such as age class or gender if the individuals are animals), and then within each group,
assigned to treatments corresponding to levels of the factor of interest.

If factor A is the blocking factor and factor B is of interest, the null hypothesis is that factor B has
no effect and the alternative is that it has an effect. We can write these in terms of the factor B true level
means as

H0 : µ·1 = µ·2 = · · · = µ·b

Ha : Not all µ·j ’s are equal

The Friedman test is similar to the Kruskal-Wallis test, but ranking is done separately within each of
the blocks. Here’s how to compute the Friedman test statistic.

Friedman Test Statistic: Suppose factor A is the blocking factor and factor B is of interest.
Suppose also that we have one observation per group.

1. Within each of the a blocks, combine the observations for the b levels of factor B, keeping
track of which level each observation was made at.

2. Sort the observations, and rank them from smallest (rank = 1) to largest (rank = b). If two
or more observations are tied, assign to each of them the average of the ranks they would’ve
been assigned if they hadn’t been tied.

3. Compute the mean rank R̄j for each level of the factor (j = 1, 2, . . . , b) and the overall mean
rank R̄ = (b+ 1)/2.

4. The Friedman test statistic, denoted Q, is

Q =
12a

b(b+ 1)

b∑
j=1

(R̄j − R̄)2. (11.9)
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When the null hypothesis is true, mean ranks R̄1, R̄2, . . . , R̄b for different levels of factor B won’t differ
from each other much, except due to chance variation, and therefore won’t differ much from the overall
mean R̄. As a result, when H0 is true, Q should be pretty close to zero. On the other hand, when Ha is
true, R̄1, R̄2, . . . , R̄b will differ substantially from each other and Q will be large. It follows that

Large values of Q provide evidence in favor of Ha: Not all µ·j ’s are equal.

To decide if an observed value of Q provides statistically significant evidence in support of the alternative
hypothesis, we’ll need to know its sampling distribution under the null hypothesis.

Sampling Distribution of Q Under H0: Suppose we have data from a two-factor study in which
factor A is a blocking factor and factor B is of interest. Then if the null hypothesis

H0 : µ·1 = µ·2 = · · · = µ·b

is true, the Friedman test statistic Q given by (11.9) follows (approximately) a chi-square distribution
with b− 1 degrees of freedom, which we write as

Q ∼ χ2(b− 1).

Because large values of Q provide evidence against the null hypothesis, the rejection region for the Friedman
test is comprised of Q values in the rightmost 100α% of the χ2(b− 1) distribution, and the p-value is the
tail probability to the right of the observed Q value.

The Friedman test procedure is summarized in the following table.

Friedman Test for Randomized Blocks Designs

Assumptions: Data are ab independent samples of size n = 1 from populations
representing combinations of the levels of a blocking variable A and a factor B.*

Null hypothesis: H0 : µ·1 = µ·2 = . . . = µ·b.

Test statistic value: Q = 12a
b(b+1)

∑b
j=1

(
R̄j − R̄

)2
.

Decision rule: Reject H0 if p-value < α or Q is in rejection region.

P-value = area under
Alternative χ2 distribution with Rejection region =
hypothesis b− 1 d.f.: Q values such that:**

Ha : µ·i 6= µ·j for some i, j to the right of Q Q ≥ χ2
α,b−1

* The Friedman test can also be carried on data from experiments in which either
a completely randomized design or a randomized blocks design was used.
** χ2

α,b−1 is the 100(1− α)th percentile of the χ2 distribution with b− 1 d.f.
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11.7 Problems

11.1 A two-factor study was carried out with two levels of factor A, four levels of factor B, and five
observations per group.

a) Give the degrees of freedom for the factor A sum of squares SSA.

b) Give the degrees of freedom for the factor B sum of squares SSB.

c) Give the degrees of freedom for the interaction sum of squares SSAB.

d) Give the degrees of freedom for the error sum of squares SSE.

e) Give the degrees of freedom for the total sum of squares SSTo.

f) Give the numerator and denominator degrees of freedom for the F distribution used to obtain the
p-value in the test for a factor A main effect.

g) Give the numerator and denominator degrees of freedom for the F distribution used to obtain the
p-value in the test for a factor B main effect.

h) Give the numerator and denominator degrees of freedom for the F distribution used to obtain the
p-value in the test for an interaction effect.

