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Chapter 13

Multiple Linear Regression

Chapter Objectives

• State and interpret the multiple regression model.
• Obtain and interpret estimates of model coefficients.
• Obtain and interpret fitted values and residuals associated with a fitted multiple regression model.
• Interpret sums of squares, degrees of freedom, and mean squares.
• Interpret the R2 associated with a fitted multiple regression model and use it to assess how well the

model fits the data.
• Carry out t tests for the coefficients in a multiple regression model.
• Obtain t confidence intervals for the coefficients in a multiple regression model.
• Carry out a regression model F test.
• Decide whether the t tests (and F test) associated with a multiple regression analysis are appropriate

for a given set of data.
• Recognize multicollinearity and describe the main consequences of performing multiple regression in

the presence of multicollinearity.
• Use the adjusted R2 and the Akaike Information Criterion (AIC) to compare suitabilities of models

containing different sets of explanatory variables.

Key Takeaways

• A multiple regression analysis is used to estimate the equation of a linear relationship between a
response variable and multiple numerical explanatory variables. Non-linear patterns in data can be
transformed to linear ones prior to conducting the analysis.
• A t test for a coefficient is a test for whether there’s a linear relationship between the response variable

and a particular explanatory variable, holding the other explanatory variables constant.
• The model F test is a test for whether there’s a linear relationship between the response variable

and at least one of the explanatory variables.
• Both the t and F tests require either that the response variable is normally distributed or the sample

size is large. A log transformation can make a right-skewed response variable more normal prior to
conducting a t or F test.
• A multiple regression model describes variation in a response variable in terms of multiple numerical

explanatory variables. It contains two parts: one representing non-random variation due to the linear
relationship to the explanatory variables and another representing random variation (random error).
• Sums of squares in multiple regression are statistics that measure variation in the observed values

of a response variable due to the linear relationship to the explanatory variables and due to random
error.
• Mean squares are another way to measure variation. They’re obtained by dividing sums of squares
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476 CHAPTER 13. MULTIPLE LINEAR REGRESSION

by their degrees of freedom. The degrees of freedom associated with a sum of squares is determined
by how many of its squared deviations are ”free to vary.” The values of two mean squares are directly
comparable, but the values of two sums of squares aren’t necessarily comparable.
• The R2 is a statistic that measures how well a fitted multiple regression model fits the data. Expressed

as a percent, its value is interpreted as the percent of variation in the response variable that’s explained
by variation in the explanatory variables. A larger R2 value indicates a better fitting model. The R2

value always increases as more explanatory variables are added to the model.
• The regression model F test statistic is a ratio of two mean squares. Its numerator measures variation

that’s due to the explanatory variables and its denominator variation that’s due to random error.
• The t test statistic for a coefficient indicates how many standard errors away from zero the estimate

of the coefficient lies.
• Multicollinearity refers to correlations among explanatory variables. The main consequence of per-

forming multiple regression in the presence of multicollinearity is that it can lead to unreliable
estimates of model coefficients.
• The adjusted R2 is a statistic that measures how well a multiple regression model fits the data,

adjusting for how many explanatory variables are contained in the model. A larger adjusted R2

value indicates a better fitting model, but the value doesn’t always increase as more explanatory
variables are added to the model.
• Either the the adjusted R2 or the AIC statistic can be used to compare suitabilities of two or more

multiple regression models that differ by the sets of explanatory variables they contain.
• Automated (e.g. stepwise) variable selection procedures can assist with the task of deciding which

explanatory variables to include in a model.

13.1 Introduction

In environmental studies, it’s often the case that a single explanatory variable doesn’t adequately explain
the variation in the response variable, and instead multiple explanatory variables are needed. In this
chapter, we look at methods for analyzing data consisting of a response variable and multiple numerical
explanatory variables. We saw how to analyze data for which there were two categorical explanatory
variables (factors) in Chapter 11.

13.1.1 Uses for Multiple Linear Regression

Some reasons for including more than one predictor in a regression model include:

• The model that includes the additional predictor may end up explaining substantially more of the
variation in Y , thereby producing more precise predictions of Y values.

• Including multiple predictors in the model allows us to study the effect of one predictor on Y while
controlling for the effects of the other predictors.

• The model that includes more than one predictor can be used to investigate how Y responds to
simultaneous changes in the predictors.

The following example illustrates the first two of these reasons. Example 13.5 illustrates the third.

Example 13.1: Uses for Multiple Regression

The scatterplot below shows, for the metropolitan areas of 28 U.S. cities, the water consumption (log
of millions of liters/day) for commercial, industrial, and residential uses versus the median income
(standardized as a z-score), which serves as a measure of the city’s wealth [4].
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Figure 13.1: Scatterplot of water usage (log of millions of liters/day) versus wealth (z-score of the
city’s median income) for 28 U.S. metropolitan areas.

The data are shown below. Included are the cities’ populations (in 2000).

Water Usage for U.S. Metropolitan Areas

City Water Usage Population Wealth
New York 9.17 21,286,485 2.787
Los Angeles 9.14 16,373,645 0.108
Chicago 8.43 9,157,540 -0.231
DC/Baltimore 8.11 6,484,212 1.819
San Francisco 8.01 6,262,629 1.890
Detroit/Ann Arbor 7.88 5,456,428 0.271
Dallas 7.87 5,221,801 0.358
Atlanta 7.57 4,265,642 0.901
Seattle 7.60 3,554,760 -0.333
Miami 7.56 3,876,380 -0.496
Phoenix 7.63 3,251,876 0.063
Minneapolis 6.84 2,968,806 0.877
Denver 7.20 2,581,506 0.745
Pittsburgh 6.68 2,516,960 -1.324
St. Louis 6.73 2,225,418 0.040
Portland/Salem 7.05 2,265,223 -0.426
San Antonio 6.66 1,592,383 -1.289
Salt Lake City 6.98 1,333,914 -1.217
Las Vegas 7.11 1,563,282 0.123
Providence 6.17 1,497,564 0.003
Jacksonville 6.01 1,100,491 -0.298
Dayton/Springfield 6.09 950,558 -0.322
Albany/Schenectady 6.12 875,583 0.148
Albuquerque 6.29 712,738 -0.536
Omaha 6.04 716,998 -0.364
Little Rock 5.71 583,845 -0.878
Stockton 5.74 563,598 -0.923
Mobile 6.41 540,258 -1.496

The equation of the fitted regression line shown in the scatterplot is

Ŷ = 7.10 + 0.584X,

Thus we estimate that the log of a city’s water usage will be about 0.584 units higher, on average,
for every increase of one standard unit in its median income. The 28 cities are very different in size
though, ranging from rather small (Mobile, AL, pop. 540,258) to very large (New York, NY, pop.
21,286,485). There are two main reasons why we may want to include population as a predictor
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along with wealth in a model describing water consumption.

First, notice in Fig. 13.1 that there’s substantial variation away from the regression line, so the
prediction of a city’s water usage based on its wealth alone won’t be very reliable. The deviations
away from the line are due to the fact that wealth isn’t the only factor that determines how much
water a city uses. Among the other factors is the size of the city: larger cities use more water.
Clearly, incorporating information about a city’s size would make the prediction of its water usage
more reliable. Example 13.10 will show that the excess variation away from the line is reduced
substantially when city size is included in the statistical model.

The second reason for including population in the model is to control for its effect on water usage
while investigating the effect of wealth on water usage. It turns out that wealthier cities tend to be
larger. A direct comparison of the water usage for a high-income city to that of a low-income one
isn’t valid if the high-income city is much larger. A better approach, if the goal is to find out if
wealth impacts water usage, would be to compare the water usages of high- and low-income cities
that are the same size, that is, while holding size constant. By including population as a predictor in
the model, we’re able to do just that – investigate the relationship between water usage and wealth
while holding city size constant. This will be illustrated further in Examples 13.8 and 13.19.

In the last example, because wealthier cities tend to be larger, the effect of wealth on a city’s water
usage is confounded with the effect of city size (see Chapter 2 for a discussion of confounding). Thus
one way to control for the effects of confounding variables is to include them in the statistical model. We’ll
return to this point in Section 13.18.

13.1.2 Notation

In this chapter, we’ll use multiple regression to investigate the relationship between a response variable Y
and two or more predictor variables X1, X2, . . . , Xp, with p denoting the number of predictor variables.

Example 13.2: Multiple Regression Notation

Efficient design of municipal waste incinerators requires knowing the energy content of the waste
that’s to be incinerated. To investigate the relationship between the energy content of waste and
the composition of the waste, the following variables were measured on each of 30 waste specimens
[6]:

Y = Energy content (kcal/kg)

X1 = Percent plastics by weight
X2 = Percent paper by weight
X3 = Percent garbage by weight
X4 = Percent moisture by weight

The data are below.
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Municipal Waste Composition

Waste Energy
Specimen Content Plastics Paper Garbage Water

1 947 18.69 15.65 45.01 58.21
2 1407 19.43 23.51 39.69 46.31
3 1452 19.24 24.23 43.16 46.63
4 1553 22.64 22.20 35.76 45.85
5 989 16.54 23.56 41.20 55.14
6 1162 21.44 23.65 35.56 54.24
7 1466 19.53 24.45 40.18 47.20
8 1656 23.97 19.39 44.11 43.82
9 1254 21.45 23.84 35.41 51.01
10 1336 20.34 26.50 34.21 49.06
11 1097 17.03 23.46 32.45 53.23
12 1266 21.03 26.99 38.19 51.78
13 1401 20.49 19.87 41.35 46.69
14 1223 20.45 23.03 43.59 53.57
15 1216 18.81 22.62 42.20 52.98
16 1334 18.28 21.87 41.50 47.44
17 1155 21.41 20.47 41.20 54.68
18 1453 25.11 22.59 37.02 48.74
19 1278 21.04 26.27 38.66 53.22
20 1153 17.99 28.22 44.18 53.37
21 1225 18.73 29.39 34.77 51.06
22 1237 18.49 26.58 37.55 50.66
23 1327 22.08 24.88 37.07 50.72
24 1229 14.28 26.27 35.80 48.24
25 1205 17.74 23.61 37.36 49.92
26 1221 20.54 26.58 35.40 53.58
27 1138 18.25 13.77 51.32 51.38
28 1295 19.09 25.62 39.54 50.13
29 1391 21.25 20.63 40.72 48.67
30 1372 21.62 22.71 36.22 48.19

We’ll explore these data graphically in Example 13.3, and in Example 13.4 we’ll summarize the
relationships between the variables by their correlations. An objective of the study was to use the
data to develop a model for predicting energy content from the p = 4 predictor variables. In Example
13.7 we’ll fit the multiple regression model to the data, and in Example 13.9 we’ll assess how well it
fits.

Note that for each of the waste specimens in the last example, all four predictors were measured along
with the response. Data for which more than one variable is measured on each of n individuals are referred
to as multivariate data. We store the data (for use with statistical software) in columns as below.

Observation Y X1 X2 · · · Xp

1 Y1 X11 X21 · · · Xp1

2 Y2 X12 X22 · · · Xp2

3 Y3 X13 X23 · · · Xp3
...

...
...

...
...

...
n Yn X1n X2n · · · Xpn

As shown above, we use the notation

p = The number of predictor (explanatory) variables X1, X2, . . . , Xp.
n = The number of individuals upon which X1, X2, . . . , Xp and Y are measured,

or sample size.
Yi = The value of the response variable for the ith individual.
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X1i,X2i, . . . ,Xpi = The values of the p predictor variables X1, X2, . . . , Xp for
the ith individual.

For a single individual, the set of response and predictor variable values is referred to as a multivariate
observation. In the municipal waste example, there are n = 30 multivariate observations, each represented
by a row in the data table.

13.1.3 Summarizing and Graphing Multivariate Data

The first step in analyzing a multivariate data set is to explore the data using graphics and summary
statistics. Conventional univariate methods (means, standard deviations, histograms, boxplots, etc.)
can be performed separately on each variable, but multivariate methods, which involve more than one
variable at a time, are needed to explore the interrelationships among the variables.

