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Chapter 12

Linear Regression and Correlation

Chapter Objectives

• Compute and interpret a linear (Pearson) correlation.
• Carry out a t test for a linear correlation.
• Compute and interpret a confidence interval for a population correlation.
• Compute and interpret a monotone nonlinear (Spearman rank) correlation.
• Carry out a t test for a monotone nonlinear correlation.
• State and interpret the simple linear regression model.
• Obtain and interpret estimates of model coefficients.
• Obtain and interpret fitted values and residuals associated with a fitted regression model.
• Interpret sums of squares, degrees of freedom, and mean squares.
• Interpret the R2 associated with a fitted regression model.
• Carry out a t test for the slope in a regression model.
• Obtain a t confidence interval for the slope in a regression model.
• Carry out a regression model F test.
• Decide whether the t test (and F test) associated with a linear regression analysis are appropriate

for a given set of data.

Key Takeaways

• The (Pearson) correlation measures the strength of a linear relationship between two variables. The
Spearman rank correlation measure the strength of a monotone nonlinear relationship.
• A linear regression analysis is used to estimate the equation of a linear relationship between a response

variable and a numerical explanatory variable. Non-linear patterns in data can be transformed to
linear ones prior to conducting the analysis. Both the t test for the slope and the model F test
are tests for whether there’s a linear relationship. They require either that the response variable
is normally distributed or the sample size is large. A log transformation can make a right-skewed
response variable more normal prior to conducting a t or F test.
• A linear regression model describes variation in a response variable in terms of a numerical ex-

planatory variable. It contains two parts: one representing non-random variation due to the linear
relationship to the explanatory variable and another representing random variation (random error).
• Sums of squares in linear regression are statistics that measure variation in the observed values of a

response variable due to the linear relationship to the explanatory variable and due to random error.
• Mean squares are another way to measure variation. They’re obtained by dividing sums of squares

by their degrees of freedom. The degrees of freedom associated with a sum of squares is determined
by how many of its squared deviations are ”free to vary.” The values of two mean squares are directly
comparable, but the values of two sums of squares aren’t necessarily comparable.
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432 CHAPTER 12. LINEAR REGRESSION AND CORRELATION

• The R2 value is a statistic that measures how well a fitted linear regression model fits the data.
Expressed as a percent, it’s interpreted as the percent of variation in the response variable that’s
explained by variation in the explanatory variable.
• The regression model F test statistic is a ratio of two mean squares. Its numerator measures variation

due to the explanatory variable and its denominator variation that’s due to random error.
• The t test statistic for the slope indicates how many standard errors the estimated slope is away from

zero.

12.1 Introduction

Environmental studies are often designed to investigate the relationship between two variables, an ex-
planatory variable and a response variable. In this chapter, we look at methods of analyzing such
data when the explanatory variable is numerical as opposed to categorical (the latter situation having been
the subject of Chapters 10 and 11). Numerical explanatory variables are sometimes called predictors be-
cause, as we’ll see, they can be used to predict the response.

Example 12.1: Bivariate Data

Overstory trees are ones whose heights extend well above the canopy (dense ceiling of tightly packed
trees and branches). In a study of the recent decline in the number of overstory aspen trees in
Yellowstone National Park, Wyoming, data on the ages (years) and diameters (cm) at breast height
(1.4 m) of n = 49 aspen trees were collected and are shown below [15].
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Ages and Diameters of Trees

Tree Number Age Diameter
1 24 5.0
2 17 6.9
3 30 8.0
4 10 10.0
5 14 10.0
6 12 10.5
7 22 11.0
8 30 10.4
9 16 14.0

10 20 13.4
11 36 12.5
12 39 13.0
13 26 16.4
14 35 16.0
15 36 15.5
16 38 14.9
17 40 20.0
18 27 20.5
19 39 20.5
20 42 15.0
21 50 13.5
22 42 18.0
23 72 25.5
24 79 21.0
25 50 30.5
26 78 31.0
27 76 32.5
28 72 39.0
29 90 28.4
30 108 28.9
31 83 38.0
32 86 35.0
33 92 31.0
34 108 31.9
35 116 37.4
36 117 38.0
37 109 48.0
38 114 46.0
39 126 27.6
40 130 29.0
41 124 31.0
42 122 31.5
43 121 39.0
44 159 35.0
45 126 36.0
46 128 37.0
47 129 38.0
48 124 42.0
49 123 46.0

Because the diameter of a tree grows larger as the tree ages, we’ll consider diameter as the response
and age as the explanatory variable, or predictor.

When two variables are measured on each of n individuals, as in the last example, the data are said
to be bivariate. In bivariate data, we’ll denote the explanatory and response variables by X and Y ,
respectively, and store them (for use with statistical software) in columns as below.
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Observation X variable Y variable

1 X1 Y1

2 X2 Y2

3 X3 Y3
...

...
...

n Xn Yn

We use the notation

n = The number of individuals upon which X and Y are measured, or sample size.
Xi = The value of the explanatory (predictor) variable for the ith individual.
Yi = The value of the response variable for the ith individual.

Each Xi, Yi pair is called a bivariate observation. The sample size n refers to the number of bivariate
observations (rows in the data file).

In this chapter we look at ways of graphing and summarizing bivariate data, testing for relationships
between the variables, and fitting linear models and assessing how well they fit the data.

12.2 Graphing Bivariate Data

Graphical displays are used to explore patterns of variation and relationships between variables in bivariate
data and to communicate these aspects of the data to others.

12.2.1 Scatterplots

Creating Scatterplots

The most useful way of displaying bivariate numerical data is with a scatterplot. To construct a scatter-
plot,

1. Designate one variable as the explanatory variable and the other as the response.

2. Plot the observation pairs as points in an x, y coordinate system, with the explanatory variable on
the x-axis and the response on the y-axis.

3. Label the axes and add a title.

Example 12.2: Scatterplots

A scatterplot of the data on ages and diameters of aspen trees from Example 12.1 is shown below,
with age on the x axis, and diameter on the y axis.
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Figure 12.1: Scatterplot of the diameters versus ages of aspen trees in Yellowstone National Park.

Examining scatterplots

Scatterplots can reveal various features of the relationship between X and Y , among them:

• The ”overall pattern” or ”form” of the relationship, for example whether it’s linear (following a
straight line pattern) or curved.

• The direction of the relationship:

– Positive relationship: When X is large, Y tends to be large, and when X is small, Y tends
to be small (the points in the scatterplot slope upward from left to right).

– Negative relationship: When X is large, Y tends to be small, and when X is small, Y tends
to be large (the points slope downward from left to right).

• The strength of the relationship, in other words, how clear the pattern is or how closely the points
in the scatterplot conform to straight line or smooth curve.

• Other interesting features, for example outliers, separate clumps of points, or unusual patterns.

Figure 12.2 below illustrates some of these features.

Example 12.3: Scatterplots

We’d describe the relationship between the ages and diameters of the aspen trees in Fig. 12.1 to be
a moderately strong, positive, approximately linear relationship.

12.2.2 Time Series Plots

A time series is a set of data collected at regular intervals of time (for example hourly, daily, monthly, or
yearly). They’re bivariate data in which the explanatory variable is time, and are primarily used to identify
trends. When graphing the data, we usually connect the points in the scatterplot by lines to highlight
their sequential nature. This type of plot is called a time series plot.
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Figure 12.2: Scatterplots showing various patterns and features. First row, left to right: moderately strong
positive and negative linear relationships, very strong and weak positive linear relationships. Second row,
left to right: no relationship, nonlinear curved relationship, negative relationship with outlier, two separate
clumps.

Example 12.4: Time Series Plots

The Alaska Climate Research Center at the University of Alaska, Fairbanks, reported yearly average
temperatures (◦F) for the years 1930 - 2008 in Fairbanks, Alaska. A scatterplot and a time series
plot of the data are below.
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Figure 12.3: Scatterplot (top) and time series plot (bottom) of annual mean temperatures (◦F) in
Fairbanks, Alaska for the years 1930 to 2008.

Notice that it’s visually much easier to follow the year-to-year changes in temperature in the time
series plot than in the scatterplot.
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12.3 Summarizing the Strength of a Linear Relationship

It’s often desirable to report a statistic that summarizes the strength and direction of the relationship
between two variables. We’ll look at two statistics that accomplish this:

1. The Pearson correlation

2. The Spearman rank correlation

The first of these is appropriate when the relationship between the two variables is (at least approximately)
linear. The second is more general, and is appropriate even when the relationship is nonlinear.

12.3.1 The Pearson Correlation

Computing r

When two variables in a bivariate data set exhibit, at least approximately, a linear relationship, we sum-
marize that relationship by the sample correlation (also called the Pearson correlation), denoted r,
and defined as follows.

Correlation: The Pearson correlation between two variables X1, X2, . . . , Xn and Y1, Y2, . . . , Yn is

r =
1

n− 1

n∑
i=1

(
Xi − X̄
Sx

)(
Yi − Ȳ
Sy

)
(12.1)

where X̄ and Ȳ are the sample means of the Xi’s and Yi’s, respectively, and Sx and Sy are their
sample standard deviations.

Thus r is computed by standardizing each Xi and each Yi, taking the products of these, and ”averaging”
those products (by dividing their sum by n− 1).

Properties and Interpretation of r

The following properties of the correlation r provide insight into its interpretation.

1. The value of the correlation will always be between -1.0 and 1.0.

2. The correlation tells us the direction of the relationship between X and Y :

• Positive correlation values indicate a positive relationship.

• Negative correlation values indicate a negative relationship.

3. The correlation also tells us how strong the relationship between X and Y is:

• Correlation values near zero imply a very weak relationship or none at all.

• Correlation values close to -1.0 or 1.0 imply a very strong linear relationship.

• The extreme values r = −1.0 and r = 1.0 occur only when there’s a perfect linear relationship,
that is, when the points in the scatterplot lie exactly along a straight line.

4. The correlation doesn’t depend on which variable is labeled X and which is labeled Y . It’s a measure
of association between the two variables.

5. The correlation has no units of measure (because the X and Y observations are standardized in the
computation of r). It’s merely a number between -1.0 and 1.0.
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6. The value of the correlation is unaffected by linear transformations of either X or Y . In other words,
if we convert each Xi to a new measurement scale using a conversion of the form aX + b, and each
Yi to a new scale using cY + d, then the correlation after making the conversions will be the same as
it was before.

7. A correlation only measures the strength of the linear relationship between X and Y . In particular,
curved relationships often lead to correlations near zero.

8. The correlation is not resistant to outliers.

9. A correlation doesn’t imply a cause and effect relationship – there may be confounding variables
”lurking” in the background and driving both X and Y up and down together (see Chapter 2).

The scatterplots below illustrate the correspondence between the value of r and the degree of linear
association between X and Y .

−3 −2 −1 0 1 2

2
4

6
8

r = + 1.00

x

y

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

r = 0.83

x

y

−3 −2 −1 0 1 2

−3
−2

−1
0

1
2

r ≈ 0.00

x

y

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

r = − 0.83

x

y

−3 −2 −1 0 1 2

2
4

6
8

r = − 1

x

y

−3 −2 −1 0 1 2 3

−6
−4

−2
0

2
4

r ≈ 0.00

x

y

Figure 12.4: Values of r for six bivariate data sets.

Example 12.5: Correlation

The data below are the lengths (cm) and weights (g) of n = 9 prairie rattlesnakes sampled from the
Pawnee National Grassland in northeastern Colorado as part of a study to investigate the use of
snakes as a pollution bioindicator [1].
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Lengths and Weights

of Snakes

Snake Length Weight

1 85.7 331.9
2 64.5 121.5
3 84.1 382.2
4 82.5 287.3
5 78.0 224.3
6 81.3 245.2
7 71.0 208.2
8 86.7 393.4
9 78.7 228.3

We’ll consider length as the explanatory variable and weight as the response. Here’s the scatterplot.
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Figure 12.5: Scatterplot of weights versus lengths of prairie rattlesnakes.

The summary statistics for the lengths (x) and weights (y) are:

x̄ = 79.2 ȳ = 269.1
sx = 7.3 sy = 88.2

Quantities needed to calculate the correlation are given in the table below.
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Snake x = Length y = Weight x−x̄
sx

y−ȳ
sy

(
x−x̄
sx

)(
y−ȳ
sy

)
1 85.7 331.9 0.89 0.71 0.63
2 64.5 121.5 -2.01 -1.67 3.36
3 84.1 382.2 0.67 1.28 0.86
4 82.5 287.3 0.45 0.21 0.09
5 78.0 224.3 -0.16 -0.51 0.08
6 81.3 245.2 0.29 -0.27 -0.08
7 71.0 208.2 -1.12 -0.69 0.77
8 86.7 393.4 1.03 1.41 1.45
9 78.7 228.3 -0.07 -0.46 0.03∑(

x−x̄
sx

)(
y−ȳ
sy

)
= 7.19

The correlation between lengths and weights is

r =
1

n− 1

n∑
i=1

(
x− x̄
sx

)(
y − ȳ
sy

)
=

1

8
(7.19)

= 0.90,

which summarizes the strong, positive, approximately linear relationship seen in the scatterplot.

Comment: If we let

Sxx =

n∑
i=1

(Xi − X̄)2 , Syy =

n∑
i=1

(Yi − Ȳ )2 , and Sxy =

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) , (12.2)

and recall the definition of a sample standard deviation (Chapter 3), then it can be seen that an equivalent
formula for the correlation is

r =
Sxy√
SxxSyy

. (12.3)

The quantities Sxx, Syy, and Sxy are referred to as the X sum of squares, the Y sum of squares,
and the sum of XY cross products, respectively.

12.3.2 t Test for a Correlation

When there’s no relationship between two variables X and Y , we expect their sample correlation r to be
near zero, but it’s unlikely to equal zero exactly because of random sampling error. We’ll sometimes be
interested in deciding whether an observed correlation is statistically significantly different from zero.

If a bivariate data set is a random sample from a bivariate population (one in which two variables
X and Y can be measured on each population unit), we can use the sample correlation r to estimate the
population correlation, which is denoted ρ. If in reality there’s no relationship between X and Y , then
the true correlation ρ would be zero and we’d expect r to be near zero too.