11.2 A two-factor ANOVA was carried out using software. The resulting ANOVA table is shown below.

Source DF SS MS F P-value

Factor A 3 233.79 77.93 32.81 0.000
Factor B 1 5.04 5.04 2.12 0.164

Interaction 3 5.79 1.93 0.81 0.505
Error 16 38.00 2.38

Total 23 282.63

Use the given information in the ANOVA table to answer the following questions.

a) How many levels of factor A are there?

b) How many levels of factor B are there?

c) How many total observations are there in the data set?

d) If the group sample sizes were all the same (same number of observations n per group), what is the
value of the common sample size n?

11.3 Experiments have been used in forestry to assess the effects of various factors on the growth behavior
of trees. In one study, researchers suspected that healthy spruce seedlings would bud sooner than diseased
ones and that acidity might impact the buds by affecting virus uptake into the root system. They exposed
healthy and diseased seeds to three levels of acidity (pH) before planting. The response variable is the
average rating of the buds produced by a seedling, where a rating is one of

0 = Bud not broken
1 = Bud partially expanded
3 = Bud fully expanded

For each combination of health status and pH, four seedlings’ buds were rated. The data are below.
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pH
3 5.5 7

1.2 0.8 1.0
1.4 0.6 1.0

Diseased 1.0 0.8 1.2
1.2 1.0 1.4

Health 1.4 0.8 1.2
1.4 1.0 1.2
1.6 1.2 1.4

Healthy 1.6 1.2 1.2
1.6 1.4 1.2
1.4 1.4 1.4

A two-factor ANOVA was carried out. The resulting ANOVA table is shown below, but with some values
missing. Without carrying out the ANOVA, fill in the missing values.

Source DF SS MS F P-value

Health ? 0.588 ? ? 0.000
pH ? 0.651 ? ? 0.000

Interaction ? 0.128 ? ? 0.069
Error ? 0.512 ?

Total ? ?

11.4 A two-factor experiment was carried out with two levels of factor A, three levels of factor B, and
two observations per group. The data are shown below.

Factor B

Level j = 1 Level j = 2 Level j = 3
Factor Level i = 1 41.0, 43.0 45.0, 47.0 49.0, 51.0

A
Level i = 2 47.0, 49.0 46.0, 48.0 41.0, 43.0

a) An interaction plot of the data was made. Which of the following plots is the correct interaction
plot?
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b) The ANOVA table is shown below.
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Source DF SS MS F P-value

Factor A 1 0.333 0.3333 0.17 0.697
Factor B 2 4.667 2.3333 1.17 0.373

Interaction 2 100.667 50.3333 25.17 0.001
Error 6 12.000 2.0000

Total 11 117.667

Based on the results of the ANOVA, is the interaction effect statistically significant? Use a level of
significance α = 0.05.

c) Based on your answer to part b, would it make sense to use the results of the F test for a factor B
main effect to decide if factor B has any effect on the response? Explain your answer.

d) Does factor B have any effect on the response? Explain.

11.5 On June 8, 2000 the oil tanker T/V Posavina was rammed and punctured by its own tug, spilling
59,000 gallons of oil into the Chelsea River, Chelsea, Massachusetts, oiling a substantial stretch of shore-
line. The response to the oil spill included restoration in fall, 2005 of a degraded 1.5-acre salt marsh
along Mill Creek, located on the upper reach of the Chelsea River. The marsh restoration involved removal
of roots and rhizomes of the invasive common reed Phragmites australis as well as the associated sediments.

To examine the effectiveness of the restoration project towards meeting the objective of decreasing Phrag-
mites cover and increasing the cover of native plants, heights of Phragmites’ were measured in the Mill
Creek marsh and an adjacent, unrestored control marsh on September 1, 2005, just before the restoration
of the Mill Creek marsh, and again in 2007, two years after the restoration [2]. Thus a before-after-control-
impact design was used.