Scatterplot Matrices

One of the most useful graphical displays for multivariate numerical data is a scatterplot matrix, which
consists of scatterplots of the variables in a multivariate data set taken, two at a time, arranged in rows
and columns of an array.

Example 13.3: Scatterplot Matrices

The scatterplot matrix for the municipal waste data of Example 13.2 is shown below.

EnergyContent

14 18 22

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

● ● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●● ●

●

●

● ●

35 45

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

● ●●

●

●

●●

10
00

14
00

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

● ● ●

●

●

●●

14
18

22

●
●●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●●

Plastics
●

●●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●
●

●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

● Paper

●

●
●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

15
20

25
30

●

●
●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

35
45 ●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●
●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●
●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●●
●

●
●

●

●
●

●

Garbage
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●
●

●

●

●●
●

●
●

●

●
●

●

1000 1400

●

●●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●● ●

●

●

●

●
●

●●

●

●● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●● ●

●

●

●

●
●

●●

15 20 25 30

●

●●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●●●

●

●

●

●
●

● ●

●

● ●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

● ●

● ●●

●

●

●

●
●

●●

44 50 56

44
50

56

Water

Scatterplot Matrix of Municipal Waste Data

Figure 13.2: Scatterplot matrix of the variables in the municipal waste data set.

The labels along the diagonal refer to the axes in the scatterplots. For example, the y-axis of the
scatterplots in the entire first row is energy content, and the x-axis for plots in the entire fifth
column is water.

Each of the plots below the diagonal shows the same two variables as one of the plots above it, but
with the axes transposed. Thus, for example, the plot in the third row, second column shows the
same two variables (plastics and paper) as the one in the third column, second row, but their axes
are transposed.
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Correlation Matrices

A correlation matrix is just an array (table) showing, in rows and columns, the correlations corresponding
to the plots in the scatterplot matrix.

Example 13.4: Correlation Matrices

Here’s the correlation matrix for the municipal waste data.

Energy
Content Plastics Paper Garbage Water

Energy Content 1.00 0.59 0.04 -0.09 -0.90
Plastics 0.59 1.00 -0.15 -0.09 -0.26

Paper 0.04 -0.15 1.00 -0.63 -0.01
Garbage -0.09 -0.09 -0.63 1.00 0.07

Water -0.90 -0.26 -0.01 0.07 1.00

The table entries are correlations, with row and column labels indicating the variables. For example,
the rightmost entry in the top row, r = −0.90, is the correlation between energy content and
percent water, and corresponds to the scatterplot in the same position of the scatterplot matrix of
Example 13.3.

The entries along the diagonal are correlations between variables and themselves, and hence equal
to 1.0. The matrix is symmetric about its diagonal, meaning the value in the ith row, jth column is
the same as the one in the jth row, ith column, because the correlation between, say, energy content
and water is the same as that between water and energy content.

Three-Dimensional Scatterplots

A useful way to plot values of a response variable versus two predictors is in a three-dimensional scat-
terplot, where each of the two horizontal axes in a three-dimensional coordinate system correspond to a
predictor and the vertical axis corresponds to the response. Unlike a scatterplot matrix, which only shows
how the response variable is related to the predictors one at a time, a scatterplot matrix shows how it’s
related to them simultaneously.

Example 13.5: Three-Dimensional Scatterplot

Streams and lakes contain dissolved oxygen that supports fish and other aquatic life. But organic
pollutants consume dissolved oxygen when they chemically degrade via oxidation.

The chemical oxygen demand (COD) of a water supply is the amount of oxygen that would be
needed to chemically degrade the organic compounds contained in the water. It’s used an indirect
measure of organic pollution that includes chemicals, petroleum, and solvents.

In the study of pollutants in highway runoff in the Pear River Delta, South China described in
Example 8.7 of Chapter 8, COD (mg/L) was measured in runoff for each of n = 18 rainfall events
[2]. Also recorded were the rain depth (mm) and the length of the antecedent dry period (days).
The data are below.
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Chemical Oxygen Demand in Highway Runoff

Rainfall Rainfall Rain Antecedent
Event Date COD Depth Dry Period

1 9/25/05 296 4.1 0.83
2 2/26/06 256 9.0 7.83
3 3/22/06 518 6.7 0.43
4 4/06/06 451 3.6 6.38
5 4/23/06 469 2.9 10.57
6 5/17/06 323 3.4 6.66
7 6/15/06 161 9.6 0.73
8 7/15/06 336 28.6 4.87
9 7/16/06 119 19.6 0.16
10 7/25/06 379 10.9 6.22
11 7/26/06 75 27.2 0.98
12 4/06/06 177 18.5 6.35
13 4/23/06 295 17.6 10.57
14 5/02/06 93 8.5 0.68
15 5/06/06 29 26.8 1.17
16 5/10/06 46 20.3 3.81
17 5/31/06 37 16.3 0.38
18 6/12/06 77 1.3 2.54

We’ll consider COD to be the response variable and investigate its relationship to the two predictors,
rain depth and antecedent dry period. Thus

Y = COD

X1 = Rain depth
X2 = Antecedent dry period

The scatterplot matrix of the data is shown below.
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Figure 13.3: Scatterplot matrix of the variables in the highway runoff data set.

From the scatterplot matrix, we see that COD has a slight negative relationship to rain depth and
a slight positive relationship to antecedent dry period. We also see that there’s no relationship
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between the two predictors, rain depth and antecedent dry period.

The scatterplot matrix shows the relationships between COD and the predictors one predictor at a
time. The three-dimensional scatterplot below shows it’s relationship to them simultaneously.
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Figure 13.4: Three-dimensional scatterplot of the chemical oxygen demand in highway runoff versus
rain depth and antecedent dry period.

We see from the plot that the COD tends to be highest when the rain depth is small and the
antecedent dry period long. We can fit a plane to the data using the method of least squares
described later in this chapter. This so-called fitted regression plane is shown in the plot below.
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Figure 13.5: Regression plane fitted to the data on COD, rain depth, and antecedent dry period.

With the regression plane fitted to the data, the nature of the relationship between COD and the two
predictors becomes clearer. The upward tilt of the plane in the direction of increasing antecedent
dry period indicates that, for a fixed rain depth, COD tends to increase as the antecedent dry period
increases. Likewise, the downward tilt in the direction of increasing rain depth indicates that, for a
fixed antecedent dry period, COD tends to decrease as the rain depth increases. In Example 13.6
we’ll see the actual equation for the regression plane, and we’ll see how to use it to quantify how
much the COD changes for given changes in rain depth and antecedent dry period.
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13.2 The Multiple Linear Regression Model

As for simple linear regression (Chapter 12), when a response variable exhibits a relationship to predictor
variables, there’s usually an underlying natural process driving that observed pattern, but in the context of
multiple regression, the underlying process can involve more than one predictor variable. For example, the
observed relationship of COD to rain depth and antecedent dry period is driven by the dilution of COD as
rain depth increases and the buildup of organic matter on surfaces during the antecedent dry period. As for
simple linear regression, a common goal of multivariate studies is to draw inferences about the underlying
process that’s driving the pattern in the data, and to achieve this goal we’ll employ a statistical model
that describes the data via the underlying process and then estimate unknown constants in the model
(parameters) using the data.

The model, called the multiple linear regression model, is an extension of the simple linear regres-
sion model that allows for more than one predictor variable, and it captures the ”overall pattern” in the
data while also allowing for ”deviations” away from that ”overall pattern.”

We’ll first look at the model for the case in which there are only two predictors and later (Section
13.2.2) look at the more general case for which there may be more than two.

13.2.1 Multiple Linear Regression Model with Two Predictors

The Equation of a Plane

In a three-dimensional coordinate system, points are represented by the values of the three coordinates, X1,
X2, and Y . A plane such as the one shown in Figure 13.5 can be represented by a function Y = f(X1, X2)
having the form

f(X1, X2) = a+ bX1 + cX2, (13.1)

where a, b, and c are constants that determine, respectively, the height at which the plane intersects the
y-axis, the tilt of the plane in the direction of X1, and tilt in the direction of X2. As an example, the plane
whose equation is

Y = 40 + 2.3X1 + 1.4X2 (13.2)

is shown in Fig. 13.6. The height Y of this plane over any point on the ”floor” of the coordinate system is
obtained by plugging that point’s X1 and X2 values into the right side of (13.2). For example, the height
above the point X1 = 10, X2 = 5 is

Y = 40 + 2.3 (10) + 1.4 (5)

= 70,

which is depicted by the dashed vertical line in Fig. 13.6.
By plugging in X1 = 0 and X2 = 0, we see that the plane intercepts the y-axis at Y = 40. Notice that
the plane tilts upward in the direction of X1 and upward in the direction of X2, but the tilt is steeper in
the X1 direction. In fact, the gradient (slope) along any line in the X1 direction (holding X2 constant) is
2.3, the coefficient of X1 in the equation of the plane, whereas the gradient in the X2 direction is only 1.4,
the coefficient of X2. To see why, suppose we allow X1 to vary but we fix the value of X2 at, say, X2 = 5.
Then Y takes values on the line depicted in Fig. 13.7, and the equation of this line (after replacing X2 by
5 in (13.2)) is

Y = 40 + 2.3X1 + 1.4 (5)

= 47 + 2.3X1

which is seen to have slope 2.3. A similar argument shows that the gradient of the plane in the X2 direction
is 1.4.
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Figure 13.6: The plane whose equation is Y = 40 + 2.3X1 + 1.4X2.
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Figure 13.7: The plane whose equation is Y = 40 + 2.3X1 + 1.4X2 and a line on the plane in the X1

direction (with X2 fixed at 5).

The Multiple Regression Model with Two Predictors

For multivariate data with two predictors, the multiple linear regression model consists of a plane
corresponding to the underlying natural process driving the ”overall pattern” in the data and an error
term corresponding to a ”deviation” away from that ”overall pattern.”

Multiple Regression Model with Two Predictors:

Yi = β0 + β1X1i + β2X2i + εi, (13.3)

where

Yi is the observed value of the response variable for the ith individual
(i = 1, 2, . . . , n).

X1i is the observed value of the first predictor variable (X1) for the ith
individual.

X2i is the observed value of the second predictor variable (X2) for the ith
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individual.
β0 is the y-intercept of the true regression plane.
β1 is the coefficient for X1 in the true regression plane.
β2 is the coefficient for X2 in the true regression plane.
εi is a random error term following a N(0, σ) distribution, and the εi’s are

independent of each other.

The model relates the response variable Y to the two predictors X1 and X2 by way of the so-called true
regression plane, β0 + β1X1 + β2X2. The (unknown) parameters of the model are the coefficients
β0, β1, and β2, representing the y-intercept, gradient in the X1 direction, and gradient in the X2 direction,
respectively, of the true regression plane and σ, the error distribution’s standard deviation. In practice,
their values will be estimated from the data.

As for simple linear regression, the random error ε represents the deviation of Y above or below the
plane resulting from the net effect of all other factors, besides X1 and X2, as well as measurement error. A
COD measurement in highway runoff will deviate above or below the plane due to factors such as traffic
volume prior to the rain storm, types of vehicles using the highway, their conditions, and so on.

The standard deviation σ represents the size of a typical error. In the model, its value doesn’t depend
on X1 or X2, so the amount of variation of Y above or below the plane is assumed to be the same regardless
of the values of the predictors. The model is depicted graphically in the figure below.

X1

X2

Y

●

●

●

ε
Y

(x1,x2)

β0 + β1X1 + β2X2

Figure 13.8: Graphical depiction of the multiple regression model with two predictors.