The null hypothesis of no relationship is written as

H0 : ρ = 0

Values of r near -1.0 or 1.0 provide strong evidence against H0. It turns out, though, to be difficult to de-
termine p-values based on the value of r itself because the sampling distribution of r is rather complicated.
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Instead, we use the correlation t test statistic.

Correlation t Test Statistic:

t =
r
√
n− 2√

1− r2
. (12.4)

Notice that when r is close to 1.0, t will be large and positive, but when r is close to -1.0, t will be large
and negative. When r is close to zero, t will be close to zero too. It follows that

1. Large positive values of t provide evidence in favor of Ha : ρ > 0.

2. Large negative values of t provide evidence in favor of Ha : ρ < 0.

3. Both large positive and large negative values of t provide evidence in favor of Ha : ρ 6= 0.

To decide if an observed t value provides statistically significant evidence in favor of the alternative hy-
pothesis, we’ll need to know its sampling distribution under the null.

Sampling Distribution of t Under H0: Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is a sample
is from a bivariate population whose correlation is ρ. Suppose also that the Yi’s follow a normal
distribution (but not necessarily the Xi’s). Then when

H0 : ρ = 0

is true,
t ∼ t(n− 2)

(approximately), the t distribution with n− 2 degrees of freedom.

P-values (and critical values for the rejection region approach) are obtained from the tail (or tails) of the
t(n− 2) distribution in the direction specified by Ha, as summarized below.
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t Test for a Correlation ρ

Assumptions: Data (x1, y1), (x2, y2), . . . , (xn, yn) are a random sample from a bi-
variate population in which the X and Y variables are both normal or n is large
(n ≥ 20), or, for each given value of X (not necessarily randomly selected), Y is a
random variable that follows a normal distribution whose mean may depend on the
value of X but whose standard deviation doesn’t depend on X.

Null hypothesis: H0 : ρ = 0.

Test statistic value: t = r
√
n−2√

1−r2 .

Decision rule: Reject H0 if p-value < α or t is in rejection region.

P-value = area under
Alternative t-distribution Rejection region =
hypothesis with n− 2 d.f.: t values such that:*

Ha : ρ > 0 to the right of t t > tα,n−2

Ha : ρ < 0 to the left of t t < −tα,n−2

Ha : ρ 6= 0 to the left of − |t| and right of |t| t > tα/2,n−2 or t < −tα/2,n−2

* tα,n−2 is the 100(1− α)th percentile of the t distribution with n− 2 d.f.

Example 12.6: t Test for a Correlation

Countries in sub-Saharan Africa have experienced high rates of urbanization in recent decades.
To determine if this urbanization is associated with development, data from the United Nations
Development Program’s (UNDP) Human Development Report and the World Bank’s World
Development Report were analyzed [13].

The data are shown below. They include, for each of 40 sub-Saharan countries, the population,
urbanization rate (percentage of the country’s population living in cities), and human development
index (HDI) value, which measures the country’s health, education level, and standard of living.
(Data for the three remaining sub-Saharan countries, Liberia, Rwanda, and Somalia were unavail-
able.)
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Urbanization and Development in Africa

Country Population HDI Urbanization
Angola 9.40 0.344 34.20
Benin 4.40 0.378 42.30
Botswana 1.20 0.678 50.30
BurkinaFaso 8.50 0.219 18.50
Burundi 5.10 0.241 9.01
Cameroon 11.20 0.481 48.90
CoteDIvoire 11.20 0.368 46.40
C.AfricanRepublic 2.90 0.347 41.20
Chad 5.40 0.318 23.80
P.R.Congo 2.10 0.519 62.50
D.R.Congo 33.40 0.383 30.30
Ethiopia 47.40 0.252 17.60
Eq.Guinea 0.40 0.465 48.20
Gabon 1.10 0.568 81.40
Gambia 0.80 0.291 32.50
Ghana 14.00 0.473 38.40
Guinea 5.40 0.277 32.80
GuineaBissau 1.60 0.295 23.70
Kenya 22.40 0.463 33.10
Lesotho 1.70 0.469 28.00
Madagascar 10.90 0.348 29.60
Malawi 8.00 0.344 24.90
Mali 8.00 0.236 30.00
Mauritania 1.90 0.361 57.70
Mauritius 1.10 0.833 41.30
Mozambiq 14.90 0.281 40.20
Namibia 1.70 0.644 30.90
Niger 7.30 0.207 20.60
Nigeria 110.10 0.691 44.00
Senegal 7.00 0.342 47.40
SieraLeone 3.90 0.185 36.60
Seychelles 0.08 0.845 63.80
SouthAfrica 34.00 0.717 50.40
Sudan 23.80 0.343 36.10
Swazilan 0.10 0.597 26.40
Tanzania 24.70 0.358 32.90
Togo 3.40 0.380 33.30
Uganda 16.20 0.340 14.23
Zambia 7.60 0.378 39.60
Zimbabwe 9.30 0.507 35.30

A scatterplot of the HDI versus urbanization is below.
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Figure 12.6: Scatterplot of human development index (HDI) versus urbanization.
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The correlation between HDI and urbanization is r = 0.54, so for the t test of

H0 : ρ = 0

Ha : ρ > 0,

the test statistic is

t =
r
√
n− 2√

1− r2
=

0.54 ·
√

38√
1− 0.542

= 3.95.

The p-value is the tail area to the right of 3.95 under the t distribution with n− 2 = 38 degrees of
freedom. From a t distribution table, it’s found to be 0.0003. Thus we reject H0 and conclude that
the observed positive correlation between urbanization and development is statistically significant,
not just due to chance.

12.3.3 Confidence Interval for a Population Correlation

A confidence interval for an (unknown) population correlation ρ will give a range of plausible estimates for
ρ. The sampling distribution of r is rather complicated, and the distribution of the statistic t in (12.4) is
also complicated when ρ 6= 0. For these reasons, it turns out to be easier to base the confidence interval
on the statistic

V =
1

2
log

(
1 + r

1− r

)
, (12.5)

(where the log is the natural log). It can be shown that if n is large (n ≥ 25 is large enough), the statistic
V follows (approximately) a normal distribution with mean and standard error

µV =
1

2
log

(
1 + ρ

1− ρ

)
(12.6)

σV =
1√
n− 3

, (12.7)

Thus the random variable

Z =
V − µV
σV

(12.8)

follows a N(0, 1) distribution.
The point estimate for µV is just V , given by (12.5). A 100(1− α)% confidence interval for µV is

V ± zα/2 σV , (12.9)

where zα/2 is the 100(1 − α/2)th percentile of the N(0, 1) distribution. Commonly used zα/2 values are
z0.05 = 1.645, z0.025 = 1.96, and z0.005 = 2.58 corresponding to 90%, 95%, and 99% levels of confidence,
respectively. Substituting the right sides of (12.5) and (12.7) for V and σV in (12.9), the confidence interval
for µV can be rewritten as

1

2
log

(
1 + r

1− r

)
± zα/2

1√
n− 3

. (12.10)

We can be 100(1− α)% confident that µV will lie in this interval.
But we want a confidence interval for the population correlation ρ, not µV . So once endpoints of the

confidence interval (12.10) for µV have been obtained, they are ”backtransformed” via (12.6) to obtain the
desired endpoints of the confidence interval for ρ. In other words, if we let ` and u be the lower and upper
endpoints of the interval (12.10),

` =
1

2
log

(
1 + r

1− r

)
− zα/2

1√
n− 3

(12.11)
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and

u =
1

2
log

(
1 + r

1− r

)
+ zα/2

1√
n− 3

, (12.12)

then we can be 100(1− α)% confident that

` < µV < u,

which is to say we can be 100(1− α)% confident that

` <
1

2
log

(
1 + ρ

1− ρ

)
< u.

Solving ` < 1
2 log

(
1+ρ
1−ρ

)
for ρ gives

e2` − 1

e2` + 1
< ρ ,

and solving 1
2 log

(
1+ρ
1−ρ

)
< u for ρ gives

ρ <
e2u − 1

e2u + 1
.

Therefore, the confidence interval for ρ is as follows.

Confidence Interval for ρ: Suppose we have a bivariate sample from a (bivariate) population
whose correlation is ρ. Suppose also that the sample size n is large (n ≥ 25). Then a 100(1 − α)%
confidence interval for ρ is (

e2` − 1

e2` + 1
,
e2u − 1

e2u + 1

)
,

where ` and u are given by (12.11) and (12.12).

We can be 100(1− α)% confident the true (unknown) population correlation ρ will lie within this interval
somewhere.

Example 12.7: Confidence Interval for a Correlation

For the study of urbanization and development in sub-Saharan Africa (Example 12.6), the sample
size is n = 40 and the sample correlation between urbanization rate and human development index
value is r = 0.54. For a 95% confidence interval for the true underlying correlation ρ, the ` and u
values (12.11) and (12.12) are

` =
1

2
log

(
1 + 0.54

1− 0.54

)
− 1.96

1√
40− 3

= 0.28

and

u =
1

2
log

(
1 + 0.54

1− 0.54

)
+ 1.96

1√
40− 3

= 0.93 .

Thus the confidence interval is(
e2` − 1

e2` + 1
,
e2u − 1

e2u + 1

)
=

(
e2(0.28) − 1

e2(0.28) + 1
,
e2(0.93) − 1

e2(0.93) + 1

)
= (0.27, 0.73).

We can be 95% confident the true (unknown) underlying correlation between urbanization and
human development, ρ, is between 0.27 and 0.73. Note that the interval doesn’t contain zero, which
is consistent with the result of the hypothesis test of Example 12.6.
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12.4 Summarizing the Strength of a Nonlinear Relationship

12.4.1 Spearman Rank Correlation

Introduction

When the relationship betweenX and Y is nonlinear, the Pearson correlation doesn’t adequately summarize
the strength and direction of that relationship. Consider, for example, the scatterplots below.
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Figure 12.7: Scatterplots showing examples of monotone, nonlinear relationships.

The relationships in all four scatterplots are nonlinear and wouldn’t adequately be summarized by the
Pearson correlation. But all four are monotone, meaning they’re either always increasing or flat from
left to right (a positive monotone relationship) or always decreasing or flat (a negative one), but never
changing from increasing to decreasing or vice versa. An example of a relationship that’s not monotone is
the up-down curved relationship in the bottom right of Fig. 12.4.

Computing the Spearman Rank Correlation rsr

To summarize the the strength and direction of a monotone curved relationship, we use the correlation
between the ranks of the X’s and the ranks of the Y ’s. This is called the the Spearman rank correlation,
denoted rsr.

Spearman Rank Correlation:

1. Determine the ranks of X1, X2, . . . Xn, and denote these by RX1 ,RX2 , . . . , RXn . Thus RXi
is the rank of the ith observation Xi. If two or more observations are tied, assign to each of
them the average of the ranks they would’ve been assigned if they hadn’t been tied.

2. Determine the ranks of Y1, Y2, . . . Yn, and denote these by RY1 ,RY2 , . . . ,RYn . Thus RYi is
the rank of the ith observation Yi. If observations are tied, assign them the average rank.

3. The Spearman rank correlation, rsr, is the correlation (12.1) between the ranks
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RX1
, RX2

, . . . , RXn and RY1
, RY2

, . . . , RYn . In other words,

rsr =
1

n− 1

n∑
i=1

(
RXi − R̄X
SRX

)(
RYi − R̄Y
SRY

)
(12.13)

where R̄X and SRX
are the sample mean and standard deviation of RX1

, RX2
, . . . , RXn , and

R̄Y and SRY
are the sample mean and standard deviation of RY1

, RY2
, . . . , RYn .

Example 12.8: Spearman Rank Correlation

Nuclear weapons testing and nuclear accidents such as the one at Chernobyl in 1986 can discharge
the radioactive contaminant radiocesium (137Cs), which can then accumulate in forest ecosystems.

In a study to find out if concentrations of stable elements such as rubidium (Rb) could be used to
predict the concentration of 137Cs, both Rb and 137Cs were measured in each of 29 mushrooms in a
Japanese forest. The data are below.

Radioactivity in Mushrooms

Mushroom 137Cs Rb
1 42.4 75.4
2 449.0 115.0
3 179.0 88.2
4 182.0 110.0
5 230.0 105.0
6 28.7 56.5
7 8.2 31.0
8 36.0 47.7
9 34.0 49.8
10 5.4 59.8
11 55.6 93.1
12 127.0 85.4
13 65.2 87.6
14 317.0 137.0
15 675.0 133.0
16 44.5 29.5
17 45.9 76.5
18 27.4 73.9
19 1150.0 159.0
20 246.0 98.4
21 356.0 95.2
22 287.0 68.5
23 75.3 31.2
24 58.1 81.7
25 3110.0 214.0
26 598.0 125.0
27 602.0 98.5
28 135.0 101.0
29 143.0 78.6

Here’s a scatterplot of the data.
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Figure 12.8: Scatterplot of radiocesium 137Cs versus rubidium in mushrooms from a Japanese forest.

Notice from the scatterplot that the 137Cs tends to increase as Rb increases, so the relationship
between the two is monotone, but it’s not linear. We’ll summarize the strength of the relationship
by the Spearman rank correlation.

To calculate rsr, we first rank the 137Cs values and then (separately) rank the Rb values. The
resulting ranks are shown below along with the original values.

Mushroom 137Cs Rank of 137Cs Rb Rank of Rb
1 42.4 7 75.4 10
2 449.0 24 115.0 24
3 179.0 17 88.2 16
4 182.0 18 110.0 23
5 230.0 19 105.0 22
6 28.7 4 56.5 6
7 8.2 2 31.0 2
8 36.0 6 47.7 4
9 34.0 5 49.8 5
10 5.4 1 59.8 7
11 55.6 10 93.1 17
12 127.0 14 85.4 14
13 65.2 12 87.6 15
14 317.0 22 137.0 27
15 675.0 27 133.0 26
16 44.5 8 29.5 1
17 45.9 9 76.5 11
18 27.4 3 73.9 9
19 1150.0 28 159.0 28
20 246.0 20 98.4 19
21 356.0 23 95.2 18
22 287.0 21 68.5 8
23 75.3 13 31.2 3
24 58.1 11 81.7 13
25 3110.0 29 214.0 29
26 598.0 25 125.0 25
27 602.0 26 98.5 20
28 135.0 15 101.0 21
29 143.0 16 78.6 12

Next we calculate the correlation between the ranks of 137Cs and the ranks of Rb using (12.13). We
get (using software)

rsr = 0.84,
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indicating a fairly strong positive monotone relationship. It’s interesting to note that the Pearson
correlation for this data set is r = 0.81, which is lower than rsr because r is measuring the strength
of the linear relationship.