The table below shows, for three 1 m2 quadrats selected from each marsh before the restoration and three
selected from each marsh after the restoration, the mean height (cm) of the three tallest Phragmites plants
in the quadrat.

Plant Heights
Period Marsh Height
Before Mill Creek 254
Before Mill Creek 300
Before Mill Creek 284
Before Control 64
Before Control 80
Before Control 282
After Mill Creek 210
After Mill Creek 151
After Mill Creek 154
After Control 179
After Control 300
After Control 306

The goal is to decide if the heights of Phragmites decreased more at the restored Mill Creek site than at
the control site. A bar plot of the group means is below.

a) Write out the two-factor ANOVA model, with interaction effect, including any assumptions about
the random error term ε in the model.

b) Carry out a two-factor ANOVA, with interaction effect, and write out the resulting ANOVA table.
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Control Mill Creek

Mean Phragmites Heights
For BACI Study of Restoration Effects
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c) State the conclusion of the ANOVA F test for an interaction effect between period and marsh using
a level of significance α = 0.05. Based on the F test, did the heights of Phragmites decrease more at
the restored Mill Creek site than at the control site? You may want to refer to the interaction plot
of the group means below.
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d) Based on the answer to part c, does it make sense to proceed with tests for main effects of marsh
and period? Explain your answer.

e) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F tests, that the error term ε is normally
distributed appear to be met?

f) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F tests, that the standard deviation σ of
the error distribution is the same for the four marsh by period combinations appear to be met?

g) Assuming that σ is the same for the four marsh by period combinations, what’s the estimated value
of σ?

11.6 In wastewater effluent, synthetic dyes used to color textiles, paper, and plastics can be highly toxic
to aquatic life. One inexpensive method for removing dyes from wastewater in developing countries where
agriculture is abundant is adsorption by biomass remnants from agriculture.

A study was carried out in India to investigate the use of rice husk as a biomass adsorbent [9]. As part
of the study, an experiment was carried out to determine how two factors, pH and temperature, affect
the dye removal efficiency by rice husk. Dye was diluted in water at two pH levels (Low = 2.0 and High
= 7.0) and two temperatures (Warm = 40◦ and Hot = 70◦ Celsius) and then subjected to the rice husk
adsorption process. Two replications of the experiment were performed, giving two observations per group.

The response variable was dye removal efficiency (%), defined as

Removal Efficiency =

(
Ci − Cf
Ci

)
· 100%,

where Ci is the initial dye concentration and Cf is the final dye concentration after the rice husk adsorption
process. The table below shows the data.

Dye Removal Efficiency

Removal
pH Temperature Efficiency

Low Warm 93.19
Low Warm 93.69
Low Hot 94.77
Low Hot 96.53
High Warm 88.17
High Warm 91.41
High Hot 89.32
High Hot 90.75

The goal is to decide if either pH or temperature has an effect on the dye removal efficiency. A bar plot of
the group means is below.

a) Write out the two-factor ANOVA model, with interaction effect, including any assumptions about
the random error term ε in the model.
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Warm Hot

Mean Dye Removal Efficiencies
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b) Carry out a two-factor ANOVA, with interaction effect, and write out the resulting ANOVA table.

c) State the conclusion of the ANOVA F test for an interaction effect between pH and temperature
using a level of significance α = 0.05. Based on the F test, is the effect of pH, if any, on removal
efficiency different depending on the temperature? You may want to refer to the interaction plot of
the group means below.
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d) Based on the answer to part c, does it make sense to proceed with tests for main effects of pH and
temperature? Explain your answer.

e) In part c, you should have found that the interaction effect isn’t statistically significant, so it makes
sense to proceed with tests for main effects. State the conclusion of the ANOVA F test for a
temperature main effect using a level of significance α = 0.05. Based on the F test, does temperature
have any effect on removal efficiency? You may want to refer to the level means plot of temperature
below.
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f) State the conclusion of the ANOVA F test for a pH main effect using a level of significance α = 0.05.
Based on the F test, does pH have any effect on removal efficiency? You may want to refer to the
level means plot of pH above.
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g) A normal probability plot of the residuals is below.