Comments:

• As for simple linear regression, the multiple regression model can be thought of as describing separate,
distinct populations of Y values, one population for each combination of values of X1 and X2, where
the population means all lie on the plane β0 + β1X1 + β2X2. See Fig. 12.11 in Chapter 12. In the
study of COD in highway runoff, each population would correspond to rainstorm events of a given
rain depth and antecedent dry period. The true regression plane β0 + β1X1 + β2X2 is sometimes
called the true mean response plane.

• The aforementioned Y populations are assumed to be normal and to all have the same standard
deviation σ.

• No assumptions are made about the X1 and X2 variables. Their values don’t even have to be
randomly selected – they can be hand-picked, as would be the case if they were values of two
explanatory variables in a designed experiment.
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• The assumption of normality (and independence) of the ε’s is needed for testing hypotheses about
β0, β1, and β2 and (constructing confidence intervals for them).

Interpretation of the Model Coefficients When There Are Two Predictors

When there are only two predictors in the model, the coefficient β1 is the change in Y associated with
a one-unit increase in X1 while holding X2 constant. Likewise, β2 is the change in Y associated with a
one-unit increase in X2 while holding X1 constant. The signs of the coefficients indicate whether Y tends
to increase or decrease as the predictor increases.

The condition that the other predictor is held constant is especially relevant to investigating the influence
of one predictor on the response while controlling (or ”adjusting”) for the effect of the other one. For
instance, in Example 13.1, we saw that wealthier cities tend to use more water but also tend to be larger, so
the higher water usage could be due to the larger population sizes. To investigate the relationship between
the wealth and water usage while controlling for the population size, we need to include population size in
the model along with wealth. In this case, the coefficient for wealth can be interpreted as the increase in
water usage for each one-unit increase in wealth while population size remains constant. We’ll revisit this
in Example 13.8.

In practice, of course, the (unknown) model coefficients will have to be estimated from the data. We’ll
see how they’re estimated in Section 13.3.

13.2.2 Multiple Linear Regression Model with p Predictors

For multivariate data with more than two predictors, we can no longer use a plane in our statistical model
to represent the ”overall pattern” in the data. But in the same way that we generalized from a line in two
dimensions to a plane in three, we can generalize from a plane in three dimensions to a so-called hyperplane
in more than three. The multiple linear regression model consists of a hyperplane corresponding to
the underlying natural process driving the ”overall pattern” in the data and an error term corresponding
to a ”deviation” away from that ”overall pattern.”

Multiple Linear Regression Model with p Predictors:

Yi = β0 + β1X1i + β2X2i + . . .+ βpXpi + εi, (13.4)

where

Yi is the observed value of the response variable for the ith individual
(i = 1, 2, . . . , n).

X1i, X2i, . . . , Xpi are the observed values of the p predictors for the ith
individual.

β0 is the y-intercept of the true regression mean response.
β1,β2, . . . ,βp are the coefficients for X1, X2, . . . , Xp in the true regression

mean response.
εi is a random error term following a N(0, σ) distribution, and the εi’s are

independent of each other.

Although we can no longer visualize the model using a plane, the p-predictor version of the model has
several features in common with the two-predictor version. The response variable Y is related to the p
predictors via the so-called true regression mean response, β0 + β1X1 + β2X2 + · · · + βpXp. The
(unknown) parameters of the model are the coefficients β0, β1, β2, . . . , βp, representing the y-intercept,
gradient in the X1 direction, gradient in the X2 direction, and so on, and σ, the error distribution’s stan-
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dard deviation. In practice, the parameters will be estimated from the data.

Comments:

• As for the two-predictor case, the multiple regression model can be thought of as describing separate,
distinct populations of Y values, one for each combination of values of X1, X2, . . . , Xp, where the
population means all have the form β0 + β1X1 + β2X2 + · · ·+ βpXp.

• The aforementioned Y populations are assumed to be normal and to all have the same standard
deviation σ.

• No assumptions are made about the variables X1, X2, . . . , Xp. Their values don’t even have to be
randomly selected – they can be hand-picked, as would be the case if they were values of p explanatory
variables in a designed experiment.

• The assumption of normality (and independence) of the ε’s is needed for testing hypotheses about
β0, β1, . . . , βp and (constructing confidence intervals for them).

Interpretation of the Model Coefficients When There Are p Predictors

When there are more than two predictors, the model coefficients are no longer the y-intercept and slopes
of a tilted plane. But other than, that they’re interpreted just as they would be for the two-predictor
case. In particular, for each k = 1, 2, . . . , p, the coefficient βk is the change in Y associated with a one-unit
increase in Xk while holding all of the other predictor variables constant. The signs of the coefficients
indicate whether Y tends to increase or decrease as the predictor increases.

As for the two-predictors case, the condition that the other predictor variables are held constant in
the interpretation of the βk’s means we can investigate the influence of Xk on Y while simultaneously
controlling (or ”adjusting”) for the effects of the other p− 1 predictors.

13.3 Least Squares Estimation of the Model Coefficients

We estimate the (unknown) model coefficients β0, β1, . . . , βp from the data using the method of least
squares introduced in Chapter 12. In the two-predictor case, this means finding a plane for which the
vertical deviations of the points away from it in a three-dimensional scatterplot are small. The plane in
Fig. 13.5 was fitted to the COD data using least squares. When there are more than two predictors, the
idea is the same – we want the deviations away from the hyperplane to be small.

More formally, the least squares estimates of the (unknown) model coefficients, denoted b0, b1, . . . , bp,
give the smallest possible value for the sum of squared deviations

n∑
i=1

[Yi − (b0 + b1X1i + · · ·+ bpXpi)]
2 ,

which can be thought of as measuring how ”close” the fitted multiple regression model

Ŷ = b0 + b1X1 + . . .+ bpXp (13.5)

comes to the observed Y values. The estimated coefficients are computed entirely from the data and are
readily obtainable using statistical software.
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13.4 Using the Fitted Regression Model

The fitted regression model (13.5) serves as the estimate of the true mean response β0 +β1X1 + · · ·+βpXp.
The symbol Ŷ is used instead of Y to remind us that it’s the equation of the fitted regression model, not
the theoretical regression model (13.4). We can use the fitted model to predict values of the response Y
and to draw conclusions about the relationship between the response and the predictors.

Using the Fitted Model to Predict Y : We can predict the response of an individual based on that in-
dividual’s set of values of the predictor variables by plugging those values into the fitted regression equation.

Interpretation of the Estimated Coefficients: The estimated coefficients b1, b2, . . . , bp have the same
interpretation as the true (unknown) coefficients β1, β2, . . . , βp except that they’re estimates. Thus for each
k = 1, 2, . . . , p, the coefficient bk is the estimated change in Y associated with a one-unit increase in Xk

while holding all of the other predictor variables constant, that is while controlling for them. The signs of
the coefficients indicate whether Y tends to increase or decrease as the predictor increases.

Examples 13.6 and 13.7 illustrate prediction and the interpretation of the estimated coefficients. Example
13.8 shows how we use multiple regression to control for the effect of one variable while investigating the
effect of another.

Example 13.6: Using the Fitted Multiple Regression Model

For the highway runoff data of Example 13.5, the response variable is chemical oxygen demand
(COD) and there are p = 2 predictors, rain depth and antecedent dry period. The theoretical
regression model for the data is

Y = β0 + β1X1 + β2X2 + ε,

where Y = COD, and X1 = rain depth and X2 = antecedent dry period. The model was fitted to
the data using statistical software, resulting in estimated coefficients

b0 = 241, b1 = −6.87, and b2 = 19.9,

and thus the equation of the fitted regression model is

Ŷ = 241− 6.87X1 + 19.9X2.

This is the equation of the plane shown in Fig. 13.5. Based on its coefficients, we estimate that for
each one-mm increase in rain depth (X1), the COD decreases by 6.87 µg/L, on average, and for
each additional antecedent dry day (X2), the COD increases by 19.9 µg/L.

Based on the fitted model, if the rain depth is 10 mm and the antecedent dry period three days,
we’d predict the COD concentration to be

Ŷ = 241− 6.87 (10) + 19.9 (3)

= 232

µg/L. This is the height of the plane in Fig. 13.5 above the point (10, 3) on the ”floor” of the
coordinate system.

In the next example there are more than two predictors, so the fitted model is no longer a plane.
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Example 13.7: Using the Fitted Multiple Regression Model

For the municipal waste data of Example 13.2, the theoretical regression model is

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε ,

where

Y = Energy content (kcal/kg)

X1 = Percent plastics by weight
X2 = Percent paper by weight
X3 = Percent garbage by weight
X4 = Percent moisture by weight

The model was fitted to the data using statistical software, and the resulting estimated model
coefficients are

b0 = 2245 b3 = 4.30
b1 = 28.9 b4 = -37.4
b2 = 7.64

Thus the fitted model is

Ŷ = 2245 + 28.9X1 + 7.64X2 + 4.30X3 − 37.4X4.

Intuitively, because the energy content of waste refers to its potential to incinerate, it makes
sense that b1 is positive whereas b4 is negative, since waste with a higher plastic content is more
combustible, but waste with higher moisture content is less combustible. The values of b1 and b4
quantify how much the energy content changes as the plastic and moisture contents increase. For
each one-percent increase in plastic, the energy increases by 28.9 kcal/kg, and for each one-percent
increase in moisture, the energy decreases by 37.4 kcal/kg. By contrast, the values of b2 and b3
are relatively close to zero, indicating that paper and garbage don’t have as much of an effect on
energy as plastic and moisture do.

The predicted energy content for a waste consisting of 20% plastics, 20% paper, 35% garbage, and
45% moisture is

Ŷ = 2245 + 28.9(20) + 7.64(20) + 4.30(35)− 37.4(45)

= 1443.3

kcal/kg.

The next example illustrates how multiple regression can be used to control for the effect of one variable
while investigating the effect of another.

Example 13.8: Controlling for the Effect of a Variable

In Example 13.1 we saw that wealthier cities tend to use more water, but also tend to be larger, so
the higher water usage may be due to their larger population size.
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To determine the impact that wealth has on a city’s water usage, while controlling for the size of
the city, we can simply include city size in the regression model along with wealth, and then look
at the estimated coefficient for wealth.

The theoretical regression model for the data is

Y = β0 + β1X1 + β2X2 + ε ,

where

Y = Water usage (log millions of liters/day)

X1 = Wealth (z-score of the city’s median income)
X2 = City size (population in millions)

The estimated model coefficients (from statistical software) are

b0 = 6.48, b1 = 0.11, and b2 = 0.16,

so the fitted model is
Ŷ = 6.48 + 0.11X1 + 0.16X2.

A graph the fitted model as a plane in three-dimensional space is shown on the left below. Also
shown, on the right, is a scatterplot matrix of the data.

Wealth

Population

 W
ater U

sage (Log

 M
illions of Liters)

3D Scatterplot of Water Usage 
 with Regression Surface

●

●

●

●

●
●●

●●
●

●●

●

● ●●

●●
●

●●
●

●

●

●
●

●

●

Water Usage

−1 0 1 2

●●

●

●●
●●

●●● ●

●

●

● ●

●

●

●
●

●
●●

●
●

●

●●

●

6.
0

7.
0

8.
0

9.
0●●

●

●●
●●

●●●●

●

●

●●

●

●

●
●

●
●●
●
●
●

●●

●

−1
0

1
2

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

● ●

●●
●●

●

●
●

●●

●

Wealth

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●●

●●
●●

●

●
●

●●

●

6.0 7.0 8.0 9.0

●

●

●

●●
●●

●
●●●● ●●● ●

● ●●●●●●●●●● ●

●

●

●

●●
●●

●
●●

● ●●● ●●
●● ●●●● ●●●●●●

0 5 10 15 20

0
5

10
15

20

City Size

Scatterplot Matrix of Water Usage,
Wealth, and Size of a City

Figure 13.9: Regression plane fitted to data on water usage versus wealth and city size for 28 U.S.
cities (left); scatterplot matrix the data (right).
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The estimated coefficient for wealth indicates that a city’s (log) water usage increases by 0.11 units,
on average, for each one-unit increase in its wealth (z-score) while holding city size constant, that
is, while controlling for the size of the city. Thus two same-sized cities whose wealths differ by one
unit would be expected to differ in water use about 0.11 units.