Properties and Interpretation of rsr

The Spearman rank correlation has properties similar to those of the Pearson correlation, but it measures
the strength of the possibly nonlinear relationship between X and Y , not necessarily the linear one.

1. The value of the Spearman correlation will always be between -1.0 and 1.0.

2. The Spearman correlation tells us the direction of the relationship between X and Y :

• Positive correlation values indicate a positive relationship.

• Negative correlation values indicate a negative relationship.

3. The Spearman correlation also tells us how strong the relationship between X and Y is:

• Spearman correlation values near zero imply a very weak relationship or none at all.

• Spearman correlation values close to -1.0 or 1.0 imply a very strong monotone relationship, but
not necessarily a linear one.

• The extreme values rsr = −1.0 and rsr = 1.0 occur only when there’s a perfect monotone
relationship, that is, when the ranks of the Xi’s are equal to those of their corresponding Yi’s.

4. The Spearman correlation doesn’t depend on which variable is labeled X and which is labeled Y .
It’s a measure of association between the two variables.

5. The Spearman correlation has no units of measure. It’s merely a number between -1.0 and 1.0.

6. The value of the Spearman correlation is unaffected by order preserving transformations of either X
or Y . In other words, if we convert each Xi to a new measurement scale using a conversion that
leaves their ranks unchanged, and each Yi to a new scale that leaves their ranks unchanged, then the
Spearman correlation after making the conversions will be the same as it was before.

7. The Spearman correlation only measures the strength of the monotone relationship between X and
Y . In particular, curved non-monotone (up-down or down-up) relationships can lead to Spearman
correlations near zero.

8. The Spearman correlation is somewhat (but not entirely) resistant to outliers.

9. A Spearman correlation doesn’t imply a cause and effect relationship because there may be con-
founding variables ”lurking” in the background and driving both X and Y up and down together
(see Chapter 2).

12.4.2 t Test for a Monotone Relationship

Consider a bivariate population for which two continuous variables X and Y can be measured on each
individual. In this section we’ll see how to carry out a test to decide if X and Y follow a monotone
relationship. The null hypothesis to be tested is

H0 : There’s no relationship between X and Y

The test will be based on the value of the Spearman rank correlation between the observed Xi and Yi
values.
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The Spearman rank correlation t test statistic is the same as the t test statistic for a correlation
described in Subsection 12.3.2, but with rsr used in place of r.

Spearman Rank Correlation t Test Statistic:

t =
rsr
√
n− 2√

1− r2
sr

. (12.14)

When rsr is close to 1.0, t will be large and positive, and when rsr is close to -1.0, t will be large but
negative. When rsr is close to zero, t will be close to zero too. Therefore,

1. Large positive values of t provide evidence in favor of

Ha : There’s a positive monotone relationship between X and Y

2. Large negative values of t provide evidence in favor of

Ha : There’s a negative monotone relationship between X and Y

3. Both large positive and large negative values of t provide evidence in favor of

Ha : There’s a monotone relationship between X and Y

To decide if an observed value of the test statistic provides statistically significant evidence in favor of Ha,
we’ll use its sampling distribution under H0.

Sampling Distribution of t Under H0: Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is a sample is
from a bivariate population for which X and Y are continuous. Suppose also that n is large (n ≥ 20
is sufficient). Then when

H0 : There’s no relationship between X and Y

is true,
t ∼ t(n− 2)

(approximately), the t distribution with n− 2 degrees of freedom.

Because values of t that differ from zero in the direction specified by Ha count as evidence in favor of Ha,
P-values (and critical values for the rejection region approach) are obtained from the corresponding tail
(or tails) of the t(n− 2) distribution, as summarized below.
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t Test for a Monotone Relationship

Assumptions: Data (x1, y1), (x2, y2), . . . , (xn, yn) are a random sample from a bi-
variate population in which the X and Y variables are both continuous and n is
large (n ≥ 20), or, for each given value of X (not necessarily randomly selected), Y
is a random variable that follows any continuous distribution whose mean may de-
pend on the value of X and n is large (n ≥ 20).*

Null hypothesis: H0 : There’s no relationship between X and Y .

Test statistic value: t = rrs
√
n−2√

1−r2rs
.

Decision rule: Reject H0 if p-value < α or t is in rejection region.

P-value = area under
Alternative t-distribution Rejection region =
hypothesis with n− 2 d.f.: t values such that:**

Ha : There’s a positive to the right of t t > tα,n−2

monotone relationship
between X and Y

Ha : There’s a negative to the left of t t < −tα,n−2

monotone relationship
between X and Y

Ha : There’s a monotone to the left of − |t| t > tα/2,n−2 or t < −tα/2,n−2

relationship between and right of |t|
X and Y

* When n is small, the test can still be carried out, but the t distribution shouldn’t
be used for obtaining p-values and critical values. Instead, the exact sampling dis-
tribution of the test statistic should be used. More information can be found in [7].

** tα,n−2 is the 100(1− α)th percentile of the t distribution with n− 2 d.f.

Example 12.9: Test for a Nonlinear Monotone Relationship

For the data on radiocesium (137Cs) and rubidium (Rb) in n = 29 mushrooms, the Spearman rank
correlation was found in Example 12.8 to be rsr = 0.84. Thus to test

H0 : There’s no relationship between 137Cs and Rb

Ha : There’s a positive monotone relationship between 137Cs and Rb

the test statistic is

t =
rsr
√
n− 2√

1− r2
sr

=
0.84 ·

√
27√

1− 0.842
= 8.04.

The p-value is the area to the right of 8.04 under the the t distribution with n − 2 = 27 degrees
of freedom, and is found to be 0.0000. Thus we reject H0 and conclude that the observed positive
monotone relationship between 137Cs and Rb seen in Fig. 12.8 is statistically significant, not just
due to chance.
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12.5 Linear Regression

12.5.1 Introduction

When two variables in data set have a linear relationship, we often want to find the equation of the straight
line describing that relationship. Here are some ways in which we might use the line and its equation:

1. The line can enhance the appearance of the scatterplot of the two variables.

2. It can be used to quantify the amount by which Y changes, typically, for a given change in X.

3. It can be used to predict the value of Y from a given value of X.

The next two examples illustrate.

Example 12.10: Linear Regression

A scatterplot of the data on ages and diameters of aspen trees in Yellowstone National Park (Example
12.1) is shown again below, this time with a straight line that captures the overall positive linear
relationship between the two variables.
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Figure 12.9: Scatterplot of ages and diameters at breast height with fitted line.

The line shown is called the fitted regression line. Its equation (obtained using software) is

Ŷ = 7.95 + 0.24X,

where Ŷ = diameter and X = age. The ”hat” (caret symbol) over the y is used to indicate that it’s
the equation of the fitted regression line. We’ll see later how the equation was determined.

The slope of the line, 0.24, tells us that a tree’s diameter increases by about 0.24 cm, on average,
for each additional year of growth.

To predict the diameter of a tree that’s, say, 100 years old, we plug X = 100 into the equation,
which gives

Ŷ = 7.95 + 0.24(100) = 31.95.

Thus we predict the 100-year-old tree’s diameter to be 31.95 cm.
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Example 12.11: Linear Regression

For the data on lengths and weights of snakes given in Example 12.11, the scatterplot with the fitted
regression line is shown below.
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Figure 12.10: Scatterplot of lengths and weights of snakes with fitted line.

The equation of the line is
Ŷ = −601.1 + 11.0X,

where Ŷ = weight and X = length.

The slope of the line, 11.0, says that on average, a snake’s weight increases by about 11.0 grams for
each additional centimeter of elongation.

The predicted weight of a snake that’s, say, 62 cm long is obtained by plugging X = 62 into the
equation of the line, which gives

Ŷ = −601.1 + 11.0(62) = 80.9.

Thus we predict that the 62-centimeter-long snake will weigh 80.9 grams.

12.5.2 The Simple Linear Regression Model

When two variables exhibit a relationship, there’s usually an underlying natural process driving that
observed pattern. For example, the positive relationship between diameters and ages of trees is driven by
the biological process of tree growth, and the positive relationship between weights and lengths of snakes
is a consequence of the physical properties of snakes and the laws of physics. A common goal of bivariate
studies is to use data to draw inferences about those underlying processes. To this end, a statistical model
that describes the data via the underlying process is employed, and values of unknown constants in the
model (parameters) are estimated from the data.

For linear relationships, the simple linear regression model reflects an underlying linear process,
but it also allows for ”deviations” away from that straight line ”overall pattern.”
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Simple Linear Regression Model: A statistical model for describing bivariate data that exhibit
a linear relationship is:

Yi = β0 + β1Xi + εi, (12.15)

where

Yi is the observed value of the response variable for the ith individual
(i = 1, 2, . . . , n).

Xi is the observed value of the predictor variable for the ith individual.
β0 is the y-intercept of the underlying true regression line.
β1 is the slope of the true regression line.
εi is a random error term following a N(0, σ) distribution, and the εi’s

are independent of each other.

The model relates the response variable Y to the predictor X by way of the so-called true regression
line, β0 + β1X, that represents the underlying process driving the linear relationship in the data. The
(unkown) parameters of the model are the coefficients β0 and β1, representing the y-intercept and slope
of the true regression line, and σ, the error distribution’s standard deviation. In practice, their values will
be estimated from the data.

The random error ε represents the deviation of Y above or below the line due to the net effect of all
other factors, besides the X variable, and also measurement error. For a snake of a given length, its weight
will deviate above or below the line due to factors such as its caloric intake, its metabolic rate, the density
of its bones, and so on. For a tree of a given age, its diameter will deviate above or below the line due to
factors such as weather conditions as it grew, spatial heterogeneity in soil nutrients and moisture, and so
on.

The standard deviation σ represents the size of a typical error. In the model, its value doesn’t depend
on X, so the amount of variation of Y above or below the line is assumed to be the same regardless of the
value of X. The model is depicted graphically below.

Linear Regression Model

Y

X1

X3

X2β0 + β1x

●

ε1
Y1

Figure 12.11: Graphical depiction of the simple linear regression model.

Comments:

• The linear regression model can be thought of as describing separate, distinct populations of Y
values, one for each value of X, where the population means all lie on the line β0 + β1X. Three
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such populations are depicted in Fig. 12.11. In the study of tree diameters, each population would
correspond to trees of a given age, and in the study of snake weights, each would correspond to snakes
of a given length. The true regression line β0 + β1X is sometimes called the true mean response
line.

• The aforementioned Y populations are assumed to be normal and to all have the same standard
deviation σ.

• No assumptions are made about the X variable. It’s values don’t even have to be randomly selected
– they can be hand-picked, as would be the case, say, for dose levels in a toxicity experiment.

• The assumption of normality (and independence) of the ε’s is only needed for the purpose of testing
hypotheses about β0 and β1 and (constructing confidence intervals for them). If hypothesis test-
ing isn’t going to be carried out (nor confidence intervals constructed), there’s no need to assume
normality (or independence).

12.5.3 Least Squares Estimation of Model Parameters

The Method of Least Squares

When we estimate the slope and intercept of the true regression line, we say that we’ve fitted the regression
model to the data. We fit the model using the method of least squares, which is based on the principle
that the line that ”best fits” the points in a scatterplot is the one whose y-intercept b0 and slope b1 result
in the smallest possible value for sum of squared vertical deviations of the Yi values away from the line,

n∑
i=1

[Yi − (b0 + b1Xi)]
2 . (12.16)

For the data on lengths and weights of snakes, the deviations whose sum of squares is given by (12.16) are
the vertical lines in the scatterplot below.

●

●

●

●

●

●

●

●

●

65 70 75 80 85

15
0

20
0

25
0

30
0

35
0

40
0

Weights versus Lengths of Snakes

Length

W
ei

gh
t

Figure 12.12: Scatterplot of lengths (X) and weights (Y ) of snakes and the vertical deviations of the
weights away from the regression line.

The line shown was fitted using the method of least squares, and the sum of squared deviations turns out
to be 11,165. For any other line, the sum of squared deviations would be larger.

A line fitted by least squares is called a fitted regression line and denoted

Ŷ = b0 + b1X, (12.17)
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The symbol Ŷ is used (instead of just Y ) to indicate that the line is the fitted regression line. The y-
intercept b0 and slope b1 are called the least squares estimates of the true (unknown) model parameters
β0 and β1. The following fact tells us how they’re computed from the data.

Fact 12.1 The y-intercept b0 and slope b1 of the fitted least squares regression line are computed
from the data using

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
=

Sxy
Sxx

, (12.18)

where Sxy and Sxx are as given by (12.2), and

b0 = Ȳ − b1X̄. (12.19)

Comment: The slope of the fitted regression line and the correlation will always have the same sign. This
is because, it can be shown, another form for the slope is

b1 = r
Sy
Sx
, (12.20)

where r is the correlation and Sx and Sy are the X and Y sample standard deviations (which are always
positive).

Example 12.12: Linear Regression

For the data on ages and diameters of aspen trees (Example 12.1), the fitted regression line given
in Example 12.10,

Ŷ = 7.95 + 0.24X ,

was computed using statistical software, which reported the values of (12.18) and (12.19) as

b1 = 0.24

b0 = 7.95.

Some Cautionary Notes About Least Squares Regression

Linear regression analysis has its limitations, a few of which are listed below.

1. Linear regression should only be used if either the data exhibit, at least approximately, a linear
relationship or there are theoretical grounds for assuming X and Y are linearly related. If they aren’t
linearly related, a few courses of action are suggested in Section 12.6.