Based on the plot, does the assumption, required by the F tests, that the error term ε is normally
distributed appear to be met?

h) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F tests, that the standard deviation σ of
the error distribution is the same for the four pH by temperature combinations appear to be met?

i) Assuming that σ is the same for the four pH by temperature combinations, what’s the estimated
value of σ?

11.7 In a study of plant species diversity on small islands, the species richness (number of species present)
was measured on several islands in the Aegean archipelago, Greece. In addition, each island was classified
according to whether or not it had undergone animal grazing (by goats or sheep) and whether or not
nesting seagulls had colonized it [8].

The table below shows the species richness measurements for 40 islands, 10 in each combination of grazing
status (yes/no) and seagull colonization status (yes/no).
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Plant Species Diversity on Islands

Seagull
Species Grazing Colonization

Island Name Richness Status Status
Antidragonera 89 Grazed Colonized
Aspronisi (north) 45 Grazed Colonized
Diabates (east) 50 Grazed Colonized
Faradonisi megalo 60 Grazed Colonized
Imia (east) 17 Grazed Colonized
Imia (west) 20 Grazed Colonized
Minaronisi 45 Grazed Colonized
Nisida Manoli 55 Grazed Colonized
Psathi 67 Grazed Colonized
Spartonisi 39 Grazed Colonized
Fragkonisi 103 Grazed Uncolonized
Kounelonisi 59 Grazed Uncolonized
Lidia 15 Grazed Uncolonized
Makronisi 1 76 Grazed Uncolonized
Megalo Trachili 11 Grazed Uncolonized
Mikro Trachili 6 Grazed Uncolonized
Neronisi 27 Grazed Uncolonized
Tigani 12 Grazed Uncolonized
Velona 63 Grazed Uncolonized
Zouka (Megali) 86 Grazed Uncolonized
Aspronisi (east) 11 Ungrazed Colonized
Aspronisi (east 1) 34 Ungrazed Colonized
Aspronisi (northwest) 46 Ungrazed Colonized
Aspronisi (west) 7 Ungrazed Colonized
Faradonisi (northwest) 33 Ungrazed Colonized
Faradonisi (south) 22 Ungrazed Colonized
Kalapodi mikro 12 Ungrazed Colonized
Plakousa 17 Ungrazed Colonized
Saraki 16 Ungrazed Colonized
(Unnamed 1) 12 Ungrazed Colonized
East Gourna 33 Ungrazed Uncolonized
Kapelo 1 Ungrazed Uncolonized
Kommeno nisi 34 Ungrazed Uncolonized
Kouloura 2 45 Ungrazed Uncolonized
Paplomata 26 Ungrazed Uncolonized
Prassonisi 14 Ungrazed Uncolonized
Prassonisi 3 15 Ungrazed Uncolonized
Vatopoula 54 Ungrazed Uncolonized
West Gourna 7 Ungrazed Uncolonized
(Unnamed 2) 1 Ungrazed Uncolonized

A goal of the study was to determine if either factor, grazing or seagull colonization, affects the plant
species diversity. A bar plot of the group means is below.
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a) Write out the two-factor ANOVA model, with interaction effect, including any assumptions about
the random error term ε in the model.

b) Carry out a two-factor ANOVA, with interaction effect, and write out the resulting ANOVA table.
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c) State the conclusion of the ANOVA F test for an interaction effect between grazing and seagull
colonization using a level of significance α = 0.05. Based on the F test, is the effect of grazing, if
any, on plant species diversity different depending on the seagull colonization status of an island?
You may want to refer to the interaction plot of the group means below.
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d) Based on the answer to part c, does it make sense to proceed with tests for main effects of grazing
and seagull colonization? Explain your answer.

e) In part c, you should have found that the interaction effect isn’t statistically significant, so it makes
sense to proceed with tests for main effects. State the conclusion of the ANOVA F test for a grazing
main effect using a level of significance α = 0.05. Based on the F test, does grazing have any effect
on plant species richness? You may want to refer to the level means plot of grazing below.
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f) State the conclusion of the ANOVA F test for a seagull colonization main effect using a level of
significance α = 0.05. Based on the F test, does seagull colonization have any effect on plant species
richness? You may want to refer to the level means plot of seagull colonization above.

g) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F tests, that the error term ε is normally
distributed appear to be met?
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h) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F tests, that the standard deviation σ of
the error distribution is the same for the four grazing by colonization status combinations appear to
be met?

i) Assuming that σ is the same for the four grazing by colonization status combinations, what’s the
estimated value of σ?