By contrast, if we don’t control for city size, and instead just fit a simple linear regression model with
wealth as the (one) predictor, its estimated coefficient (from Example 13.1) is b1 = 0.58, indicating
for each one-unit increase in wealth, water usage increases by 0.58 units, more than five times as
much as when we control for size!

13.5 Fitted Values and Residuals

The fitted multiple regression model provides an estimate of the true regression mean response. For each of
the n individuals in a multivariate data set, we define the individual’s fitted value (also called predicted
values), denoted Ŷi as follows.

Fitted Value: For the ith individual in the data set,

Ŷi = b0 + b1X1i + b2X2i + . . .+ bpXpi,

where X1i, X2i, . . . , Xpi are the values of the p predictor variables for that individual.

The fitted values are the values we’d predict for Y by plugging each observed set of predictor values
X1i, X2i, . . . , Xpi into the fitted regression model equation. There will be n fitted values, one for each
individual in the data set. For the data on COD in highway runoff in Fig. 13.5, they’re the points lying
on the fitted regression plane from which the vertical deviations emanate.

It turns out that the average of the fitted values is equal to the average of the Yi’s.

Fact 13.1 The mean of the fitted values Ŷ1, Ŷ2, . . . , Ŷn from a fitted multiple regression model is
equal to the mean of the observed responses Y1, Y2, . . . , Yn, that is,

1

n

n∑
i=1

Ŷi =
1

n

n∑
i=1

Yi = Ȳ .

We’ll also be interested in evaluating the random ”deviations” away from the overall pattern, that
is, values of the random error term ε in the model. A residual, denoted ei, is defined as the difference
between the ith individual’s observed Y value and the fitted value for that individual.

Residual: For the ith individual in the data set,

ei = Yi − Ŷi,

where Yi is the observed response for the ith individual and Ŷi is the fitted value.

For the COD data, the residuals are the vertical line segments in Fig. 13.5. A residual will be positive if
Yi lies above the plane, and negative if it lies below the plane. There will be a total of n residuals, one for
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each individual in the data set.
In the two-predictor case, the fact that the points in a three-dimensional scatterplot don’t all lie on a

plane tells us that other factors, besides the predictors X1, X2, . . . , Xp, affect the value of Y . A residual is
the net effect of these other factors. The residual ei approximates the random error term εi in the model
(13.4). In Section 13.10 we’ll use the residuals to estimate the standard deviation of the N(0, σ) error
distribution, and in Section 13.16 we’ll use them to check the normality assumption.

It can be shown that the residuals always sum to zero.

Fact 13.2 The residuals in a multiple regression analysis sum to zero, that is,

n∑
i=1

ei = 0.

13.6 Two Sources of Variation in Y

A response variable Y will be affected by numerous factors, not just the predictor variables that were
chosen to be included in the regression model. In a multiple regression analysis, there will be two sources
of variation in the responses:

1. Variation due to differences from one individual to the next in the set of values of the predictors
X1, X2, . . . , Xp.

2. Variation due to differences from one individual to the next in the values of all other factors (besides
X1, X2, . . . , Xp).

These correspond, respectively, to the nonrandom ”overall pattern” in the data and the random ”devia-
tions” away from that pattern, that is, errors. In the study of the COD in highway runoff, the two sources
of variation are, on the one hand, the two predictors rain depth and antecedent dry period, and on the
other, all the other factors that affect COD (such as traffic volume, types of vehicles, their conditions, and
so on).

13.7 Sums of Squares

Introduction

We’ll measure the contributions of the two sources of variation in the response variable using sums of
squares, as we did in the context of simple linear regression. We’ll use sums of squares to:

1. Assess how well the multiple regression model fits the data.

2. Estimate the standard deviation σ of the error distribution.

3. Test a hypothesis to decide if any of the p predictor variables X1, X2, . . . , Xp explains some of the
variation in the responses.

Variation Due to Error

Variation in Y due to random error, that is, due to all other factors besides X1, X2, . . . , Xp, is measured
by the error sum of squares, denoted SSE and defined as follows.
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Error Sum of Squares:

SSE =
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

e2
i .

The error sum of squares is just the sum of squared residuals. The SSE will be large when the variation
in Y due to random error is large.

Variation Due to the Xk’s

Variation in Y that’s due to differences from one individual to the next in the set of values of X1, X2, . . . , Xp

is measured by the regression sum of squares, denoted SSR and defined as follows.

Regression Sum of Squares:

SSR =

n∑
i=1

(Ŷi − Ȳ )2.

The regression sum of squares is the sum of squared deviations of the fitted values away from the mean
Ȳ of the responses, so it reflects variation in the Ŷi’s. SSR reflects variation in the fitted values. When
there are just two predictors, the fitted values lie on the fitted plane, and in this case SSR will be large
when the plane has a steep tilt. In general, SSR will be large when the variation in Y due to the predictors
X1, X2, . . . , Xp is large.

13.8 ANOVA-Like Partition of the Total Variation in Y

Introduction

It turns out, as will be seen, that in a multiple regression analysis, the two types of variation in Y , that
due to the nonrandom relationship to the predictors and that due to random error, account for all of the
variation in the responses.

Total Variation

The total variation in the response values is measured by the total sum of squares, as usual, again
denoted SSTo and defined as follows.

Total Sum of Squares:

SSTo =

n∑
i=1

(Yi − Ȳ )2.

Because SSTo measures total variation in the responses, it will be large if either the predictors or the random
error contribute a large degree of variation to Y . Thus SSTo reflects both variation due to X1, X2, . . . , Xp

and due to error.

Partition of the Total Variation

It can be shown that the sums of squares in a multiple regression analysis satisfy the following ANOVA-
like partition of the total variation in the responses.
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Fact 13.3 The sums of squares defined above satisfy the following relation.

SSTo = SSR + SSE.

This decomposes the variation in the responses into components corresponding to the two sources:

Total Variation = Variation Due to X1, X2, . . . , Xp + Variation Due to Error

13.9 Degrees of Freedom

Associated with each sum of squares is a corresponding degrees of freedom.

Degrees of Freedom: For multiple regression, the degrees of freedom are:

df for SSTo = n− 1
df for SSR = p
df for SSE = n− (p+ 1)

There are n − 1 degrees of freedom for SSTo because only n − 1 of the deviations used to compute it are
”free to vary”. For SSR, the degrees of freedom is the number of predictors in the model, p, because (it
can be shown) only p of the deviations used to compute SSR are ”free to vary.” The degrees of freedom
for SSE is the sample size n minus the number of parameters β0, β1, . . . , βp (including the intercept), p+ 1,
because, it turns out, that’s how many of the deviations used to compute SSE are ”free to vary.”

As was the case for ANOVA and simple linear regression, the degrees of freedom are additive.

Fact 13.4 The degrees of freedom given above satisfy the following relation.

df for SSTo = df for SSR + df for SSE.

13.10 Mean Squares

Recall that a mean square is a sum of squares divided by its degrees of freedom. The two mean squares,
the mean square for regression, or MSR, and mean squared error, or MSE, will be used later to
test for a relationship between Y and X1, X2, . . . , Xp.

Mean Squares: For multiple regression, the mean square for regression and mean squared error
are

MSR =
SSR

p

MSE =
SSE

n− (p+ 1)
.

Estimating σ

The MSE is the ”average” (using n − (p + 1)) squared residual, so its square root measures the size of a
typical residual. Thus, because the residuals are approximations of the random errors ε in the multiple re-
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gression model, we use
√

MSE as an estimator of the standard deviation σ of the N(0, σ) error distribution.

Estimator of σ: In a multiple regression analysis, the estimator of σ, denoted σ̂, is

σ̂ =
√

MSE.

Example 13.14 illustrates the use of the square root of the MSE to estimate σ.

13.11 Assessing the Fit of the Regression Model

When reporting the results of a multiple regression analysis, it’s difficult to show in a graph how well the
model fits the data, especially when there are more than two predictors. For this reason, we often include
in the report a statistic that measures how well the model fits the data.

In this section, we’ll look at two such statistics:

1. The mean squared error, MSE, or its square root.

2. The coefficient of multiple determination, denoted R2.

These statistics were also used in the context of simple linear regression in Chapter 12. In Section 13.19
we’ll look at two other measures of model fit, the adjusted R2 and the Akaike information criterion, that
are used primarily for deciding which of several candidate predictor variables to include in a model.

13.11.1 The MSE as a Measure of Fit of the Model

When a model fits a data set well, the deviations away from the fitted model, or residuals, will be small.
Because the mean squared error is the size of an ”average” squared residual, and its square root represents
the size of a typical residual, either one of these statistics can be used to assess how well the model fits. A
smaller value of the MSE (or

√
MSE) indicates that the model fits the data better.

13.11.2 The Coefficient Of Multiple Determination R2

A drawback to using the mean squared error (or its square root) to assess the fit of a model is that its
value depends on the units of measure of the response variable. For example, changing Y from centimeters
to inches will change the value of the MSE.

In a multiple regression analysis, we can avoid this problem by instead measuring the fit of the model
using the coefficient of multiple determination, denoted R2, defined as follows.

Coefficient of Multiple Determination:

R2 =
SSR

SSTo
= 1 − SSE

SSTo
. (13.6)

Because SSR measures variation in the responses due to differences among individuals in their predictor
values X1, X2, . . . , Xp, and SSTo measures total variation in the responses, we can think of R2 as

R2 =
Variation in Y Due to X1, X2, . . . , Xp

Total Variation in Y
.

In other words, R2 is the proportion of variation in the response variable that can be explained by differ-
ences among individuals in their predictor values X1, X2, . . . , Xp.
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Properties and Interpretation of R2: The following properties of R2 provide insight into its interpre-
tation.

1. The value of R2 will always be between zero and one (because it’s a proportion).

2. R2 tells us how well the regression model fits the data:

• An R2 value near zero means the model doesn’t fit very well (because only a small fraction of
the Y variation is explained by X1, X2, . . . , Xp).

• An R2 value near one means the model fits the data very well (because a large fraction of the
Y variation is explained by X1, X2, . . . , Xp).

Example 13.9: The Coefficient of Multiple Determination R2

For the municipal waste data of Example 13.2, with variables

Y = Energy content (kcal/kg)

X1 = Percent plastics by weight
X2 = Percent paper by weight
X3 = Percent garbage by weight
X4 = Percent moisture by weight

The fitted regression model (from Example 13.7) is

Ŷ = 2245 + 28.9X1 + 7.64X2 + 4.30X3 − 37.4X4.

The sums of squares (obtained using statistical software) are

SSTo = 689, 710, SSR = 664, 931, and SSE = 24, 779.

The value of R2, using (13.6), is

R2 = 1− 24, 779

689, 710
= 0.964,

indicating that the model fits the data very well. In fact, it indicates that 96.4% of the variation
in the energy content of waste is explained by its plastic, paper, garbage, and moisture contents,
and only 3.6% by all other factors combined. Apparently the combustibility (energy) of waste is
determined almost entirely by the four predictor variables used in the model.

Improving Model Fit by Adding Predictors

Recall that the errors ε in a regression model (and the residuals after fitting the model to the data) are
due the net effects on Y of all other factors besides the predictor variables X1, X2, . . . , Xp that are in the
model.

By adding another variable, Xp+1 say, as a predictor to the model, Xp+1 is no longer lumped in with all
the other factors that contribute to the sizes of the errors (and residuals), so the errors (residuals) become
smaller. Likewise, by removing a predictor, Xp say, from a model, Xp is now lumped in with all the other
factors that contribute to the errors (residuals), which as a result become larger. This is stated formally
in the following fact.
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Fact 13.5 Removing a predictor variable from a regression model always results in a larger SSE
and a smaller R2. Adding a predictor variable to the model always results in a smaller SSE and a
larger R2.