2. Be cautious of extrapolation, which means using the fitted regression line to predict Y for values
of X outside the range that the line was fitted to. Extrapolation can lead to erroneous predictions
because the linear relationship may not continue outside that range. See Example 12.13.

3. Beware of influential points in the data, outliers that have a strong influence on the fitted regression
line. Outliers in the horizontal (X) direction can be particularly influential. See Example 12.15.
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Example 12.13: Beware of Extrapolation

Although new waste disposal sites limit leakage by using clay and synthetic liners, most older
ones don’t have such bottom seals, and pollutants can leak into downstream groundwater used for
drinking.

Environmental scientists and policy makers are interested, therefore, in exploring their options for
remediation of former waste sites. One option that sometimes works is to simply rely on natural
attenuation, that is, the downstream decrease of pollutant concentrations as a result of natural
retention processes.

The data below, from a study of the efficacy of natural attenuation, show chlorofluorocarbons
(CFCs, pmol/L) measured in groundwater monitoring wells at various distances (m) downstream
from an abandoned waste disposal site near Berlin, Germany [11].

CFCs in Groundwater

Monitoring Distance From
Well Disposal Site CFCs

1 20 530.00
2 10 160.00
3 60 270.00
4 120 55.00
5 200 39.00

The fitted regression line, using CFCs as the response and distance from the waste site as the
predictor, is

Ŷ = 354.59− 1.75X .

This line is shown in the scatterplot of the data below.

If we were to use the line to predict the CFCs in groundwater 300 m from the disposal site, it would
be an extrapolation because the line was fitted to data for which the distances only go to 200 m.
The predicted CFCs would be

Ŷ = 354.59− 1.75(300) = −170.4 ,

which is obviously unreasonable because CFC values can’t be negative. The problem arises because
even though CFCs follow approximately a linear relationship to distance up to 200 m from the
disposal site, that linear relationship doesn’t continue beyond 200 m. Instead, the CFC values level
off at larger distances, as depicted by the dotted curve in the scatterplot below.
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Figure 12.13: Scatterplot of CFCs in groundwater versus distance from disposal site with fitted
regression line (blue) and a curve depicting a more realistic relationship for distances greater than
200 m (dashed).

Example 12.14: Influential Points in Linear Regression

In the original data set on lengths and weights of snakes reported in [1], a gopher snake was included
along with the nine prairie rattlesnakes. In the scatterplot below, the gopher snake is represented
by the red outlier on the right. To demonstrate the influence it would have on the fitted regression
line, the line was fitted with and without the outlier included in the data. Both lines are shown in
the scatterplot.
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Figure 12.14: Scatterplot of weights versus lengths of snakes with regression line fitted to the data
with (red) and without (blue) the outlier (red point) included.

12.5.4 Fitted Values and Residuals

Fitting a model to a set of bivariate data provides an estimate of the (unknown) true regression line.
For each of the n individuals in a bivariate data set, we define the individual’s fitted value (also called
predicted value), denoted Ŷi, as follows.
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Fitted Value: For the ith individual in the data set,

Ŷi = b0 + b1Xi, (12.21)

where Xi is the value of the predictor variable for that individual.

The fitted values are just values we’d predict for Y by plugging the observed Xi’s into the equation of the
fitted line. They all lie on the fitted line and correspond to the nonrandom, linear ”overall pattern” in the
data. There will be n fitted values, one for each individual in the data set. For the snakes data in Fig.
12.14, they’re the points along the fitted line from which the vertical deviations emanate.

The next facts says that the average of the fitted values is equal to the average of the Yi’s.

Fact 12.2 The mean of the fitted values Ŷ1, Ŷ2, . . . , Ŷn in a regression analysis is equal to the mean
of the observed responses Y1, Y2, . . . , Yn, that is,

1

n

n∑
i=1

Ŷi =
1

n

n∑
i=1

Yi = Ȳ .

We’ll also be interested in evaluating the random ”deviations” away from the overall pattern, that is,
values of the error term ε in the model. A residual, denoted ei, is defined as the difference between the
ith individual’s observed Y value and the fitted value for that individual.

Residual: For the ith individual in the data set,

ei = Yi − Ŷi, (12.22)

where Yi is the observed response for that individual and Ŷi is the fitted value.

For the snakes data, the residuals are the vertical line segments Fig. 12.14. A residual will be positive if
Yi lies above the line, and negative if it lies below the line. There will be n residuals in total, one for each
individual in the data set.

By the definitions of fitted values and residuals, we can write a residual as

ei = Yi − (b0 + b1Xi),

and rearranging this, we can write an observation Yi as

Yi = b0 + b1Xi + ei.

Comparing this to the model (12.15), it’s apparent that the residual ei approximates the random error term
εi, and therefore, like the errors, correspond to the net effect of all other factors besides X on the response
variable. In Section 12.5.9, we’ll use the residuals to estimate the standard deviation of the N(0, σ) error
distribution, and in Section 12.5.15 we’ll use them to check the normality assumption.

It turns out that the residuals sum to zero.
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Fact 12.3 The residuals in a regression analysis sum to zero, that is,

n∑
i=1

ei = 0.

12.5.5 Two Sources of Variation in Y

In one-factor ANOVA (Chapter 10), we partitioned the total variation in the response variable into two
parts, between-groups variation due to the effect of the factor (the treatment sum of squares) and within-
groups variation due to random error (the error sum of squares). We’ll do something similar in regression,
but in this case the two sources of variation are the X variable and random error. The following example
illustrates.

Example 12.15: Partition of Variation in Linear Regression

Consider the data on lengths and weights of snakes (Example 12.5). The snakes are of different
lengths, which explains some of the variation in their weights but not all of it. If it did explain all
of their weight variation, the points in the scatterplot would lie exactly on a straight line.

Because the points don’t all lie on a line, we know that there are other factors, besides length, that
determine a snake’s weight. These other factors (metabolic rate, caloric intake, bone density, and
so on) show up as residuals. The larger their contribution to variation in weights is, the larger the
residuals will be.

Thus we can think of variation in snakes’ weights as arising from two sources:

1. Differences in their lengths (the X variable).

2. Differences in the values of all the other factors (besides length) that affect weight.

In general, for any regression analysis, there will be two sources of variation in the responses:

1. Variation due to differences in the value of the predictor X from one individual to the next.

2. Variation due to differences in the values of all other factors (besides X) from one individual to the
next.

These correspond, respectively, to the nonrandom linear ”overall pattern” in the data and the random
”deviations” away from that pattern, that is, errors.

12.5.6 Sums of Squares

Introduction

We’ll measure the contributions of the two sources of variation in the response variable using sums of
squares, in much the way we used them to measure between- and within-groups variation in one-factor
ANOVA. In the context of regression, we’ll use sums of squares to:

1. Assess how well the regression model fits the data.

2. Estimate the standard deviation σ of the error distribution.

3. Test a hypothesis to decide if the predictor variable X explains any of the variation in the responses.
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Variation Due to Random Error

Variation in Y due to random error, that is, due to all other factors besides X, is measured by the error
sum of squares, denoted SSE and defined as follows.

Error Sum of Squares:

SSE =
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

e2
i . (12.23)

The error sum of squares is just the sum of squared residuals. The SSE will be large when the variation
in Y due to random error is large.

Variation Due to X

Variation in Y due to differences in the value of the predictor variable X from one individual to the next
is measured by the regression sum of squares, denoted SSR and defined as follows.

Regression Sum of Squares:

SSR =

n∑
i=1

(Ŷi − Ȳ )2 . (12.24)

The regression sum of squares is the sum of squared deviations of the fitted values away from the overall
mean Ȳ of the responses. The SSR reflects variation in the fitted values which, recall, lie on the fitted line.
It will be large when the line has a steep slope, that is, when variation in Y due to differences in the values
of X1, X2, . . . , Xn is large, and small otherwise.

12.5.7 ANOVA-Like Partition of the Total Variation in Y

Introduction

In a regression analysis, we can think of the variation in Y as arising either from the nonrandom linear
relationship to X or from random error. We’ll see in a bit that the two types of variation account for all
of the variation in the responses.

Total Variation

To see what this means, we’ll first need a measure of the total variation in the response variable. We use
the same one that’s used in one-factor ANOVA, namely the total sum of squares, denoted SSTo and
defined as follows.

Total Sum of Squares:

SSTo =

n∑
i=1

(Yi − Ȳ )2. (12.25)

Because SSTo measures total variation in the responses, it will be large if either the fitted line has a steep
slope or the deviations away from the line are large. Thus SSTo reflects both variation due to X and
variation due to error.
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Partition of the Total Variation

The sums of squares in a regression analysis satisfy the following ANOVA-like partition of the total
variation in the responses.

Fact 12.4 The sums of squares defined above satisfy the following relation.

SSTo = SSR + SSE . (12.26)

This decomposes the variation in the responses as:

Total Variation = Variation Due to X + Variation Due to Error

Example 12.16: ANOVA-Like Partition

For the data on lengths and weights of snakes (Examples 12.5), the sums of squares (obtained using
statistical software) are

SSTo = 62, 255, SSR = 51, 090, and SSE = 11, 165.

As expected, SSTo = SSR + SSE since

62, 255 = 51, 090 + 11, 165.

This shows that the majority of the variation in weights (51,090 out of 62,255) is due to differences
in their lengths, and only a smaller portion (11,165) due to random error.

12.5.8 Degrees of Freedom

As was the case for ANOVA, each sum of squares has associated with it a corresponding degrees of freedom.

Degrees of Freedom: For linear regression, the degrees of freedom are:

df for SSTo = n− 1
df for SSR = 1
df for SSE = n− 2

Degrees of freedom will be used later to determine which t and F distributions p-values are obtained from
when performing hypothesis tests related to the regression analysis.

The degrees of freedom are additive in the following sense.

Fact 12.5 The degrees of freedom given above satisfy the following relation.

df for SSTo = df for SSR + df for SSE.
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12.5.9 Mean Squares

Introduction

As for ANOVA, a mean square in linear regression is a sum of squares divided by its degrees of freedom.
The two mean squares, the mean square for regression, or MSR, and the mean squared error, or
MSE, will be used later to test for a linear relationship between Y and X.

Mean Squares: For linear regression, the mean square for regression and mean squared error are

MSR =
SSR

1
= SSR (12.27)

MSE =
SSE

n− 2
. (12.28)

Estimating σ

The MSE can be thought of as an (n − 2) ”average” squared residual, so its square root measures the
size of a typical residual. Thus because the residuals are approximations of the random errors ε in the
regression model, we use

√
MSE as an estimator of the standard deviation of the N(0, σ) error distribution.

Estimator of σ: In a linear regression analysis, the estimator of σ, denoted σ̂, is

σ̂ =
√

MSE.

Example 12.17: Estimating σ

For the data on lengths and weights of n = 9 snakes (Example 12.5), the mean squares are

MSR = 51, 090 and MSE = 1, 595

and so
√

MSE = 39.9. This is the size of a typical deviation of a snake’s weight above or below
the fitted line in Fig. 12.14, and serves as an estimate of the standard deviation σ of the N(0, σ)
distribution of the error term ε in the regression model.

12.5.10 Assessing the Fit of the Regression Line

Introduction

After fitting a regression model, we usually want to know how successful the predictor variable is at
explaining variation in the response. Knowing how well a given predictor explains Y variation is especially
useful when we need to decide which of two predictors does the job better. It’s convenient, therefore, to
have a statistic that tells us how well each line fits the data. Two commonly used statistics that serve this
purpose are:

1. The mean squared error, MSE, or its square root.

2. The coefficient of determination, or R2.
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The MSE as a Measure of Fit of the Regression Line

Because the mean squared error (and its square root) reflect the sizes of the residuals, and a line ”fits”
the data better when the residuals are small, we can use the MSE (or

√
MSE) as a measure of how well a

given line fits the data. A smaller value of the MSE (or
√

MSE) indicates a better fitting line.

The Coefficient of Determination R2

One criticism of the MSE as a measure of how well a line fits the data is that its value depends on the
units of measure for the response variable. For example, changing the measurement scale of Y from inches
to centimeters will change the value of the MSE.

The coefficient of determination, denoted R2 (and usually just called ”R squared”), is an alterna-
tive measure of fit whose value doesn’t depend on the units of measure for Y .

Coefficient of Determination:

R2 =
SSR

SSTo
= 1− SSE

SSTo
. (12.29)

Because SSR measures variation in the responses due to differences in the value of the predictor X, and
SSTo measures total variation in the responses, we can think of R2 as

R2 =
Variation in Y Due to X

Total Variation in Y
.

In other words, R2 can be interpreted as the proportion of variation in the response variable that can be
explained by differences in values of the predictor X (and the linear relationship of Y to X).

Properties and Interpretation of R2: The following properties of R2 provide insight into its interpre-
tation.

1. The value of R2 will always be between zero and one (because it’s a proportion).

2. R2 tells us how well the regression line fits the data:

• An R2 value near zero means the line doesn’t fit very well (because only a small fraction of the
Y variation is explained by X).

• An R2 value near one means the line fits the data very well (because a large fraction of the Y
variation is explained by X).

For more insight, several scatterplots and their corresponding R2 values are shown below.
Perhaps not surprisingly, R2 is related to the correlation r from Section 12.3, as stated in the following fact.

Fact 12.6 It can be shown that the coefficient of determination R2 is equal to the square of the
correlation r, that is,

R2 = r2.

Example 12.18: Coefficient of Determination R2

For the data on lengths and weights of snakes shown in Fig. 12.10, the total sum of squares and
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Figure 12.15: Scatterplots showing bivariate data sets with different values of R2.

regression sum of squares, from Example 12.17, are

SSTo = 62, 255 and SSR = 51, 090,

so the coefficient of determination is

R2 =
SSR

SSTo
=

51, 090

62, 255
= 0.821.

Thus about 82.1% of the variation in snakes’ weights is attributable to differences in their lengths
(and the linear relationship of weight to length). The other 17.9% is due to the combined effects of
all other factors (metabolic rate, caloric intake, bone density, and so on).

The correlation between length and weight, from Example 12.5, is r = 0.90, and its square is
0.902 = 0.81 which, up to roundoff error, is equal to R2 as expected.