11.8 Hydroelectric power plants occasionally release sudden, short term increases in streamflow, called
”pulsed flows”, for recreational purposes mandated by license agreements. But pulsed flows can kill or
displace benthic macroinvertebrates, an important food source for fish, birds, and mammals.

A before-after, control-impact study was carried out to investigate the effect on macroinvertebrates of
pulsed flows for whitewater boating from a hydroelectric plant on the North Fork Feather River, Plumas
County, California [4]. Macroinvertebrate data were collected before and after pulsed flows on two reaches
of the river, one downstream of the dam (the impact site) and the other upstream (the control site).

The response variable was an index of macroinvertebrate community health called the hydropower multi-
metric index (Hydro-MMI), which is based on abundances of five classes of macroinvertebrates and is scaled
to lie between 0 and 100, with lower scores indicating less healthy macroinvertebrate communities.

The table below shows the Hydro-MMI scores two days before and two days after each of two pulsed flows
in fall, 2004, at the control and impact reaches of the river.

Macroinvertebrate
Community Health

Site Period Hydro-MMI

Control Before 29.6
Control After 24.8
Control Before 31.2
Control After 28.4
Impact Before 22.2
Impact After 23.0
Impact Before 22.7
Impact After 22.8

We want to decide if the Hyro-MMI decreased statistically significantly more at the impact site than at
the control site. A bar plot of the group means is below.
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a) Write out the two-factor ANOVA model, with interaction effect, including any assumptions about
the random error term ε in the model.

b) Carry out a two-factor ANOVA, with interaction effect, and write out the resulting ANOVA table.

c) State the conclusion of the ANOVA F test for an interaction effect between period and site using
a level of significance α = 0.05. Based on the F test, did the Hydro-MMI decrease statistically
significantly more at the impact site than at the control site? You may want to refer to the interaction
plot of the group means below.
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d) Based on the answer to part c, does it make sense to proceed with tests for main effects of period
and site? Explain your answer.

e) In part c, you should have found that the interaction effect isn’t statistically significant, so it makes
sense to proceed with tests for main effects. State the conclusion of the ANOVA F test for a period
main effect using a level of significance α = 0.05. Based on the F test, was there a change in the
mean Hydro-MMI from the period before the pulse flows to the period after? You may want to refer
to the level means plot of period below.
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f) State the conclusion of the ANOVA F test for a site main effect using a level of significance α = 0.05.
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Based on the F test, is there a difference in the Hydro-MMI means for the two sites? You may want
to refer to the level means plot of site above.

g) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F tests, that the error term ε is normally
distributed appear to be met?

h) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F tests, that the standard deviation σ of
the error distribution is the same for the four site by period combinations appear to be met?

i) Assuming that σ is the same for the four site by period combinations, what’s the estimated value of
σ?

11.9 In order to establish baseline levels prior to the start of oil tanker movement through the Prince
William Sound, Alaska, various hydrocarbons were measured in sediment at seven stations in the sound in
May, June, and August, 1978 [6] (see also Problem 10.11 in Chapter 10). At each station, two observations
of each hydrocarbon were made per month. The table below shows the pristane and phytane concentrations
(ng/g).
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Hydrocarbons in Sediment