Another way to interpret this is that the model that includes the additional predictor will explain more of
the variation in Y , that is, will fit the data better. The following example illustrates.

Example 13.10: Improving Model Fit by Adding Predictors

For the data on water usage in U.S. cities given in Example 13.1, the fitted simple linear regression
model, with Y = Water usage and X1 = Wealth, is

Ŷ = 7.10 + 0.58X1 .

It’s plotted in the scatterplot of Fig. 13.1. The square root of the MSE and R2 for this model,
obtained using statistical software, are

√
MSE = 0.778 and R2 = 0.369,

so a typical residual is size 0.778 and only 36.9% of the variation in water usage is explained by
wealth alone.

If we refit the model, but this time with both X1 = Wealth and X2 = City Size as predictors, the
fitted model becomes

Ŷ = 6.48 + 0.11X1 + 0.16X2,

and the square root of the MSE and R2 become

√
MSE = 0.502 and R2 = 0.747.

Now, with both wealth and city size in the model, a typical residual size is smaller, 0.502, and 74.7%
of the variation in water usage is explained by these two predictors, much more than was explained
by wealth alone.

13.12 t Tests for the Regression Model Coefficients

Each of the parameters β1, β2, . . . , βp in the regression model (13.4) represents the change in Y , on average,
associated with a one-unit increase in the corresponding predictor (while holding the other predictors
constant). When a particular coefficient βk is zero, Y has no relationship to the corresponding predictor
Xk. We’ll be interested, therefore, in testing the hypotheses

H0 : βk = 0 (13.7)

Ha : βk 6= 0. (13.8)

for each k = 1, 2, . . . , p. The null hypothesis says there’s no relationship between Y and Xk, and the
alternative says there is a relationship. Occasionally we’ll also be interested in testing the corresponding
hypotheses about the intercept β0,

H0 : β0 = 0

Ha : β0 6= 0,

but this is usually of less interest.
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Sampling Distribution of bk

Because the estimate bk of the true (unknown) coefficient βk is computed from the data, and the response
values Y1, Y2, . . . , Yn vary from one sample to the next, bk is a random variable that varies from sample to
sample.

The hypothesis test for βk will be based on how different bk is from zero, so to carry out the test, we’ll
need to be able to distinguish between a difference from zero that’s due to chance and one that’s due to
more than just chance. For this, we’ll need the sampling distribution of bk.

Fact 13.6 Suppose we have multivariate observations described by the multiple regression model
(13.4), where the εi’s are independent and follow a N(0, σ) distribution.

Then for each k = 0, 1, . . . , p, bk follows a normal distribution with mean βk and standard error
denoted σbk , which is to say,

bk ∼ N(βk, σbk).

An expression for σbk in terms of the error standard deviation σ and the observed values of the
predictors X1, X2, . . . , Xp can be found in many books on multiple regression, including [5].

It follows that if we standardize bk, the resulting random variable Z follows a standard normal
distribution, that is,

Z =
bk − βk
σbk

∼ N(0, 1).

t Test Statistics for Model Coefficients

In practice, we have to estimate the standard error σbk of bk. We’ll denote the estimated standard error
by Sbk . Details about how Sbk is computed can be found in books on multiple regression such as [5]. In
practice, we obtain its value using statistical software.

According to the next fact, when we standardize bk using the estimated standard error, the resulting
standardized variable follows a t distribution. This fact will be used to develop the t test procedures for
the coefficients.

Fact 13.7 Suppose we have multivariate observations described by the multiple regression model
(13.4), where the εi’s are independent and follow a N(0, σ) distribution.

Then for each k = 0, 1, . . . , p,
bk − βk
Sbk

∼ t(n− (p+ 1)),

the t distribution with n− (p+ 1) degrees of freedom.

The t test statistic for a coefficient, denoted t, is obtained by replacing βk in Fact 13.7 by it’s null
hypothesized value zero.

t Test Statistic for a Coefficient:

t =
bk − 0

Sbk
. (13.9)
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Because bk is an estimator of the true coefficient βk, if H0 was true, and βk equal to zero, we’d expect bk to
be close to zero, in which case t would be close to zero too. But if Ha was true, we’d expect bk to differ from
zero in the direction specified by Ha, in which case t would differ from zero in that direction too. Therefore,

1. Large positive values of t provide evidence in favor of Ha : βk > 0.

2. Large negative values of t provide evidence in favor of Ha : βk < 0.

3. Both large positive and large negative values of t provide evidence in favor of Ha : βk 6= 0.

Furthermore, t measures (approximately) how many standard errors the estimate bk is away from zero, and
in what direction (positive or negative). To decide if an observed value of t provides statistically significant
evidence against the null hypothesis, we’ll need its sampling distribution under H0, which, from Fact 13.7,
is the following.

Sampling Distribution of t Under H0: Suppose we have multivariate observations described by
the multiple regression model (13.4), where the εi’s are independent and follow a N(0, σ) distribution.

Then when
H0 : βk = 0

is true,
t ∼ t(n− (p+ 1)).

The t Test Procedure for a Model Coefficient

P-values and critical values (for the rejection region approach) for the t test for a coefficient are obtained
from the tails of the t(n− (p+ 1)) distribution, as summarized below.
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t Test for βk

Assumptions: Data consist of multivariate observations described by the multiple
regression model (13.4), where the εi’s are independent and either they follow a
N(0, σ) distribution or n is large.

Null hypothesis: H0 : βk = 0 (for any one of k = 0, 1, . . . , p)

Test statistic value: t = bk
Sbk

.

Decision rule: Reject H0 if p-value < α or t is in rejection region.

P-value = area under
Alternative t distribution Rejection region =
hypothesis with n− (p+ 1) d.f.: t values such that:*

Ha : βk > 0 to the right of t t > tα,n−(p+1)

Ha : βk < 0 to the left of t t < −tα,n−(p+1)

Ha : βk 6= 0 to the left of − |t| and t > tα/2,n−(p+1) or

right of |t| t < −tα/2,n−(p+1)

* tα,n−(p+1) is the 100(1− α)th percentile of the t distribution with n− (p+ 1) d.f.

Note: Statistical software packages always report the results of the two-sided test of

H0 : βk = 0

Ha : βk 6= 0

when they perform regression analyses. To carry out a one-sided test, when the observed t value differs
from zero in the direction specified by Ha, we divide the reported p-value by two.

Carrying out the t Test for a Coefficient

When a multiple regression analysis is carried out using statistical software, the results of the tests for
coefficients are summarized in a table of the form below.

Estimated Standard
Predictor Coefficent Error t P-value

Intercept b0 Sb0 t = b0/Sb0 p
X1 b1 Sb1 t = b1/Sb1 p

...
...

...
...

...
Xp bp Sbp t = bp/Sbp p

Example 13.11: t Test for a Coefficient

For the highway runoff data of Example 13.5, with COD as the response variable and rain depth
and antecedent dry period as predictors, statistical software reports the following output:
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Estimated Standard
Predictor Coefficient Error t P-value

Intercept 240.65 71.26 3.377 0.0042
Rain Depth -6.87 3.59 -1.913 0.0751
Antecedent Dry Period 19.93 9.08 2.195 0.0443

From the output, the equation of the fitted model is

Ŷ = 241− 6.87X1 + 19.9X2.

To test whether the relationship of COD to rain depth is statistically significant, the hypotheses are

H0 : β1 = 0

Ha : β1 6= 0

The value of the test statistic (13.9) is t = −1.913 and the p-value is 0.0751. Using a level
of significance α = 0.05, we fail reject H0 and conclude that the relationship isn’t statistically
significant.

To test whether COD is related to the antecedent dry period, the hypotheses are

H0 : β2 = 0

Ha : β2 6= 0

and the observed test statistic value is t = 2.195 with p-value 0.0443. Using α = 0.05, we reject
H0 and conclude that the relationship between COD and antecedent dry period is statistically
significant. Furthermore, because the coefficient is positive, we can conclude that longer antecedent
dry periods are associated with higher COD concentrations in runoff.

Example 13.12: t Test for a Coefficient

For the municipal waste data of Example 13.2, with energy content as the response and percent
plastics, paper, garbage, and water as the predictors, statistical software reports the following:

Estimated Standard
Predictor Coefficient Error t P-value

Intercept 2245.1 177.9 12.62 0.000
Plastics 28.922 2.823 10.24 0.000
Paper 7.643 2.314 3.30 0.003
Garbage 4.297 1.916 2.24 0.034
Water -37.356 1.834 -20.37 0.000

Thus the equation of the fitted model is

Ŷ = 2245 + 28.9X1 + 7.64X2 + 4.30X3 − 37.4X4 .

Using a level of significance α = 0.05, the p-values indicate that all four predictors have a statistically
significant relationship to energy content. The first three (plastics, paper, and garbage) have positive
coefficients, meaning that higher amounts of these variables result in higher energy contents. The
fourth (water) has a negative coefficient, so higher amounts of water are associated with lower energy
contents.
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13.13 t Confidence Intervals for the Regression Model Coefficients

A 100(1 − α)% confidence interval for βk, the true (unknown) coefficient for Xk in the regression
model, is given, for each k = 0, 1, . . . , p, by

Confidence Interval for a Model Coefficient:

bk ± tα/2,n−(p+1)Sbk ,

where bk is the least squares estimate of βk, tα/2,n−(p+1) is the 100(1 − α/2)th percentile of the
t distribution with n − (p + 1) degrees of freedom, and Sbk is the estimated standard error of bk
(obtained using software).

We can be 100(1−α)% confident that the true (unknown) coefficient βk will be contained in this confidence
interval somewhere.

Example 13.13: t Confidence Interval for βk

For the study of COD in n = 18 highway runoff specimens, Example 13.11 gives the regression
analysis output from statistical software. From the output, the estimated coefficient for antecedent
dry period and its (estimated) standard error are

b2 = 19.93 and Sb2 = 9.08.

From a t distribution table, using n− (p+ 1) = 15 degrees of freedom, the critical value for a 95%
confidence interval for β2 is tα/2,n−(p+1) = 2.131. Thus the 95% confidence interval is

19.93 ± 2.131(9.08) = 19.93 ± 19.35

= (0.58, 39.28).

We can be 95% confident that β2, the true change in COD, on average, for each one-day increase in
the antecedent dry period, is between 0.58 and 39.28 mg/L.

13.14 Regression Model F Test

The t tests of Section 13.12 are used to test one at a time whether each predictor is related to the response
variable. It’s sometime useful to test all at once whether any of the predictors are related to the response.
We do this using the regression model F test. The null and alternative hypotheses are

H0: β1 = β2 = · · · = βp = 0 (13.10)

Ha: Not all βk’s equal 0

The null hypothesis says that none of the predictors X1, X2, . . . , Xp are related to Y . In other words, it
says that the entire model is of no use for explaining variation in Y . The alternative says that at least one
of the predictors is related to Y , but doesn’t specify which ones. In other words, it says that the model is
useful for explaining Y variation.

The overall regression model F test statistic is
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F Test Statistic for the Regression Model:

F =
MSR

MSE
. (13.11)

The numerator measures variation in Y due to the predictor variables X1, X2, . . . , Xp and will be large
when one or more of the predictors is related to Y . Thus F will be large when the variation in Y due to
X1, X2, . . . , Xp is large relative to the variation due to random error. It follows that

Large values of F provide evidence against H0 in favor of Ha.

To decide if an observed value of F is large enough to provide statistically significant evidence against the
null hypothesis, we’ll need its sampling distribution under H0.

Sampling Distribution of F Under H0: Suppose we have multivariate observations described by
the multiple regression model (13.4), where the εi’s are independent and follow a N(0, σ) distribution.
Then when

H0 : β1 = β2 = · · · = βp = 0

is true,
F ∼ F (p, n− (p+ 1)),

the F distribution with numerator degrees of freedom p and denominator degrees of freedom n −
(p+ 1).