12.5.11 t Tests for the Slope and Intercept of the Regression Model

Introduction

In the linear regression model
Yi = β0 + β1Xi + εi , (12.30)

the slope parameter β1 specifies the average change in Y associated with a one-unit increase in X. If
β1 was zero, there’d be no change in Y as X changes (the true regression line would be horizontal), in
which case there’d be no relationship between Y and X. A slope different from zero means there’s a linear
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relationship
We’ll be interested, therefore, in testing the null hypothesis of no relationship,

H0 : β1 = 0

Sampling Distribution of b1

Because the estimate b1 of the true (unknown) slope β1 is computed from the data, and the response
values Y1, Y2, . . . , Yn vary from one sample to the next, b1 is a random variable that varies from sample to
sample. To get a sense of its variability, fitted regression lines are shown below for 50 sets of response data
randomly generated using the model (12.30) (with the ε values varying from one sample to the next but
the X values kept the same).
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Figure 12.16: Fitted regression lines (light blue) for 50 sets of data (only one of which is shown) randomly
generated from the regression model (12.30) with β0 = 5, β1 = 0.6, and the ε’s varying according to a
N(0, σ) distribution with σ = 0.5. The X values are the same for the 50 sets of data. Only the Y values
vary. The black line is the true regression line.

The hypothesis test for β1 will be based on how different b1 is from zero, so to carry out the test, we’ll
need to be able to recognize when an observed difference from zero is larger than can be explained by
chance. For this, we’ll need the sampling distribution of b1.

Fact 12.7 Suppose X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are bivariate observations described by the
linear regression model Yi = β0 + β1Xi + εi, where the εi’s are independent and follow a N(0, σ)
distribution.

Then b1 follows a normal distribution with mean µb1 and standard error σb1

µb1 = β1

and
σb1 =

σ√
Sxx

,

which is to say,
b1 ∼ N (β1, σb1) ,

where Sxx is the X sum of squares given in (12.2).
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It follows that if we standardize b1, the resulting random variable Z follows a standard normal
distribution, that is,

Z =
b1 − β1

σb1
∼ N(0, 1).

t Test Statistic for a Slope

In practice, we estimate the standard error of b1 by replacing σ in Fact 12.7 by its estimate,
√

MSE. This
gives the estimated standard error of b1, denoted Sb1 .

(Estimated) Standard Error of b1:

Sb1 =

√
MSE√
Sxx

, (12.31)

where Sxx is the X sum of squares given by (12.2).

This standard error represents the size of a typical sampling error when b1 is used to estimate the true
value β1.

The next fact says that when we standardize b1 using an estimated standard error, the resulting stan-
dardized variable follows a t distribution. It will be used to develop the t test procedure for a slope.

Fact 12.8 Suppose X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are bivariate observations described by the
linear regression model Yi = β0 + β1Xi + εi, where the εi’s are independent and follow a N(0, σ)
distribution. Then

b1 − β1

Sb1
∼ t(n− 2),

the t distribution with n− 2 degrees of freedom.

The t test statistic for a slope, denoted t, is obtained by replacing β1 in Fact 12.8 by it’s null hypoth-
esized value zero.

t Test Statistic for a Slope:

t =
b1 − 0

Sb1
. (12.32)

Because b1 is an estimator of the true slope β1, if H0 was true, and β1 equal to zero, we’d expect b1 to be
close to zero, in which case t would be close to zero too. But if Ha was true, we’d expect b1 to differ from
zero in the direction specified by Ha, in which case t would differ from zero in that direction too. Therefore,

1. Large positive values of t provide evidence in favor of Ha : β1 > 0.

2. Large negative values of t provide evidence in favor of Ha : β1 < 0.

3. Both large positive and large negative values of t provide evidence in favor of Ha : β1 6= 0.

Furthermore, t measures (approximately) how many standard errors the estimate b1 is away from zero, and
in what direction (positive or negative). To decide if an observed value of t provides statistically significant
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evidence against the null hypothesis, we’ll need its sampling distribution under H0, which, from Fact 12.8,
is the following.

Sampling Distribution of t Under H0: Suppose X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are bivari-
ate observations described by the linear regression model Yi = β0 + β1Xi + εi, where the εi’s are
independent and follow a N(0, σ) distribution. Then when

H0 : β1 = 0

is true,
t ∼ t(n− 2).

t Test for a Slope Procedure

P-values and critical values (for the rejection region approach) for the t test for a slope are obtained from
the tails of the t(n− 2) distribution, as summarized below.

t Test for β1

Assumptions: x1, x2, . . . , xn and y1, y2, . . . , yn are bivariate observations describ-
ed by the simple linear regression model (12.15), where the εi’s are independent
and either they follow a N(0, σ) distribution or n is large (n ≥ 20).

Null hypothesis: H0 : β1 = 0.

Test statistic value: t = b1
Sb1

.

Decision rule: Reject H0 if p-value < α or t is in rejection region.

P-value = area under
Alternative t distribution Rejection region =
hypothesis with n− 2 d.f.: t values such that:*

Ha : β1 > 0 to the right of t t > tα,n−2

Ha : β1 < 0 to the left of t t < −tα,n−2

Ha : β1 6= 0 to the left of − |t| and right of |t| t > tα/2,n−2 or t < −tα/2,n−2

* tα,n−2 is the 100(1− α)th percentile of the t distribution with n− 2 d.f.

Note: Statistical software packages always report the results of the two-sided test of

H0 : β1 = 0 (12.33)

Ha : β1 6= 0 (12.34)

when they perform regression analyses. To carry out a one-sided test, when the observed t value differs
from zero in the direction specified by Ha, we divide the reported p-value by two.

t Test for an Intercept

Although not usually of interest, statistical software packages also report the results of a t test for β0, the
true (unknown) y-intercept in the linear regression model, when they perform a regression analysis. The
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hypotheses tested are

H0 : β0 = 0 (12.35)

Ha : β0 6= 0

The t test statistic for an intercept is

t Test Statistic for an Intercept:

t =
b0 − 0

Sb0
,

where b0 is the least squares estimate of β0 and SE(b0) is the estimated standard error of b0,

(Estimated) Standard Error of b0:

Sb0 =

√
MSE

(
1

n
+
X̄2

Sxx

)
, (12.36)

where Sxx is given by (12.2).

When the null hypothesis (12.35) is true, the test statistic t follows a t distribution with n− 2 degrees of
freedom, from which p-values are obtained.

Carrying Out the t Tests for the Slope and Intercept

When a regression analysis is carried out using statistical software, the software summarizes the results of
the tests for slope and intercept in a table of the form below.

Estimated Standard
Predictor Coefficent Error t P-value

Intercept b0 Sb0 t = b0/Sb0 p
X b1 Sb1 t = b1/Sb1 p

Example 12.19: t Test for a Slope

A scatterplot of the human development index (HDI) values versus urbanization rates for the n = 40
sub-Saharan countries (Example 12.6), with fitted regression line, is below.
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Figure 12.17: Scatterplot of human development index (HDI) versus urbanization.

We want to decide if the observed increase in HDI value with urbanization is statistically significant.
The null hypothesis

H0 : β1 = 0

says that a country’s HDI value isn’t related to its urbanization rate, and the alternative hypothesis
(tested by statistical software)

Ha : β1 6= 0

says it is. The t test results (obtained using software) are below.

Estimated Standard
Predictor Coefficent Error t P-value

Intercept 0.1852 0.0629 2.942 0.0055
Urbanization 0.0063 0.0016 3.979 0.0003

Also shown are the results of the t test for the intercept.

The observed test statistic value for the test for the slope is t = 3.979 and the p-value, from a t
distribution with n− 2 = 38 degrees of freedom, is 0.0003. Thus we reject H0 and conclude that the
observed linear relationship between HDI value and urbanization is statistically significant.

Equivalence of the t Test for a Slope and the t Test for a Correlation

It can be shown that the t statistic (12.32) for the test for the slope β1 is the same as the t statistic (12.4)
for the test for the population correlation ρ, and since both are compared to the t(n− 2) distribution, the
p-values for the two tests will be the same too. As an example, compare the results of the t test for the
slope in Example 12.19 to those of the t test for a correlation in Example 12.6.

12.5.12 t Confidence Intervals for the Slope and Intercept of the Regression Model

A 100(1 − α)% confidence interval for β1, the true (unknown) slope parameter of the regression
model, is given by the following.
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Confidence Interval for a Slope:
b1 ± tα/2,n−2Sb1 ,

where b1 is the least squares estimate of β1, tα/2,n−2 is the 100(1 − α/2)th percentile of the t
distribution with n− 2 degrees of freedom, and Sb1 is the estimated standard error (12.31) of b1.

We can be 100(1 − α)% confident that the true (unknown) slope β1 will be contained in this confidence
interval somewhere.

Example 12.20: Confidence Interval for the Slope β1

For the data on human development index (HDI) values and urbanization rates for n = 40 sub-
Saharan countries (Example 12.6), the regression analysis of Example 12.19 produced

b1 = 0.0063 and Sb1 = 0.0016.

For a 95% confidence interval for β1, the critical value (from a t distribution table using n− 2 = 38
degrees of freedom) is tα/2,n−2 = 2.024. Thus the confidence interval is

0.0063 ± 2.024 (0.0016) = 0.0063 ± 0.0032

= (0.0031, 0.0095).

We can be 95% confident that the true slope β1 is somewhere in this range. In other words, we can
be 95% confident that each one-percent increase in a country’s urbanization rate results in an HDI
increase of between 0.0031 and 0.0095.

Although generally not of much interest, we can also compute a 100(1 − α)% confidence interval
for β0, the true (unknown) intercept parameter of the regression model.

Confidence Interval for an Intercept:

b0 ± tα/2,n−2Sb0 ,

where b0 is the least squares estimate of β0, tα/2,n−2 is the 100(1 − α/2)th percentile of the t
distribution with n− 2 degrees of freedom, and Sb0 is the estimated standard error (12.36) of b0.

We can be 100(1− α)% confident that the true (unknown) intercept β0 will be contained in this interval.

12.5.13 Regression Model F Test

Another way to test for the slope parameter β1 is to perform the so-called called regression model F
test. The null and alternative hypotheses are exactly the same as for the t test, namely

H0 : β1 = 0 (12.37)

Ha : β1 6= 0 (12.38)

The regression model F test statistic is
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F Test Statistic for the Regression Model:

F =
MSR

MSE
. (12.39)

The numerator measures variation in Y due to the X variable, and will be large when the fitted regression
line has a steep slope (either positive or negative). The denominator measures variation due to random
error. Thus F will be large when the variation in Y due to X is large relative to the variation due to
random error. It follows that

Large values of F provide evidence against H0 in favor of Ha.

To decide if an observed value of F is large enough to provide statistically significant evidence against the
null hypothesis, we’ll need its sampling distribution under H0.

Sampling Distribution of F Under H0: Suppose X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are bivari-
ate observations described by the linear regression model Yi = β0 + β1Xi + εi, where the εi’s are
independent and follow a N(0, σ) distribution. Then when

H0 : β1 = 0

is true,
F ∼ F (1, n− 2) ,

the F distribution with numerator degrees of freedom 1 and denominator degrees of freedom n− 2.

Because large values of F provide evidence against the null hypothesis, p-values (and critical values for the
rejection region approach) are obtained from the right tail of the F (1, n− 2) distribution.

The F test procedure is summarized below.

Regression Model F Test for β1

Assumptions: x1, x2, . . . , xn and y1, y2, . . . , yn are bivariate observations describ-
ed by the simple linear regression model (12.15), where the εi’s are independent
and either they follow a N(0, σ) distribution or n is large (n ≥ 20).

Null hypothesis: H0 : β1 = 0

Test statistic value: F = MSR
MSE.

Decision rule: Reject H0 if p-value < α or F is in rejection region.

P-value = area under
Alternative F -distribution with Rejection region =
hypothesis 1 and n− 2 d.f.: F values such that:*

Ha : β1 6= 0 to the right of F F ≥ Fα,1,n−2

* Fα,1,n−2 is the 100(1− α)th percentile of the F distribution with 1 and
n− 2 d.f.
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Most statistical software packages will report the results of this F test along with those of the t tests of
Section 12.5.11. The F test result will be equivalent to the result of the t test for the slope, according to
the following fact, so it’s somewhat redundant.

Fact 12.9 It can be shown that the F test statistic (12.39) is equal to the square of the t test
statistic (12.32), that is,

F = t2,

and that the p-value for the F test will be the same as that of the two-sided t test for β1.

12.5.14 The Regression ANOVA Table

The degrees of freedom, sums of squares, mean squares, observed F test statistic value, and p-value from
a regression analysis are usually summarized in a regression ANOVA table having the form shown below.

Source DF SS MS F P-value

Regression 1 SSR MSR = SSR/1 F = MSR/MSE p
Error n− 2 SSE MSE = SSE/(n− 2)

Total n− 1 SSTo

Example 12.21: Regression ANOVA Table and Model F Test

For the data on the human development index (HDI) values and urbanization rates for the n =
40 sub-Saharan countries (Example 12.6), the regression ANOVA table, produced by statistical
software, is shown below.

Source DF SS MS F P-value

Regression 1 0.320 0.320 15.83 0.0003
Error 38 0.768 0.020

Total 39 1.088

From the regression ANOVA table, the test statistic for the model F test of

H0 : β1 = 0

Ha : β1 6= 0

is F = 15.83, which is also the square of the t test statistic in Example 12.19, and the p-value is
0.0003, indicating a statistically significant relationship between the HDI and urbanization rate.

If we calculate the R2 value directly, we get

R2 =
SSR

SSTo
=

0.320

1.088
= 0.294.

Thus 29.4% of the variation in HDI values can be explained by differences in urbanization rates.