Station Month Pristane Phytane
Bligh Island May 4.4 2.3
Bligh Island May 5.2 1.7
Bligh Island June 7.4 2.3
Bligh Island June 5.7 1.9
Bligh Island August 6.4 1.7
Bligh Island August 0.6 2.4
Constantine Harbor May 46.0 11.0
Constantine Harbor May 44.0 10.0
Constantine Harbor June 44.0 9.9
Constantine Harbor June 48.0 11.0
Constantine Harbor August 27.0 7.6
Constantine Harbor August 44.0 10.0
Dayville Flats May 6.2 1.2
Dayville Flats May 4.1 0.7
Dayville Flats June 3.4 1.2
Dayville Flats June 3.0 0.9
Dayville Flats August 0.2 0.1
Dayville Flats August 0.1 0.1
Naked Island May 67.0 0.9
Naked Island May 66.0 1.8
Naked Island June 55.0 1.4
Naked Island June 90.0 0.9
Naked Island August 32.0 0.8
Naked Island August 27.0 0.7
Olsen Bay May 9.2 1.7
Olsen Bay May 11.0 3.7
Olsen Bay June 5.0 1.4
Olsen Bay June 11.0 9.2
Olsen Bay August 0.6 2.4
Olsen Bay August 3.3 1.4
Rocky Bay May 15.0 1.6
Rocky Bay May 18.0 2.6
Rocky Bay June 18.0 1.0
Rocky Bay June 13.0 1.4
Rocky Bay August 12.0 0.8
Rocky Bay August 9.0 0.5
Siwash Bay May 2.6 2.7
Siwash Bay May 3.1 4.0
Siwash Bay June 1.6 1.2
Siwash Bay June 2.7 3.2
Siwash Bay August 0.7 3.3
Siwash Bay August 3.0 3.2

In this problem we’ll analyze the pristane data. We want to decide if the pristane concentrations changed
over the months or differed among the stations, and if it changed over the months, whether the change
was different depending on the station. A bar plot of the group means is below.
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Bligh Const. Dayville Naked Olsen Rocky Siwash

Mean Pristane 
for Different Months and Stations
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a) Write out the two-factor ANOVA model, with interaction effect, including any assumptions about
the random error term ε in the model.

b) Carry out a two-factor ANOVA, with interaction effect, and write out the resulting ANOVA table.

c) State the conclusion of the ANOVA F test for an interaction effect between month and station using
a level of significance α = 0.05. Based on the F test, did the change in pristane over the months, if
there was one, differ depending on the station? You may want to refer to the interaction plot of the
group means below.
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d) Based on the answer to part c, does it make sense to proceed with tests for main effects of month
and station? Explain your answer.

e) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F tests, that the error term ε is normally
distributed appear to be met?

f) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F tests, that the standard deviation σ of
the error distribution is the same for the 21 month by station combinations appear to be met?

g) Assuming that σ is the same for the 21 month by station combinations, what’s the estimated value
of σ?

11.10 Refer to the study of hydrocarbons in Prince William Sound, Alaska, as described in Problem 11.9.
In this problem, we’ll analyze the phytane data.

We want to decide if the phytane concentrations changed over the months or differed among the stations,
and if it changed over the months, whether the change was different depending on the station. A bar plot
of the group means is below.

Bligh Const. Dayville Naked Olsen Rocky Siwash

Mean Phytane 
for Different Months and Stations
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a) Write out the two-factor ANOVA model, with interaction effect, including any assumptions about
the random error term ε in the model.

b) Carry out a two-factor ANOVA, with interaction effect, and write out the resulting ANOVA table.

c) State the conclusion of the ANOVA F test for an interaction effect between month and station using
a level of significance α = 0.05. Based on the F test, did the change in phytane over the months, if
there was one, differ depending on the station? You may want to refer to the interaction plot of the
group means below.
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d) Based on the answer to part c, does it make sense to proceed with tests for main effects of month
and station? Explain your answer.

e) In part c, you should have found that the interaction effect isn’t statistically significant, so it makes
sense to proceed with tests for main effects. State the conclusion of the ANOVA F test for a month
main effect using a level of significance α = 0.05. Based on the F test, did the phytane concentrations
change over the months? You may want to refer to the level means plot of month below.
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f) State the conclusion of the ANOVA F test for a station main effect using a level of significance
α = 0.05. Based on the F test, are there differences among the mean phytane concentrations for the
seven stations? You may want to refer to the level means plot of station above.

g) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the F tests, that the error term ε is normally
distributed appear to be met?

h) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the F tests, that the standard deviation σ of
the error distribution is the same for the 21 month by station combinations appear to be met?

i) Assuming that σ is the same for the 21 month by station combinations, what’s the estimated value
of σ?
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