P-values (and critical values for the rejection region approach) are obtained from the right tail of the
F (p, n− (p+ 1)) distribution.

The F test procedure is summarized below.

Regression Model F Test for β1, β2, . . . , βp

Assumptions: Data consist of multivariate observations described by the multiple
regression model (13.4), where the εi’s are independent and either they follow a
N(0, σ) distribution or n is large.

Null hypothesis: H0 : β1 = β2 = · · · = βp = 0

Test statistic value: F = MSR
MSE.

Decision rule: Reject H0 if p-value < α or F is in rejection region.

P-value = area under
Alternative F -distribution with Rejection region =
hypothesis p and n− (p+ 1) d.f.: F values such that:*

Ha : Not all βk’s equal 0 to the right of F F ≥ Fα,p,n−(p+1)

* Fα,p,n−(p+1) is the 100(1− α)th percentile of the F distribution with p and

n− (p+ 1) d.f.
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13.15 The Multiple Regression ANOVA Table

The degrees of freedom, sums of squares, mean squares, observed F test statistic value, and p-value from
a multiple regression analysis are usually summarized in multiple regression ANOVA table having the
form shown below.

Source DF SS MS F P-value

Regression p SSR MSR = SSR/p F = MSR/MSE p
Error n− (p+ 1) SSE MSE = SSE/(n− (p+ 1))

Total n− 1 SSTo

Example 13.14: Regression ANOVA Table and Model F Test

For the highway runoff data of Example 13.5, with COD as the response and rain depth and an-
tecedent dry period as predictors, the multiple regression ANOVA table produced by statistical
software is below.

Source DF SS MS F P-value

Regression 2 179,843 89,922 5.228 0.0189
Error 15 258,006 17,200

Total 17 437,849

For the regression model F test of

H0: β1 = β2 = 0

Ha: β1 and β2 don’t both equal 0,

the observed test statistic value is F = 5.228, and the p-value is 0.0189. Using a level of significance
α = 0.05, we reject H0 and conclude that at least one of the two predictors, rain depth and
antecedent dry period, is related to COD.

Also, the error sum of squares and mean squared error are SSE = 258, 006 and MSE = 17, 200,
respectively, so a typical deviation of a COD concentration above or below the fitted regression
plane in Fig. 13.5 is

√
MSE =

√
17, 200 = 131.1 mg/L, and this is our estimate of the standard

deviation σ of the N(0, σ) error distribution in the regression model.

13.16 Using Residuals to Check the t and F Test Assumptions

The t tests for the coefficients of the regression model and the F test for the overall regression model rely
on three assumptions:

1. The errors εi in the regression model follow a normal distribution.

2. The the standard deviation σ of the error distribution doesn’t change with the values of the predictor
variables.

3. The responses Yi are independent of each other, or equivalently, the errors εi are independent.

The third assumption (independence) is usually addressed in the study design by separating observations
sufficiently in space and time. The other assumptions (normality and common σ) are checked via plots of
the residuals.
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Checking the Normality Assumption

To check the normality assumption, we look at a normal probability plot or a histogram of the residuals.

Example 13.15: Checking Assumptions

For the data on COD in highway runoff (Example 13.5), a normal probability plot and histogram
of the residuals, obtained using statistical software after fitting the model, are below.
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Figure 13.10: Normal probability plot (left) and histogram (right) of the residuals for the data on
COD in highway runoff.

Both plots indicate that the assumption of normality of the errors appears to be met.

Checking the Constant σ Assumption

There are a few ways to check the assumption that the error standard deviation σ doesn’t change with the
values of X1, X2, . . . , Xp.

1. Plot the residuals versus each of the predictor variables X1, X2, . . . , Xp: We can look at
plots of the residuals versus the values of each predictor variable Xk, with a horizontal line at y = 0.
The amount of vertical spread above and below the line should be roughly the same from left to
right, and in particular, it shouldn’t increase (or decrease) as Xk increases.

2. Plot the residuals versus the fitted values: We can look at a plot of the residuals versus the
fitted values, with a horizontal line at y = 0. The amount of vertical spread above and below the
line should be roughly the same from left to right, and in particular, it shouldn’t increase with the
fitted value.

The idea behind the second plot is that it’s not uncommon for the variation in the values of a response
variable to be larger when their mean is larger. Monthly elevations of the Nile River, for example, vary
more than those of the little creek that runs through the park in your neighborhood. The weights of adult
blue whales vary more than the weights of a given anchovy species. Because the fitted values are the
estimated mean responses for given values of the predictors, if the variation in the responses increases with
the mean, it would show up in the plot as an increasing amount of vertical spread from left to right. See
Fig. 13.11
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Figure 13.11: Plots of residuals versus fitted values for which the constant standard deviation assumption
is met (left) and not met (right). Dashed lines are merely to enhance the appearances of the plots.

Example 13.16: Checking Assumptions

For the data on COD in highway runoff, a plot of the residuals versus the fitted values is below.
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Figure 13.12: Plot of the residuals versus the fitted values for the data on COD in highway runoff.

The amount of vertical spread of the points away from the horizontal line is roughly constant as
we move from left to right in the plot, and in particular the spread isn’t systematically changing.
Therefore the assumption that the error standard deviation σ is constant (doesn’t depend on the
values of the predictors) appears to be met. Thus, since normality was confirmed in Example 13.15,
the t and F test results of Examples 13.11 and 13.14 are valid.
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13.17 Dealing With a Non-Constant Standard Deviation: Transforma-
tions

When the constant standard deviation assumption isn’t met, that is, when σ changes with the values of
one or more of the predictors X1, X2, . . . , Xp, it’s sometimes possible to stabilize it by transforming the
Y observations The most commonly used transformation for this purpose is the log transformation of the
Yi’s, but other transformations in the Ladder of Powers might also be used.

13.18 Multicollinearity and Its Consequences

Introduction

When two or more of the predictor variables in a multiple regression analysis are correlated with each
other, we say that there’s multicollinearity among them.

When two variables are correlated, the value of one provides information about the value of the other.
A snake’s length, for example, provides information about how much the snake weighs. The age of a
tree hints at how large its diameter might be. This implies that when two correlated predictors are both
included in a multiple regression model, there’s some redundancy in terms of the information they provide
about the Y variable. If the predictors are highly correlated, it may be pointless to include both of them
in the model – one or the other might do just about as well.

One way to decide if just one or the other of two predictors does about as well both in terms of
explaining Y variation is to look at the change in R2 after adding the second predictor to a model that
already includes the first. We know that the R2 will go up (Section 13.11.2), but if it doesn’t go up by very
much, that tells us that the second predictor doesn’t contribute very much additional information toward
explaining Y variation, and therefore can be left out of the model.

Example 13.17: Multicollinearity

Incineration is one method for disposing of household and industrial waste. But incineration emits
pollutants such as dioxin, which can lead to human health problems such as damage to the immune
system.

In an experiment to determine whether adjustments to the incineration process can reduce dioxin
emissions, waste was incinerated under 18 different operating conditions corresponding to settings
on the incinerator, and the dioxin at the outlet was measured under each condition [3].

The response variable was

Y = Dioxin at the outlet (ng-TE/Nm3)

and the variables that determined the operating conditions were

X1 = Furnace bed temperature (◦C)
X2 = Furnace top temperature (◦C)
X3 = Oxygen (O2, %)
X4 = Secondary/primary air ratio
X5 = Total air supply (Nm3/min)

The resulting data and a scatterplot matrix of it are below.
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Dioxin in Incinerator Emissions

Experi- Furnace Bed Furnace Top Secondary/Pri- Total Air
mental Run Dioxin Temperature Temperature O2 mary Air Ratio Supply

1 13.70 618 845 11.3 1.48 497
2 29.53 609 783 12.1 1.63 525
3 14.98 597 746 13.2 1.65 530
4 18.15 589 858 12.5 1.79 535
5 8.89 583 876 12.5 1.77 530
6 6.61 604 874 12.7 1.76 525
7 20.12 612 858 12.5 1.47 493
8 7.08 603 864 11.9 2.04 560
9 11.49 601 866 11.6 2.31 604

10 19.34 603 890 12.1 1.78 509
11 19.4 603 890 12.1 1.78 509
12 5.20 601 915 12.8 1.64 485
13 11.00 605 840 12.1 1.98 546
14 14.00 603 861 11.8 1.82 521
15 25.78 600 930 10.8 1.23 446
16 26.38 600 930 10.8 1.23 446
17 30.41 593 961 11.0 1.50 462
18 31.27 596 948 11.5 1.39 442
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Scatterplot Matrix of Waste Incinerator Data

Figure 13.13: Scatterplot matrix of the variables in the waste incinerator data set.

Two of the predictors, total air supply and secondary/primary air ratio, stand out as being
highly correlated. Primary air refers to air supplied from below the burning waste, secondary
air to that supplied from above it, and total air to the sum of the primary and secondary air supplies.

Because they’re correlated, we’d expect that if we add secondary/primary ratio to a regression
model that already includes total air (along with the other three predictors), it won’t contribute
very much toward the model’s ability to explain dioxin emissions variation.

In fact, when we add secondary/primary air ratio to the model, the R2 only increases from 0.605
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to 0.620, so the percentage of variation in dioxin emissions that’s explained by the model only
increases from 60.5% to 62.0%.

If our goal is to develop a simple model for dioxin emissions, we could leave secondary/primary ratio
out of the model.

In the last example, because secondary/primary ratio and total air were correlated, we found that it
wasn’t useful to add secondary/primary ratio to a model that already includes total air. If we’d done it
the other way around, that is, added total air to the model that already included secondary/primary ratio,
we’d have found that it isn’t useful to add total air to the model. This raises the question, which of the
two predictors should be included in the model? We’ll see in Section 13.19 some methods for dealing with
this ambiguity.

Some Consequences of Multicollinearity

The ambiguity as to which predictors to include in a model and which ones to leave is just one of several
consequences of multicollinearity that include the following.

Consequences of Multicollinearity: Multicollinearity among predictors can lead to the following:

• Estimates of model coefficients may differ depending on which other predictors are included
in the model. See Examples 13.18 and 13.19.

• Results of t tests for coefficients may differ depending on which other predictors are included
in the model. See Examples 13.18 and 13.19.

• The standard errors of coefficient estimates may be very large. See Example 13.18.

• The regression model F test may indicate that at least one predictor is related to Y even
though the t tests don’t indicate that any of them are. See Example 13.20.

We’ll look at these more closely. The first two somewhat annoying ones imply that our conclusions about
the relationship between a given predictor and the response can be different depending on which other
predictors are included in the model. The third means our coefficient estimates can be unreliable. The
next example illustrates.

Example 13.18: Consequences of Multicollinearity

Continuing from the previous example on waste incinerator dioxin emissions, when we fit the model
without secondary/primary ratio included we get the following coefficient estimates and their stan-
dard errors and t test results.

Estimated Standard
Predictor Coefficient Error t P-value

Intercept 391.230 169.291 2.311 0.0379
Bed Temp -0.248 0.208 -1.191 0.2551
Top Temp -0.082 0.043 -1.891 0.0812
O2 -7.085 2.858 -2.479 0.0277
Total Air -0.135 0.045 -2.996 0.0103

The coefficient for total air indicates that the dioxin emissions decrease by an estimated 0.135 units
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for each one-unit increase in total air (holding the other predictors constant), with a standard
error of 0.045, and this observed relationship is statistically significant (t = -2.996, p-value = 0.0103).

If we fit the model again, but this time with secondary/primary ratio included in the model, we get
the following.