Finally, from the table, the mean squared error is MSE = 0.020, so its square root,
√

MSE = 0.141,
corresponds to the size of a typical deviation of an HDI value above or below the fitted regression
line in Fig. 12.17, and is also our estimate of σ in the N(0, σ) error distribution in the regression
model.
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12.5.15 Using Residuals to Check the t and F Test Assumptions

The t tests for the regression model slope and intercept and the F test for the slope rely on three assump-
tions:

1. The errors εi in the regression model follow a normal distribution.

2. The the standard deviation σ of the error distribution doesn’t change with the value of the predictor
variable.

3. The responses Yi are independent of each other, or equivalently, the errors εi are independent.

The third assumption (independence) is usually addressed in the study design by separating observations
sufficiently in space and time. The other assumptions (normality and common σ) are checked via plots of
the residuals.

Checking the Normality Assumption

To check the normality assumption, we look at a normal probability plot or a histogram of the residuals.

Example 12.22: Checking Assumptions

For the data on human development index (HDI) values and urbanization rates for the n = 40
sub-Saharan countries (Example 12.6), the residuals after fitting the regression model (with HDI as
the response) are plotted below in a normal probability plot and a histogram.
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Figure 12.18: Normal probability plot (left) and histogram (right) of the residuals from the regression
analysis of HDI values and urbanization rates for sub-Saharan countries.

The plots suggest that the assumption of normality of the error term ε in the linear regression model
is approximately met. The slight hint of right-skewness isn’t a concern because the sample size is
fairly large.

Checking the Constant σ Assumption

There are a few ways to check the assumption that the error standard deviation σ doesn’t change with the
value of X
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1. Plot the residuals versus the predictor variable X: We can look at a plot of the residuals
versus the values Xi of the predictor variable, with a horizontal line at y = 0. The amount of vertical
spread above and below the line should be roughly the same from left to right, and in particular, it
shouldn’t increase (or decrease) as X increases.

2. Plot the residuals versus the fitted values: We can look at a plot of the residuals versus the
fitted values, with a horizontal line at y = 0. Because the fitted values are a linear function of the
Xi’s, this is equivalent to plotting the residuals versus the Xi’s, except the units on the horizontal
scale will be different. The amount of vertical spread above and below the line should be roughly the
same from left to right, and in particular, it shouldn’t increase with the fitted value.

Example 12.23: Checking Assumptions

For the data on human development index (HDI) values and urbanization rates for sub-Saharan
countries, a plot of the residuals versus fitted values is below.

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.3 0.4 0.5 0.6 0.7

−0
.2

0.
0

0.
1

0.
2

0.
3

0.
4

Residuals versus Fitted Values

Fitted Value

R
es

id
ua

l

Figure 12.19: Plot of the residuals versus the fitted values from the regression analysis of HDI values
and urbanization rates for sub-Saharan countries.

The sizes of the vertical deviations of the points above and below the horizontal line remain roughly
the same size as we move from left to right in the plot, so the assumption that the standard deviation
σ is constant (doesn’t depend on the urbanization rate) appears to be met.

12.6 Dealing With Non-Linear Relationships: Transformations and Non-
Linear Regression

When the relationship between the response Y and the predictor X is curved, a linear regression analysis
isn’t appropriate. Here are a few possible courses of action:

1. Transform the data to linearity: Often we can ”straighten out” a curved pattern by making a
transformation of the Y observations or the X observations, for example taking their logs or using
some other transformation in the Ladder of Powers.

2. Fit a curve to the data: Another option is to fit a curve to the data, such as a polynomial or some
other curved function, instead of a straight line. Methods for fitting polynomials and other curves
are discussed in Chapter 13.
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Example 12.24: Log Transformation to Linearity

For the data from the study of radiocesium (137Cs) and rubidium (Rb) in mushrooms (Example 12.8),
the left scatterplot below shows a curved relationship between these two variables. To ”straighten
out” the relationship, we can take the log of the values of the response variable (137Cs). The right
scatterplot shows the log of 137Cs versus Rb. A linear regression analysis or correlation analysis
could now be performed using log 137Cs and Rb.
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Figure 12.20: Scatterplot of radiocesium 137Cs versus rubidium in mushrooms from a Japanese forest
with fitted regression line (left). The scatterplot of the natural logs of the 137Cs measurements versus
rubidium with fitted regression line (right).

12.7 Dealing With a Non-Constant Standard Deviation: Transforma-
tions

When the constant standard deviation assumption isn’t met, that is, when σ changes with X, it’s sometimes
possible to stabilize it by transforming the Y observations. The most commonly used transformation for
this purpose is to take the logs of the Yi’s, but other transformations in the Ladder of Powers might also be
used. Often a standard deviation that increases with the value of X is accompanied by an upward bending
curved pattern, and taking logs of the Yi’s both ”straightens out” the curved pattern and stabilizes the
standard deviation.

12.8 Problems

12.1 For each of n = 24 rainfall events, cadmium (Cd, µg/L) was measured in stormwater runoff and
the data used in a regression analysis, with Cd as the response and rain depth (cm) as the predictor. The
coefficient estimates, their standard errors, and partial results of the t tests are shown below.

Estimated Standard
Predictor Coefficent Error t P-value

Constant 2.329 0.645 3.608 0.000
Rain Depth -0.064 0.044 ? ?

Fill in the values that are missing from the table.
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12.2 Refer to Problem 12.1 showing the results of the regression analysis with Cd as the response and
rain depth (cm) as the predictor.

Compute a 95% confidence interval for the true (unknown) amount β1 by which the Cd increases, on
average, for each one-cm increase in rain depth.

12.3 Mercury (Hg) has been used in a variety of household and industrial products including thermome-
ters, appliance switches, fluorescent lights, alkaline batteries, and latex paint. But Hg is also toxic, and its
release into the environment can contaminate the food chain. It is important, therefore, to have efficient
methods for detecting and measuring Hg in the environment.

A study was carried out to assess the performance of a new, faster method for measuring Hg in soil
and plants [5]. Soil specimens were treated with known concentrations of Hg and placed in plastic pots.
Chinese brake ferns (Pteris Vittata) were then transplanted into the pots allowed to grow for 23 days.
The soil and plants were then analyzed using the both new method, inductively coupled plasma atomic
emission spectrometry, and the older, more established method, cold vapor atomic absorption spectrometry.

The table below shows measured Hg concentrations (mg/L) using both methods on the same soil and plant
specimens.

Hg Measurements in Soils Hg Measurements in Plants
New Method Established Method New Method Established Method

0.30 0.33 0.14 0.13
0.77 0.90 0.16 0.15
2.41 2.56 0.69 0.71
2.60 3.04 0.72 0.66
2.66 2.88 0.73 0.79
3.38 3.85 0.73 0.83
3.89 4.19 0.74 0.72
3.90 4.31 0.77 0.78
3.91 4.29 0.89 0.94
4.69 5.24 0.89 0.99
6.02 6.50 0.91 0.89
7.16 8.16 0.94 0.96
33.9 35.7 0.97 1.05
40.9 44.6 1.09 1.19
62.0 68.5 1.11 1.09
62.8 67.1 1.25 1.16

1.29 1.41
1.37 1.49
1.89 2.04
3.17 3.51
3.88 3.83
6.44 6.62
7.73 7.84

The researchers stated that the new and established methods were in agreement, and that the new method is
reliable for measuring Hg in soils and plants. We’ll confirm this via scatterplots and the sample correlations.

a) Make a scatterplot of the soil Hg measurements, with the established method on the x-axis and new
method on the y-axis.

b) Compute the sample correlation between new method and the established method soil Hg measure-
ments.
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c) Make a scatterplot of the plant Hg measurements, with the established method on the x-axis and
new method on the y-axis.

d) Compute the sample correlation between new method and the established method plant Hg mea-
surements.

12.4 Ships are a significant contributor to worldwide air pollution emissions, largely from their main
propulsion engines, but also from auxiliary engines that generate electrical power for ship services.

The table below shows representative emission values (g/kwh) of nitrogen oxide (NOx), sulphur dioxide
(SO2), carbon dioxide (CO2), hydrocarbons (HC), and particulate matter (PM) for 14 ship types [12].

Emissions from Ships
Ship Type NOx SO2 CO2 HC PM SFC

Liquefied gas 8.8 12.4 816 0.31 1.03 257
Chemical 16.3 11.0 650 0.55 1.34 204
Oil 14.8 11.7 690 0.50 1.43 217
Other liquids 16.3 11.0 649 0.55 1.30 204
Bulk dry 17.7 10.6 627 0.59 1.61 197
General cargo 16.2 10.9 649 0.54 1.28 204
Container 17.3 10.8 635 0.57 1.56 200
Refrigerated cargo 17.1 10.8 636 0.57 1.47 200
Ro-Ro cargo 15.3 11.1 655 0.52 1.17 206
Passenger/Ro-Ro cargo 13.3 9.9 688 0.42 0.73 217
Passenger 13.2 11.8 697 0.46 0.81 219
Offshore supply 13.9 11.0 677 0.49 0.79 213
Research 14.1 11.5 675 0.48 0.85 212
Towing/Pushing 13.7 10.8 674 0.42 0.80 212

a) Make a scatterplot of PM (y-axis) versus NOx (x-axis).

b) Compute the sample correlation between PM and NOx.

c) Notice the outlier in the scatterplot of part a. Which ship type is the outlier?

d) Remove the outlier, recompute the correlation (with the outlier excluded), and compare its value to
the one in part b.

12.5 Refer to the ship emissions study and data described in Problem 12.4.

a) Find the equation of the least squares regression line with PM as the response (Y ) and NOx as the
predictor (X).

b) Make a scatterplot of PM versus NOx with the regression line included in the plot.

c) Notice the outlier in the scatterplot. Remove the outlier, recompute the equation of the regression
line (with the outlier excluded), and compare the slope b1 to the one from part a.

12.6 A study was carried out to assess the effects of noise disturbance from aircraft on birds during the
nesting season in the Colville River Delta, Alaska [9]. The table below shows the counts of landings or
takeoffs for several types of aircraft at the region’s airstrip for 45 days in 2001.
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Airplane Landings and Takeoffs

Twin Otter/ Small
Date DC-6 CASA Navajo/Beech Planes
1 June 2 6 6 0
2 June 0 2 0 0
3 June 0 4 1 2
4 June 2 12 18 4
5 June 4 8 8 0
6 June 2 8 6 0
7 June 2 8 4 0
8 June 0 8 6 4
9 June 2 8 0 0
10 June 2 8 0 2
11 June 0 4 14 6
12 June 4 10 6 0
13 June 6 6 10 2
14 June 4 8 4 2
15 June 8 4 8 0
16 June 2 4 0 0
17 June 0 4 0 0
18 June 0 8 12 0
19 June 4 4 10 0
20 June 2 8 6 0
21 June 4 8 4 0
22 June 0 8 12 0
23 June 4 2 0 0
24 June 0 2 4 2
25 June 0 12 14 0
26 June 4 8 8 0
27 June 2 6 6 0
28 June 0 8 6 0
29 June 4 8 4 0
30 June 0 4 0 0
1 July 0 6 0 0
2 July 0 12 12 0
3 July 0 10 6 0
4 July 6 2 12 0
5 July 0 6 4 0
6 July 2 6 6 0
7 July 0 4 0 0
8 July 0 4 0 0
9 July 0 10 16 2
10 July 2 10 14 0
11 July 4 6 6 0
12 July 2 10 4 0
13 July 4 8 12 0
14 July 0 4 10 0
15 July 0 4 6 0

a) Calculate the correlation between DC-6 and Twin Otter/Navajo/Beech landings or takeoffs, and
carry out a t test to decide if it’s statistically significantly different from zero.

b) Calculate the correlation between CASA and Twin Otter/Navajo/Beech landings or takeoffs, and
carry out a t test to decide if it’s statistically significantly different from zero.

c) Calculate the correlation between Small Planes and Twin Otter/Navajo/Beech landings or takeoffs,
and carry out a t test to decide if it’s statistically significantly different from zero.

12.7 In the study to find out if concentrations of stable elements could be used to predict the concentra-
tions of radioactive elements, described in Example 12.8, several elements were measured on eight plant
species in the forest.

The data below are measurements of cesium (Cs), a proxy for 137Cs, strontium (Sr), a proxy for radioactive
90Sr, and the stable elements sodium (Na), potassium (K), and calcium (Ca) (all in mg/kg dry weight).
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Radioactivity in Plants
Plant Na K Cs Ca Sr

1 93 6900 0.024 2570 13.7
2 331 4250 0.017 6440 27.4
3 6040 15300 0.048 29800 108
4 713 8890 0.100 58300 151
5 1860 8830 0.037 25900 99.3
6 900 24500 0.112 28700 113
7 892 3960 0.022 5820 38.8
8 670 17900 0.052 6700 42.3

a) The authors of the study suggest that, in part because of a strong observed relationship between K
and Cs, K could be used as an indicator of 137Cs in plants. Calculate the correlation between Cs and
K, and comment about whether it supports the authors’ statement.

b) The authors of the study also suggest that, in part because of a strong observed relationship between
Ca and Sr, Ca could be used as an indicator of radioactive 90Sr in plants. Calculate the correlation
between Ca and Sr, and comment about whether it supports the authors’ statement.

c) The authors of the study state that there’s very little relationship between Na and Cs. Calculate the
correlation between Na and Cs, and comment about whether it supports the authors’ statement.

12.8 Various numerical indices of ecological quality are used to assess the impact of anthropogenic envi-
ronmental pressures such as pollution. In a comparative study of several such indices, samples of benthic
(bottom dwelling) communities were collected using mesh sieves at 14 stations in the Aegean Sea on the
coast of Greece, and the values the indices were determined for each sample [18].

The table below shows the values of six indices: The Bentix biotic index, the AMBI biotic index, Shan-
non’s diversity index (H’), the species richness index (S), Pielou’s evenness index (J), and the density of
individuals per square meter (N/m2). Also shown are the station depths.