Estimated Standard
Predictor Coefficient Error t P-value

Intercept 479.251 215.401 2.225 0.0460
Bed Temp -0.269 0.215 -1.252 0.2344
Top Temp -0.118 0.068 -1.720 0.1111
O2 -7.806 3.102 -2.516 0.0271
Total Air -0.262 0.191 -1.370 0.1957
SP Ratio 17.322 25.292 0.685 0.5064

Now the estimated decrease in dioxin emissions for each one-unit increase in total air (holding the
other predictors constant) is 0.262 units, with a much larger standard error (0.191). As a result of
the large standard error, the t test statistic is closer to zero (t = -1.370) and the observed relationship
is no longer statistically significant (p-value = 0.1957).

The reason why estimated coefficients can change upon adding another predictor to the model is that
those coefficients indicate the change in the response variable associated with a one-unit increase in the
predictor while controlling for the other predictors that are in the model. For variables not in the model,
no such control is imposed. What this means is that the coefficient for a predictor in the model reflects the
change in the response associated with a one-unit change in the predictor as well as associated simultaneous
changes in all other variables not included in the model.

The reason why a t test statistic can change when another predictor is added to the model is that both
its numerator (the coefficient) and denominator (the standard error) can change.

The next example illustrates just how much our conclusions about a predictor can change when we add
another one to the model and reminds us of the importance of controlling for the effects of confounding
variables by including them in the model.

Example 13.19: Controlling for the Effects of Confounding Variables

Consider again the study of the relationship between a city’s water usage and its wealth described
in Example 13.1. Recall that wealthier cities tend to use more water, but also tend to be larger, so
the effects of wealth and city size on water usage are confounded.

In Example 13.8, we saw that the coefficient for wealth changes when we control for city size (by
adding city size to the model). We’ll see now that the hypothesis test results change too.

When we fit a model with wealth as the only predictor, ignoring city size, we get:

Estimated Standard
Predictor Coefficient Error t P-value

Intercept 7.10 0.147 48.266 0.0000
Wealth 0.58 0.150 3.896 0.0006

and we conclude that wealthier cities use statistically significantly more water (b1 = 0.58, p-value
= 0.0006).
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But if we control for city size (by including it in the model), we get:

Estimated Standard
Predictor Coefficient Error t P-value

Intercept 6.48 0.139 46.507 0.0000
Wealth 0.11 0.124 0.872 0.3910
City Size 0.16 0.026 6.118 0.0000

and wealth is no longer significant (b1 = 0.11, p-value = 0.3910).

We can conclude that the perceived effect of wealth on a city’s water usage in the first analysis is
due at least in part to the fact that wealthier cities tend to be larger.

Another consequence of multicollinearity that we occasionally encounter is a regression model F test
indicating that at least one predictor is related to Y even though the t tests don’t indicate that any of
them are. These results don’t necessarily contradict each other. They tell us that when the predictors in
the model are allowed to vary together, they explain variation in Y , but when only one is allowed to vary
at a time, while the others are held constant, it’s either unrelated to Y or its relationship is too weak to
detect.

This is most easily understood when there are only two predictors as in the next example.

Example 13.20: Consequences of Multicollinearity

Continuing with the study on waste incinerator dioxin emissions (Example 13.18), fitting a model
with just the two predictors total air and secondary/primary ratio gives:

Estimated Standard
Predictor Coefficient Error t P-value

Intercept 69.236 31.671 2.186 0.0451
Total Air -0.072 0.112 -0.645 0.5289
SP Ratio -8.894 17.345 -0.513 0.6156

and neither of the individual predictors is statistically significant. This says that if the value of
one of the two predictors is changed but not the other, the effect on dioxin emissions isn’t discernible.

It turns out, though, that the regression model F test statistic is F = 5.258 and the p-value is
0.0186, which tells us that when total air and secondary/primary ratio both change, there’s a
discernible effect on dioxin emissions.

The three-dimensional scatterplot and fitted regression plane are shown below.
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Figure 13.14: Three-dimensional scatterplot of dioxin emissions versus total air and sec-
ondary/primary ratio (left); regression plane fitted to the data (right).

The plane’s steepest gradient (tilt) is in the direction in which total air and secondary/primary ratio
both increase, which is consistent with the F test result. Its gradients in the directions in which one
predictor increases but not the other are less steep, which helps explain the t test results.

Recall that when the standard error of an estimated coefficient is large, the estimate is considered to
be imprecise. To see why the standard errors can be large in the presence of multicollinearity, consider the
extreme (and rare) case in which there are just two predictors that are perfectly correlated. Thus there’s a
straight-line relationship between X1 and X2 as seen in the three-dimensional scatterplot on the left side
of Fig. 13.15. In this case, infinitely many regression planes, two of which are shown in the right plot of
Fig. 13.15, would fit the data equally well, and the fitted plane would be entirely free to ”wobble.”



514 CHAPTER 13. MULTIPLE LINEAR REGRESSION

X1

X
2

Y

3D Scatterplot With Perfect Multicollinearity

●

●

●

●

●

●

●●●

●

X1

X2

Y

3D Scatterplot With Perfect Multicollinearity
and Two Possible Fitted Regression Planes

●

●

●

●

●

●

●

●

●●

Figure 13.15: Three-dimensional scatterplot of data with perfect multicollinearity (correlation) between
the two predictors (left); two possible regression planes, both fitted to data using the method of least
squares (right).

In practice, it’s rare for two predictors to be perfectly correlated, so there won’t be infinitely many
planes that fit equally well. But if the correlation is strong, there will be infinitely many that all fit the
data almost as well, and as the Y values vary from one sample to the next, the fitted regression plane will
”wobble.” This variability from sample to sample in the tilt of the fitted plane results in large standard
errors of the estimated coefficients.

Assessing Whether or Not Multicollinearity is Present

Scatterplot matrices and the aforementioned consequences of multicollinearity can be used to assess whether
multicollinearity is present.

Assessing Whether Multicollinearity is Present: The following are indications that multi-
collinearity among predictors exists:

• Predictors appear related to each other in the scatterplot matrix.

• Estimates of model coefficients differ depending on which other predictors are included in the
model.

• Results of t tests for coefficients differ depending on which other predictors are included in the
model.

• The standard errors of coefficient estimates are unexpectedly large.

• The regression model F test indicates that at least one predictor is related to Y even though
the t tests don’t indicate that any of them are.

If we need a statistic that measures the severity of the multicollinearity in a given set of data, we can use
the so-called variance inflation factor. Details can be found in [5].
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Remedying the Problems Associated with Multicollinearity

To remedy the problems associated with multicollinearity, we simply leave one or more of the correlated
predictors out of the model. Often this can be done without substantially sacrificing how well the model
fits the data. See Example 13.17. The next section describes ways of deciding which predictors should be
omitted from the model.

13.19 Variable Selection

13.19.1 Introduction

It’s not uncommon for a data set to contain as many as 20 or more variables that could potentially be used
as predictors in a regression model. We’ve seen (Section 13.11.2) that including more predictors in a model
results in a model that explains more of the variation in the response variable – the R2 goes up. But models
that contain too many predictors can be difficult to interpret and cumbersome to use, so we usually prefer
to limit the number of predictors to just a handful that we think are important and that produce a model
that fits the data well. This means there are two goals when deciding which predictors to include in a model.

Two Goals of Selecting Predictors for a Model: When deciding which predictors to include
in a regression model and which ones to leave out, there are two goals:

• The model should fit the data well and explain a large proportion of the Y variation.

• The model should contain only a small number of predictors (for example, 2 - 5).

The two goals aren’t compatible with each other – to satisfy the first one, we could add more predictors
to the model, but that would violate the second one.

Deciding which variables to include in a model can be a challenge. To help us, a few so-called variable
selection procedures have been developed. Here are three of them:

1. All-subsets variable selection

2. Best subsets variable selection

3. Stepwise variable selection (three versions):

• Forward selection

• Backward elimination

• Bidirectional search

These procedures are entirely automated, and are carried out by statistical software. The choice of which
one to use in a given situation will depend largely on how many variables are available to choose from. If
there are fewer than, say, five or six, the all-subsets procedure should be used. If there are about six to 20,
best subsets should be used. If there more than about 20, one of the stepwise procedures should be used.

13.19.2 Variable Selection Criteria

Variable selection procedures employ a statistic called a variable selection criterion to decide which of
two or more models is most appropriate for a given set of data. We’ll look at two commonly used variable
selection criteria:

1. The adjusted R2, denoted R2
adj.

2. Akaike information criterion, or AIC.
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The Adjusted R2

Because the usual R2 goes up every time we add another predictor to a model, it wouldn’t make sense to
use R2 to compare the suitabilities of two models for a given set of data if one of the models contains more
predictors than the other and one of our goals is to limit the number of predictors in the model.

What we need is a statistic whose value reflects both goals of selecting predictors – a good fitting model
and a limited number of predictors. One such statistic is the adjusted R2, denoted R2

adj
and defined as

follows.

Adjusted R2:

R2
adj = 1 − SSE/(n− (p+ 1))

SSTo/(n− 1)
= 1 − MSE

S2
y

.

where S2
y is the sample variance of Y1, Y2, . . . , Yn.

Comparing R2
adj to the (unadjusted) R2 in (13.6), we see that the sums of squares in R2

adj are divided by
their degrees of freedom, whereas in (13.6) they aren’t. Two things happen to R2

adj when we add a predictor
to a model:

• The SSE decreases, reflecting the improved fit of the model. This tends to make R2
adj bigger.

• The degrees of freedom for SSE, n − (p + 1), decreases (because p goes up by one). This tends to
make R2

adj smaller.

The result is that the value of R2
adj can go up or down when we add another predictor to the model. If

adding a predictor results in a larger R2
adj, we take it to mean that the gain in model fit is worth the

trade-off of having the extra predictor in the model. But if adding the predictor results in a smaller R2
adj,

it tells us that the gain in model fit isn’t enough to justify putting the additional predictor in the model.

Using R2
adj

to Select Predictors for a Regression Model:

To decide which of two or more models is most appropriate for a given set of data, we choose the
one that has a higher R2

adj value.

Note that unlike the (unadjusted) R2, R2
adj isn’t a proportion, and it’s value doesn’t necessarily lie between

zero and one. In fact, it’s possible for R2
adj to take negative values.

Example 13.21: The Adjusted R2

Consider the two models fitted to the water usage data, one of which contains only one predictor,
wealth, and the other two predictors, wealth and city size, given in Example 13.10.

For the model containing just wealth, the adjusted R2 (from statistical software) is

R2
adj = 0.344.

For the model with both city size and wealth, the adjusted R2 is

R2
adj = 0.727.

Based on the R2
adj values, we should include city size in the model along with wealth.
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Akaike Information Criterion

The Akaike information criterion, denoted AIC, is another commonly used criterion for variable se-
lection. It’s defined as follows.

Akaike Information Criterion AIC:

AIC = n log(SSE) − n log(n) + 2p .

For AIC:

1. The second term n log(n) is a constant the sense that it doesn’t depend on which predictors, nor how
many, are in the model.

2. The first term n log(SSE) will be small if the model fits the data well.

3. The last term 2p will be small if the number of predictors in the model, p, is small. It acts as a
penalty for including too many predictors in the model.

Thus a model that fits the data well and contains only a limited number of predictors will have a small
AIC value.

Using AIC to Select Predictors for a Regression Model:

To decide which of two or more models is most appropriate for a given set of data, we choose the
one that has a lower AIC value.

13.19.3 All-Subsets Variable Selection

If only a small number of variables are available for inclusion in a regression model, we can decide which
ones to include by fitting all the possible models and then choosing the one that gives the largest R2

adj (or
smallest AIC) value. This is called an all-subsets variable selection procedure.

Example 13.22: All-Subsets Variable Selection

Recall that in the study of the energy content of waste (Example 13.2), the response variable is

Y = Energy content (kcal/kg)

and the variables that are available for use as predictors in a regression model are

X1 = Percent plastics by weight
X2 = Percent paper by weight
X3 = Percent garbage by weight
X4 = Percent moisture by weight

There are 15 possible models, listed below along with their R2
adj and AIC values (obtained using

software).