Station BENTIX AMBI H’ S J N/m2

E3 3.46 1.81 4.95 42 0.83 1625
E5 3.76 2.01 5.69 86 0.82 3980
E8 4.04 1.63 5.61 91 0.80 4365
E10 3.95 1.68 5.83 68 0.87 2165
E11 5.13 1.37 6.06 79 0.88 3010
E13 4.61 1.87 6.19 97 0.87 3590
E16 3.98 2.15 5.75 83 0.84 4255
E20 3.60 2.38 5.32 67 0.81 3265
E24 4.10 2.12 5.69 65 0.87 2000
E25 4.13 1.79 5.85 67 0.88 2020
E28 3.36 1.95 5.84 87 0.83 4540
E29 3.97 1.95 5.62 55 0.88 1580
E30 4.08 1.86 6.21 77 0.91 2485
E31 4.21 1.98 4.39 21 0.88 535
DA3 4.22 2.13 4.75 95 0.72 8853
TP2 3.05 2.25 4.68 79 0.77 3873
TP13 3.17 2.59 5.85 138 0.86 5187
TP6 3.50 2.24 5.47 128 0.81 10247
TP7 3.01 3.30 4.68 81 0.77 3893
TP10 2.99 2.25 5.29 83 0.87 2933

The researchers were primarily interested in validating the newer Bentix index as an indicator of benthic
ecological quality by showing that its value is related to those of the other, generally more established
indices.

a) Make scatterplots of the Bentix index (y axis) versus each of the other indices (AMBI, H’, S, J, and
N/m2) separately.
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b) Based on the scatterplots of part a, with which of the other indices (AMBI, H’, S, J, or N/m2) is
Bentix most strongly related (either positively or negatively)? With which does it appear to be least
strongly related?

c) Compute the correlation between the Bentix index and each of the other indices (AMBI, H’, S, J,
and N/m2) separately.

d) Based on the correlations of part c, with which of the other indices (AMBI, H’, S, J, or N/m2) is
Bentix most strongly related (either positively or negatively)? With which is its relationship weakest?

12.9 Forests are potential sinks for atmospheric carbon dioxide, a greenhouse gas. Effective forest man-
agement practices can influence carbon sequestration rates, but they require estimating the carbon stocks
in the forest from the biomass of its trees.

For live trees, biomass is approximated from stem diameter measurements [2]. For dead trees, with no
leaves and with missing branches, the same approximation procedure can be used, but the amount of miss-
ing biomass in leaves and branches must be subtracted from the approximation. This requires knowing
how much of a tree’s total biomass is contained in its leaves and branches.

The table below shows the (estimated) percentage of above ground biomass that’s contained in stems,
branches, and leaves of hardwood and softwood trees for varying stem diameters (at breast height, DBH)
[2], [8].

Hardwood Softwood
DBH Stem Branches Leaves DBH Stem Branches Leaves

10 54 43 3 10 68 23 8
20 68 29 2 20 74 19 6
30 74 24 2 30 77 17 6
40 77 21 2 40 78 16 6
50 79 19 2 50 78 16 6
60 80 18 2 60 79 16 6
70 81 17 2 70 79 15 6
80 82 16 2 80 79 15 5
90 82 16 2 90 80 15 5

100 83 15 2 100 80 15 5

In this problem, we’ll analyze the relationship between stem biomass and DBH in hardwood trees.

a) Make a scatterplot of stem biomass (y axis) versus diameter (x axis) for hardwood trees. Is the
relationship linear or curved? Is it monotone?

b) Compute the Pearson correlation r and the Spearman rank correlation rsr. Which is closer to 1.0?
Why do you suppose this is the case?

12.10 Lead is a toxic element that doesn’t biodegrade or decay. Lead contamination in soil can be par-
ticularly high in the vicinity of houses whose exteriors have been painted with lead-containing paint. One
concern is that this may contaminate garden vegetables.

The table below shows the lead (Pb) concentrations in garden soils (ppm) and roots of fruiting vegetables
(µg/g) for a sample of 20 older (pre-1900) homes with gardens in Chicago, Illinois [4].
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Lead in Soil and
Roots of Fruiting Vegetables

Home Pb in Soil Pb in Roots
1 1180 209
2 616 49
3 589 71
4 1360 146
5 1310 218
6 1340 118
7 549 59
8 1070 98
9 792 55

10 1280 396
11 68 10
12 152 21
13 1700 180
14 513 49
15 3470 715
16 1380 111
17 334 70
18 169 140
19 432 118
20 235 52

A plot of the data is below.
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a) Carry out a linear regression analysis, with root lead concentration as the response and soil concentra-
tion as the predictor, to determine whether root concentrations are elevated when soil concentrations
are higher. Give the equation of the fitted regression line and the results of the t test for the slope,
and state the conclusion of the test.

b) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the t test, that the error term ε is normally
distributed appear to be met?
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c) A plot of the residuals versus the fitted values is below.

Based on the plot, does the assumption, required by the t test, that the standard deviation σ of the
error distribution is the same for different soil lead concentrations appear to be met?

d) Assuming that σ is the same for the different soil lead concentrations, what’s the estimated value of
σ?

12.11 The table below shows the lead (Pb) concentrations in garden soils (ppm) and roots of leafy
vegetables and herbs (µg/g) for a sample of 16 older (pre-1900) homes with gardens in Chicago, Illinois
from the study described in Problem 12.10.

Lead in Soil and
Roots of Leafy Vegetables

Home Pb in Soil Pb in Roots
1 612 46
2 208 10
3 515 45
4 2110 79
5 4580 201
6 982 141
7 1110 420
8 2120 149
9 847 161

10 2270 592
11 88 10
12 1010 68
13 2320 81
14 627 80
15 902 112
16 106 15

A plot of the data is below.
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a) Carry out a linear regression analysis, with root lead concentration as the response and soil concentra-
tion as the predictor, to determine whether root concentrations are elevated when soil concentrations
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are higher. Give the equation of the fitted regression line and the results of the t test for the slope,
and state the conclusion of the test.

b) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the t test, that the error term ε is normally
distributed appear to be met?

c) A plot of the residuals versus the fitted values is below.

●
●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

100 150 200 250 300

−1
00

0
10

0
20

0
30

0
40

0

Residuals Versus Fitted Values

Fitted Value

R
es

id
ua

l

Based on the plot, does the assumption, required by the t test, that the standard deviation σ of the
error distribution is the same for different soil lead concentrations appear to be met?

d) Assuming that σ is the same for the different soil lead concentrations, what’s the estimated value of
σ?

12.12 The Canadian Forest Service developed and maintains its National Forestry Database (NFD) to
inform government agencies and the general public about forest management practices and forest resources.
The NFD contains data on the total number of forest fires in Canada each year and the total area burned
by those fires. The table below shows these data for the years 1990 - 2010 [17].
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Forest Fires in Canada
Number of Area Burned

Year Forest Fires (Thousands of Ha)
1990 3255 75.783
1991 2013 24.708
1992 3805 30.452
1993 1497 5.183
1994 4088 30.308
1995 1474 48.080
1996 1346 14.952
1997 1161 1.876
1998 2662 43.681
1999 1214 11.666
2000 1539 17.675
2001 1264 9.668
2002 1781 8.586
2003 2472 264.736
2004 2398 220.516
2005 971 34.664
2006 2569 139.201
2007 1594 29.416
2008 2020 13.211
2009 3064 247.419
2010 1673 331.108

Plots of the data are below.
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a) Is there a correlation between the number of fires and the area burned? Calculate the correlation
and carry out a t test to decide if the correlation is statistically significantly different from zero.

b) Carry out a linear regression analysis, with number of fires as the response and year as the predictor,
to determine whether there’s been a statistically significant trend in the number of fires over the
years 1990-2010. Give the equation of the fitted regression line and the results of the t test for the
slope, and state the conclusion of the test.

c) Carry out a linear regression analysis, with area burned as the response and year as the predictor,
to determine whether there’s been a statistically significant trend in the area burned over the years
1990-2010. Give the equation of the fitted regression line and the results of the t test for the slope,
and state the conclusion of the test.

d) Compute the coefficient of determination R2 between the area burned and year. What proportion of
the variation in area burned can be explained by the time trend?
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12.13 Yellowstone Lake is located in the southeastern part of Yellowstone National Park and covers an
area about 136 mi2 (352 km2) depending on the level of water in the lake.

The water level in Yellowstone Lake varies from year to year in response to differences in the winter’s
snowpack accumulation, spring precipitation, and air temperatures. Restriction at the outlet of the lake
retards the outflow, and water backs up in the lake during periods of high inflow. The U.S. Geological
Survey started publishing Yellowstone Lake elevations in 1922 and outflows in 1926.

The table shows the maximum daily outflow (cubic feet per second) and maximum daily elevation (feet,
as measured on Bridge Bay staff gage) for each of the years 1926 - 2001. [3].
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Yellowstone Lake, 1926-2001

Year Maximum Daily Output Maximum Daily Elevation
1926 3200 3.67
1927 7420 6.12
1928 5689 5.25
1929 3700 4.00
1930 3780 3.95
1931 2480 3.20
1932 5570 5.00
1933 4520 4.42
1934 1740 2.40
1935 4360 4.40
1936 4690 4.53
1937 3590 3.84
1938 5950 5.32
1939 3230 3.68
1940 3590 4.04
1941 2750 3.48
1942 3890 4.41
1943 6900 6.26
1944 3450 4.03
1945 3940 4.48
1946 3700 4.20
1947 4490 4.78
1948 5580 5.45
1949 5260 5.15
1950 6120 5.76
1951 5090 5.18
1952 5340 5.25
1953 4240 4.58
1954 5580 5.52
1955 4090 4.66
1956 7570 6.54
1957 5270 5.32
1958 3500 4.24
1959 5590 5.47
1960 3210 4.05
1961 3690 4.43
1962 5780 5.73
1963 5230 5.50
1964 6420 6.06
1965 6820 6.47
1966 3570 4.64
1967 6590 6.28
1968 4600 5.28
1969 4500 5.24
1970 6460 6.33
1971 8140 7.06
1972 6880 6.38
1973 3460 4.37
1974 9120 7.34
1975 6360 6.06
1976 5380 5.68
1977 2130 3.45
1978 5400 5.74
1979 3710 4.78
1980 3770 4.78
1981 4250 5.09
1982 7670 7.00
1983 4700 5.40
1984 5080 5.74
1985 3470 4.66
1986 7360 7.01
1987 2000 3.55
1988 2150 3.70
1989 4470 5.20
1990 4290 4.95
1991 5670 5.74
1992 2780 3.94
1993 4700 5.04
1994 3000 3.92
1995 5730 5.70
1996 8730 7.08
1997 9930 7.72
1998 4750 5.20
1999 6720 6.44
2000 4250 4.94
2001 2520 3.56

Plots of the data are below.

a) Is there a correlation between the maximum daily outflow and maximum daily elevation? Calculate
the correlation and carry out a t test to decide if the correlation is statistically significantly different
from zero.

b) Carry out a linear regression analysis, with maximum daily outflow as the response and year as the
predictor, to determine whether there’s been a statistically significant trend in the maximum daily
outflow over the years 1926-2001. Give the equation of the fitted regression line and the results of
the t test for the slope, and state the conclusion of the test.
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c) Carry out a linear regression analysis, with maximum daily elevation as the response and year as the
predictor, to determine whether there’s been a statistically significant trend in the maximum daily
elevation over the years 1926-2001. Give the equation of the fitted regression line and the results of
the t test for the slope, and state the conclusion of the test.

d) Compute the coefficient of determination R2 between the maximum daily elevation and year. What
proportion of the variation in maximum daily elevation can be explained by the time trend?

12.14 In a study of the increase in solid waste resulting from rapid urban population growth in the Port
Harcort metropolitan area of Nigeria, the size (number of residents) and annual refuse generation (metric
tons per year) per household was determined for a sample of 46 households in the area [14]. A two-stage
sampling scheme was used. In the first stage, 46 streets were randomly selected, and in the second, a single
household was randomly selected from each of the 46 streets. The data are below.



12.8. PROBLEMS 489

Household Refuse in Nigeria

Address of House Household Size Annual Refuse
Ikwerre Road/465 12 5.6
Okpowu-Obasi/010 7 2.7
Worlu Street/013 5 2.0
Omachi Street/027 8 4.1
Eligbolo Road/266 11 5.3
Rumuagholu Road/159 9 4.5
Ovunwo Street/005 7 3.0
Nwachukwu Street/019 10 4.9
Worlu Eguma Street/015 8 3.0
David Ejekwu Street/020 6 2.8
Chinda Street/033 9 4.3
Rumuomoi/Orosi Road/115 11 5.1
Owhor Street/032 7 2.8
Obi Wali Road/108 6 2.0
Kesiolu Street/016 9 4.1
Mgbouba-Choba Road/305 7 2.5
Ehio Street/008 5 2.0
Ogbogoro Road/099 12 5.8
Kala Street/017 10 5.2
Ebara Street/049 9 5.0
Orazi Road/051 7 2.3
Eligbam Road/063 8 2.9
Rumuola Road/253 10 4.7
Mbarajah Street/021 12 5.5
PHC-Aba Express Road/378 9 4.0
Arochukwu Street/092 11 5.6
Uyo Street/036 8 2.7
Market Road/119 10 5.3
Bende Street/101 9 4.2
Geodetic Street/052 7 2.4
Wopara Street/014 6 2.1
Ekere Street/018 5 2.2
Enugu Street/003 8 2.5
Woji Road/367 10 5.1
Obadiah Street/030 9 3.9
Elitor Street/007 11 5.0
Ihunwo Street/012 8 3.8
Peace Crescent/009 6 2.6
Unity Avenue/001 5 2.1
Rumuibekwe Road/118 10 5.0
Old Aba Road/201 12 5.7
Okporo Rumuodara Road/204 9 4.0
Elelenwo Road/318 11 5.2
Rumuokwurusi-Igwuruta Road/476 10 4.8
Oroigwe Road/086 8 3.6
Eneka-Rukpokwu Road/011 6 2.4

a) Carry out a linear regression analysis, with annual refuse as the response and household size as the
predictor, to estimate how much additional refuse is generated for each additional household resident.
Give the equation of the fitted regression line and state the estimated amount by which the annual
refuse increases per additional resident.

b) Compute a 95% confidence interval for the true (unknown) amount of additional refuse that’s gen-
erated for each additional resident in a household.

12.15 Each solid waste disposal facility in California that’s required to have a permit must pay a fee for
each ton of nonhazardous solid waste landfilled at the facility. The table below shows amounts of waste
(in thousands of tons) subject to the fee, as reported by the disposal facilities in several counties.
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Landfilled Waste
Inyo Los Angeles Monterey San Mateo Santa Barbara

Year County County County County County
1990 15 12879 458 850 474
1991 22 11848 415 860 452
1992 20 12088 409 876 424
1993 9 11519 415 879 407
1994 12 12344 431 843 397
1995 12 11613 444 849 431
1996 8 10649 436 915 438
1997 17 9563 453 874 434
1998 15 10082 481 954 448
1999 12 10313 458 915 432
2000 16 10408 458 1002 414
2001 17 10134 439 953 392
2002 19 9227 439 857 338
2003 15 9441 445 789 415
2004 13 9361 518 773 422
2005 22 9852 568 397 429
2006 18 10045 545 748 390
2007 18 9162 525 696 377

Each county name refers to the county in which the waste facilities are located. The actual waste may have
been generated elsewhere. In this problem, we’ll decide if there’s been a trend in Los Angeles County’s
landfilled waste.

a) Make a scatterplot of the waste landfilled in Los Angeles County (y) versus year (x).

b) Compute the least squares regression line. Give the equation of the line and graph it in the scatterplot
of part a.

c) Based on the fitted regression line, by how much did the landfilled waste in Los Angeles County
decrease in a typical year between 1990 to 2007?

d) Is the trend described in part c statistically significant? State the relevant hypotheses, give the
observed value of the test statistic and the p-value, and state the conclusion using level of significance
α = 0.05.

e) Check the assumption of normality of the error term ε in the linear regression model by making a
normal probability plot and a histogram of the residuals. Does the normality assumption appear to
be met?

12.16 Refer to the data on solid waste disposal in California counties given in Problem 12.15. In this
problem we’ll investigate the trend in landfilled waste in Monterey County.

a) Make a scatterplot of the waste landfilled in Monterey County versus year.

b) Compute the least squares regression line. Give the equation of the line and graph it in the scatterplot
of part a.

c) Based on the regression line computed in part b, by how much did the landfilled waste in Monterey
County increase in a typical year between 1990 to 2007?

12.17 Refer to the data on solid waste disposal in California counties given in Problem 12.15. In this
problem we’ll investigate the trend in landfilled waste in Inyo County.

a) Make a scatterplot of the waste landfilled in Inyo County versus year.

b) Compute the least squares regression line. Give the equation of the line and graph it in the scatterplot
of part a.
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c) Carry out a hypothesis test to decide if there was a statistically significant trend in the amount of
landfilled waste in Inyo County between 1990 to 2007 (state the hypotheses, give the value of the
test statistic and the p-value, and state the conclusion using level of significance α = 0.05).

d) Check the assumption that the error term ε in the linear regression model follows a normal distribution
by making a histogram or normal probability plot of the residuals.

12.18 Refer to the data on solid waste disposal in California counties given in Problem 12.15. In this
problem we’ll investigate the trend in landfilled waste in San Mateo County.

a) Make a scatterplot of the solid waste landfilled in San Mateo County versus year.

b) Compute the least squares regression line. Give the equation of the line and graph it in the scatterplot
of part a.

c) Based on the fitted regression line, by how much did the landfilled waste in San Mateo County
decrease in a typical year between 1990 to 2007?

d) Is the trend described in part c statistically significant? State the relevant hypotheses, give the
observed value of the test statistic and the p-value, and state the conclusion using level of significance
α = 0.05.

e) Refer to the scatterplot of part a. Explain why the fitted regression line and results of the hypothesis
test of part d don’t adequately describe the trend in landfilled waste in this county.

12.19 Refer to the data on solid waste disposal in California counties given in Problem 12.15. In this
problem we’ll investigate the trend in landfilled waste in Santa Barbara County.

a) Make a scatterplot of the waste landfilled in Santa Barbara County versus year.

b) Compute the least squares regression line. Give the equation of the line and graph it in the scatterplot
of part a.

c) Carry out a hypothesis test to decide if there was a statistically significant trend in the amount of
landfilled waste in Santa Barbara County between 1990 to 2007 (state the hypotheses, give the value
of the test statistic and the p-value, and state the conclusion using level of significance α = 0.05).

d) Check the assumption that the error term ε in the linear regression model follows a normal distribution
by making a histogram or normal probability plot of the residuals.

12.20 The Columbia River and its drainage basin in the northwestern U.S. lie within one of the world’s
largest regions of economic mineral deposits. Industrial mining and ore processing to recover lead, zinc,
and silver have been prominent in the region since the early 1900’s, and have resulted in the release of
effluent from smelters containing large amounts of heavy metals into the Columbia River.

Measures to reduce heavy metal releases into the river were implemented in the 1970’s, and in the early
1980’s improvements in wastewater treatment and termination of much of the mining and smelting oper-
ations led to a vast reduction in metals released into the river.

A study was conducted to examine the effects of these mitigation measures on metal concentrations in
Columbia River sediments [10]. Because sediment accumulation in calm areas of the river can provide
a chronological record of the changes in metal concentrations over time, sediment cores were taken from
behind two dams, the Priest Rapids Dam and the McNary Dam. The table below shows the mean heavy
metal concentrations (in ppm) in sediment cores from behind the Priest Rapids Dam, as well as the assigned
dates based on depth in the cores.
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Assigned Cu Zn As Ag Cd Pb
Depth Age/Date (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

1.2 1997 57 560 5.7 0.28 7.1 42
3.8 1994 60 620 4.4 0.34 7.9 49
6.4 1990 66 690 2.9 0.34 9.0 53
9.0 1986 59 780 <0.1 0.34 10.5 58

11.4 1983 59 870 <0.1 0.36 11.5 66
14.0 1980 48 1030 <0.1 0.20 13.0 58
16.6 1976 45 1020 <0.1 0.19 13.0 70
19.1 1972 45 1010 <0.1 0.21 12.1 77
21.7 1969 52 1200 <0.1 0.28 14.0 110
25.4 1966 44 840 <0.1 0.20 12.1 100

a) Make a scatterplot of the zinc (Zn) concentrations versus year.

b) Compute the least squares regression line and graph the line in the scatterplot of part a.

c) Write out the equation of the fitted regression line.

d) Based on the fitted regression line, by how much did the Zn concentration decrease per year, on
average?

e) Carry out a hypothesis test to decide if there was a statistically significant trend in Zn concentration
over time (state the hypotheses, give the value of the test statistic and the p-value, and state the
conclusion using level of significance α = 0.05).

f) Calculate a 95% confidence interval for the slope β1 of the true regression line.

g) Check the assumption that the error term ε in the linear regression model follows a normal distribution
by making a histogram or normal probability plot of the residuals.

12.21 Refer to the study of heavy metals in sediments of the Columbia River described in Problem 12.20.

a) Make a scatterplot of the cadmium (Cd) concentrations versus year.

b) Compute the least squares regression line and graph the line in the scatterplot of part a.

c) Write out the equation of the fitted regression line.

d) Based on the fitted regression line, by how much did the Cd concentration decrease per year, on
average?

e) Carry out a hypothesis test to decide if there was a statistically significant trend in Cd concentration
over time (state the hypotheses, give the value of the test statistic and the p-value, and state the
conclusion using level of significance α = 0.05).

f) Calculate a 95% confidence interval for the slope β1 of the true regression line.

g) Check the assumption that the error term ε in the linear regression model follows a normal distribution
by making a histogram or normal probability plot of the residuals.

12.22 Refer to the study of heavy metals in sediments of the Columbia River described in Problem 12.20.

a) Make a scatterplot of the lead (Pb) concentrations versus year.

b) Compute the least squares regression line and graph the line in the scatterplot of part a.

c) Write out the equation of the fitted regression line.

d) Based on the fitted regression line, by how much did the Pb concentration decrease per year, on
average?



12.8. PROBLEMS 493

e) Carry out a hypothesis test to decide if there was a statistically significant trend in Pb concentration
over time (state the hypotheses, give the value of the test statistic and the p-value, and state the
conclusion using level of significance α = 0.05).

f) Calculate a 95% confidence interval for the slope β1 of the true regression line.

g) Check the assumption that the error term ε in the linear regression model follows a normal distribution
by making a histogram or normal probability plot of the residuals.

12.23 Refer to the study of heavy metals in sediments of the Columbia River described in Problem 12.20.

a) Make a scatterplot of the silver (Ag) concentrations versus year.

b) Compute the least squares regression line and graph the line in the scatterplot of part a.

c) Write out the equation of the fitted regression line.

d) Based on the fitted regression line, by how much did the Ag concentration increase per year, on
average?

e) Carry out a hypothesis test to decide if there was a statistically significant trend in Ag concentration
over time (state the hypotheses, give the value of the test statistic and the p-value, and state the
conclusion using level of significance α = 0.05).

f) Calculate a 95% confidence interval for the slope β1 of the true regression line.

g) Check the assumption that the error term ε in the linear regression model follows a normal distribution
by making a histogram or normal probability plot of the residuals.

12.24 Refer to the study of heavy metals in sediments of the Columbia River described in Problem 12.20.

a) Make a scatterplot of the copper (Cu) concentrations versus year.

b) Compute the least squares regression line and graph the line in the scatterplot of part a.

c) Write out the equation of the fitted regression line.

d) Based on the fitted regression line, by how much did the Cu concentration increase per year, on
average?

e) Carry out a hypothesis test to decide if there was a statistically significant trend in Cu concentration
over time (state the hypotheses, give the value of the test statistic and the p-value, and state the
conclusion using level of significance α = 0.05).

f) Calculate a 95% confidence interval for the slope β1 of the true regression line.

g) Check the assumption that the error term ε in the linear regression model follows a normal distribution
by making a histogram or normal probability plot of the residuals.

12.25 Organic fluorochemical compounds such as perfluorooctane sulfonate (PFOS) are used in a variety
of applications such as lubricants, fire retardants and pesticides. A field study was conducted to find out
if a new method for measuring trace amounts of PFOS is effective in identifying sources of PFOS in the
environment [6].

PFOS (ng/L) was measured every two miles along an 80 mile stretch of the Tennessee River near a
fluorochemical manufacturing site in Decatur, AL, starting from mile marker 337 (furthest upstream) to
mile marker 261. Discharge from the fluorochemical manufacturing facility enters the river at mile marker
301.
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Mile marker River depth (ft) Conductance PFOS
337 14 184 27.8
335 36 183 28.9
333 20 184 28.8
331 20 184 25.8
329 28 183 36.9
327 38 186 16.8
325 39 184 27.4
323 40 185 31.0
321 20 184 26.9
319 37 184 22.3
317 26 184 21.8
315 22 185 21.4
313 21 185 18.4
311 20 185 31.6
309 19 186 51.9
307 24 184 52.6
305 22 184 37.1
303 33 185 39.4
301 24 184 54.1
299 23 186 37.3
297 25 185 30.3
295 23 188 74.8
293 26 187 96.4
291 20 187 98.0
289 21 186 107
287 18 185 136
285 28 183 140
283 29 178 106
281 32 180 134
279 46 182 106
277 26 187 112
275 50 191 144
273 19 183 92.3
271 24 185 110
269 38 191 105
267 48 199 119
265 55 201 133
263 70 202 127
261 75 201 119

a) Make a time series plot of PFOS versus mile marker.

b) Describe how the plot provides evidence of a PFOS discharge from the fluorochemical manufacturing
facility.

c) Suggest a two-sample hypothesis test for deciding if there is statistically significant evidence that the
PFOS concentration is higher downstream of the fluorochemical facility than upstream.

12.26 Thermal spraying is an industrial process by which metals such as aluminum, nickel, and chromium
are heated and sprayed along with other non-metallic materials onto surfaces such as automobile engines,
aircraft bodies and engines, and bridges, to create a protective coating.

The data in the table below are measurements of aluminum, nickel, and chromium in the blood (µg/L)
and urine (µg/g creatinine) of a 42 year old man employed as a thermal sprayer who was exposed to fumes
for 6 hours when an exhauster malfunctioned. The metals were measured five times over a period of 1 year
following the accident [16].

Time after Al in Al in Ni in Ni in Cr in Cr in
exposure (days) blood urine blood urine blood urine

15 8.2 58.4 59.6 700 1.4 7.4
85 5.0 35.4 15.2 122 1.2 3.6
145 5.1 31.4 5.6 45 <0.5 1.7
272 2.6 15.1 3.4 23 0.9 1.6
365 1.8 10.5 2.2 21 <0.5 1.1
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The measurements denoted ”<0.5” are so-called nondetects, and refer to measurements whose exact values
are known only to be less than the detection limit of 0.5 µg/L.

a) The authors of the cited study suggest that the Al in the blood exhibits a nonlinear exponential
decay over time. Make a scatterplot of the Al in the blood versus time and comment on the pattern
in the plot.

b) One way to ”straighten out” (make more linear) the relationship between Al in the blood and time is
to take the log of the Al measurements. Make a scatterplot of the log of the blood Al measurements
versus time and comment on the pattern in the plot.

c) Fit the least squares regression line to the log of the Al blood measurements and graph the line in
the scatterplot of part b.

d) Calculate the coefficient of determination R2 between the log of the Al blood measurements and
time.

e) Based on the value of R2 calculated in part d, does the straight line model adequately describe the
relationship between the Al level in blood and time? Explain your answer.

12.27 Refer to the study of metals in the blood and urine of the 42 year old man exposed to the metals
in a thermal spraying accident described in Problem 12.26.

a) The authors of the cited study suggest that the Al in the urine exhibits a nonlinear exponential decay
over time. Make a scatterplot of the Al in the urine versus time and comment on the pattern in the
plot.

b) One way to ”straighten out” (make more linear) the relationship between Al in the urine and time is
to take the log of the Al measurements. Make a scatterplot of the log of the urine Al measurements
versus time and comment on the pattern in the plot.

c) Fit the least squares regression line to the log of the Al urine measurements and graph the line in
the scatterplot of part b.

d) Calculate the coefficient of determination R2 between the log of the Al urine measurements and time.

e) Based on the value of R2 calculated in part d, does the straight line model adequately describe the
relationship between the Al level in urine and time? Explain your answer.
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