518 CHAPTER 13. MULTIPLE LINEAR REGRESSION

Variables in the Model R2
adj AIC

X1 0.32 292.5
X2 -0.03 305.2
X3 -0.03 305.1
X4 0.81 255.1
X1, X2 0.32 293.7
X1, X3 0.30 294.4
X1, X4 0.94 218.4
X2, X3 -0.07 307.0
X2, X4 0.80 256.9
X3, X4 0.80 257.0
X1, X2, X3 0.30 295.5
X1, X2, X4 0.95 215.0
X1, X3, X4 0.94 220.4
X2, X3, X4 0.79 258.9
X1, X2, X3, X4 0.96 211.5

The model with all four predictors has the highest R2
adj value (0.96) and the lowest AIC value (211.5),

so this model is deemed best according to both criteria.

If there are a total of p variables available for inclusion in a model, there will be a total of 2p−1 possible
models that will need to be fitted (not including the one with no predictors) for the all-subsets procedure.
To see why, notice that there are two options for each variable: either include it in the model or leave
it out. Thus, since there are p variables, there are 2 · 2 · · · 2 = 2p models (including the one without any
predictors). Subtracting one discounts the model with no predictors.

13.19.4 Best-Subsets Variable Selection

If the number of variables available for inclusion in a regression model is large, the number of models
that would need to be evaluated for the all-subsets procedure can be overwhelming. In best-subsets
variable selection procedures, the software only reports the ”best” few models for each possible number
of predictors. The user is free to choose how many ”best” models the software reports for each model size,
and is usually given the choice as to whether R2

adj or AIC is used deem a model among the ”best.”

Example 13.23: Best-Subsets Variable Selection

Continuing from the previous example, if we specify to statistical software that we want the two
best models according to the R2

adj criterion for each possible number of predictors that the model
could contain, the software reports the following.

Variables in the Model R2
adj

The two best one-variable models: X4 0.81
X1 0.32

The two best two-variable models: X1, X4 0.94
X2, X4 0.80

The two best three-variable models: X1, X2, X4 0.95
X1, X3, X4 0.94

The only four-variable model: X1, X2, X3, X4 0.96

We see that the best two-variable model (R2
adj = 0.94) and the best three-variable model (R2

adj = 0.95)
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are almost as good as the four-variable model (R2
adj = 0.96). Note that X1 (plastics) and X4

(moisture) show up in all three of these models, and are therefore apparently are the most important
predictors of energy content.

13.19.5 Stepwise Variable Selection

In stepwise variable selection procedures, a sequence of models is fitted the data, each one obtained
from the previous one by adding or removing a variable so as to improve the suitability of the model for
the data. The procedures terminate when neither adding nor dropping a variable from the current model
will lead to any improvement. Although they’re not guaranteed to produce the best possible model (unlike
the all-subsets and best-subsets procedures), they’ll generally produce a good one.

We’ll look at three stepwise procedures, the forward selection procedure, the backward elimination
procedure, and the bidirectional search procedure. In each case, we’ll use the R2

adj to decide which variable,
if any, to add or drop from the model. In practice, the AIC could be used instead.

Forward Selection Stepwise Procedure

In the forward selection stepwise procedure, we start with a model that doesn’t contain any predictor
variables (it just has an intercept), and add variables one at a time as long as doing so increases the model’s
R2

adj (or AIC) value. At each step, the variable added to the model is the one that gives the biggest increase
in R2

adj (or decrease in AIC). The process terminates when none of the remaining variables not yet in the
model can improve the R2

adj (or AIC) value.

Example 13.24: Forward Selection Procedure

To illustrate the forward selection procedure, we’ll use the data from the study of dioxin emissions
from waste incineration given in Example 13.17.

Recall that the response variable is

Y = Dioxin at the outlet

and the variables available for use as predictor in a model are

X1 = Furnace bed temperature
X2 = Furnace top temperature
X3 = Oxygen
X4 = Secondary/primary air ratio
X5 = Total air supply

Recall also (from Example 13.18) that if we fit the model with all five predictors, not all of them
are statistically significant. This suggests that they don’t all need to be included in the model.

We’ll use the forward selection procedure to decide which variables to include in the model. Statis-
tical software carries out the procedure and organizes the results in the following manner.
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Current Model Possible Actions R2
adj

Start: Dioxin = <none> 0.000
+ Total Air 0.364
+ SP Ratio 0.357
+ O2 0.269
+ Top Temp 0.035
+ Bed Temp -0.060

Step 1: Dioxin = Total Air 0.364
+ O2 0.423
+ Top Temp 0.335
+ SP Ratio 0.334
+ Bed Temp 0.323

Step 2: Dioxin = Total Air + O2 0.423
+ Top Temp 0.468
+ SP Ratio 0.408
+ Bed Temp 0.388

Step 3: Dioxin = Total Air + O2
+ Top Temp 0.468

+ Bed Temp 0.484
+ SP Ratio 0.437

Step 4: Dioxin = Total Air + O2
+ Top Temp
+ Bed Temp 0.484

+ SP Ratio 0.461

Final Model: Dioxin = Total Air + O2
+ Top Temp
+ Bed Temp 0.484

Starting from the model containing no predictors (just an intercept), the variables that are available
for adding to the model are listed along with the R2

adj values for the models that would result. The
model at each step was obtained by adding to the previous model the variable that raises the R2

adj

the most. The final model is the one for which no other variable additions can increase the R2
adj.

In this case, the final model includes all the variables except secondary/primary ratio. It should
come as no surprise that either secondary/primary ratio or total air would be left out of the model
because they’re so highly correlated (Example 13.17)

Backward Elimination Stepwise Procedure

The backward elimination stepwise procedure is similar to the forward selection procedure except
that it starts with the full model (containing all the variables that are available) and drops variables one
at a time as long as doing so increases the model’s R2

adj (or AIC) value. At each step, the variable dropped
from the model is the one whose elimination leads to the largest increase in R2

adj (or decrease in AIC). The
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process terminates when none of the variables still remaining in the model can be dropped to improve the
R2

adj (or AIC) value.

Example 13.25: Backward Elimination Procedure

Using the dioxin emissions data from the last example, the backward elimination procedure, carried
out by statistical software, leads to the following.

Current Model Possible Actions R2
adj

Start: Dioxin = Bed Temp + Top Temp
+ O2 + SP Ratio
+ Total Air 0.461

- SP Ratio 0.484
- Bed Temp 0.437
- Total Air 0.424
- Top Temp 0.379
- O2 0.240

Step 1: Dioxin = Bed Temp + Top Temp
+ O2 + Total Air 0.484

- Bed Temp 0.468
- Top Temp 0.388
- O2 0.293
- Total Air 0.187

Final Model: Dioxin = Bed Temp + Top Temp
+ O2 + Total Air 0.484

Starting from the full model with all five predictors, the variables that could be dropped from the
model are listed along with the R2

adj values for the models that would result. The model at each
step was obtained from the previous model by dropping the variable that raises the R2

adj the most.
The final model is the one for which no other variable removals can increase the R2

adj.

As seen above, secondary/primary ratio is dropped in the first step because it’s the only variable
among the five whose removal increases R2

adj (from 0.461 to 0.484). No further steps are taken
because after refitting the model with just the four remaining predictors, dropping any one of them
would increase the R2

adj, not lower it.

In the last example, the final model selected by backward elimination was the same as the one obtained
by forward selection in Example 13.24. In practice, though, there’s no guarantee that the two procedures
will lead to the same model.

Bidirectional Search Stepwise Procedure

In forward selection, once a variable is added to the model, it can’t be removed in a later step. Likewise
in backward elimination, once a variable is removed, it can’t be added back later. In the bidirectional
search stepwise procedure, variables added to the model in one step are candidates for removal in later
steps, and variables removed in one step are candidates for being added back in later.

The procedure starts with either the model containing no predictors (just an intercept) or the full model
(containing all available predictors). At each step either a variable not already in the model is added or
one in the model is removed, whichever action results in the largest increase in R2

adj (or decrease in AIC).
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The process terminates when neither adding nor dropping a variable from the model can give a bigger R2
adj

(or smaller AIC).
The next example illustrates the procedure starting from the model with no predictors.

Example 13.26: Bidirectional Search Procedure

Continuing with the study of dioxin emissions from the last example, the bidirectional search pro-
cedure, carried out by statistical software, leads to the following.

Current Model Possible Actions R2
adj

Start: Dioxin = <none> 0.000
+ TotalAir 0.364
+ SPAir 0.357
+ O2 0.269
+ TopTemp 0.035
+ BedTemp -0.060

Step 1: Dioxin = Total Air 0.364
+ O2 0.423
+ TopTemp 0.335
+ SPAir 0.334
+ BedTemp 0.323
- TotalAir 0.000

Step 2: Dioxin = Total Air + O2 0.423
+ TopTemp 0.468
+ SPAir 0.408
+ BedTemp 0.388
- O2 0.364
- TotalAir 0.269

Step 3: Dioxin = Total Air + O2
+ TopTemp 0.468

+ BedTemp 0.484
+ SPAir 0.437
- TopTemp 0.423
- O2 0.335
- TotalAir 0.222
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Step 4: Dioxin = Total Air + O2
+ TopTemp
+ BedTemp 0.484

- BedTemp 0.468
+ SPAir 0.461
- TopTemp 0.388
- O2 0.293
- TotalAir 0.187

Final Model: Dioxin = Total Air + O2
+ TopTemp
+ BedTemp 0.484

Starting from the model with no predictors (just an intercept), the variables that could be added
are listed along with the resulting R2

adj values. At each step, the model was obtained from the
previous one by adding or dropping the variable that raised the R2

adj the most, and the variables
available to be added or dropped from the current model are listed along with the resulting R2

adj val-
ues. The final model is the one for which no other variable additions or removals can increase the R2

adj.

In this case, at each step another predictor was added to the model, which is to say no variables
were ever removed.

The final model in the previous example turned out to be the same as the ones obtained by forward
selection and backward elimination (Examples 13.24 and 13.25). In practice, though, there’s no guarantee
that the three procedures will lead to the same model.

Comment: Because there’s no guarantee that a stepwise variable selection procedure will produce the
”best” model, a better approach to variable selection is to use the stepwise procedure to suggest how many
predictors to include in the model, but not necessarily which ones. Then, once the number of predictors
has been determined, we choose from among all models that have that many predictors the one whose R2

adj

is highest (or AIC is lowest), for example by using the best-subsets procedure.

13.20 Problems

13.1 If we add another predictor to a regression model, will the R2 necessarily increase? What about
R2

adj? If the R2
adj, what would that indicate about the predictor that was added to the model?

13.2 In a study of the effects of freeway air pollution on the respiratory health of children in nearby
schools, black smoke and nitrogen dioxide (NO2) were measured in the air inside 11 schools in the Province
of South Holland, Netherlands [13].

The table below shows, for each school, the indoor black smoke and NO2 concentrations (µg/m3), the
distance of the school from a freeway (m), and the truck and automobile traffic volume (thousands of
vehicles per day) of the freeway.
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Freeway Pollution in Schools
Black Distance Truck Automobile

School Smoke NO2 from Freeway Traffic Volume Traffic Volume
1 8.81 9.2 393 8.10 72.88
2 6.73 13.0 300 8.10 72.88
3 8.21 23.6 121 8.44 132.29
4 6.73 14.8 318 12.12 88.87
5 5.15 9.2 298 12.12 88.87
6 5.74 14.7 645 12.12 88.87
7 12.37 32.8 35 16.77 135.69
8 10.59 27.7 83 16.77 135.69
9 20.78 30.0 168 17.58 91.61

10 12.47 22.0 125 17.58 91.61
11 11.97 21.5 300 17.58 91.61

In this problem, we’ll analyze the black smoke data. A scatterplot matrix of the black smoke, distance
from freeway, and truck and automobile volumes is below.
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Scatterplot Matrix of Freeway Pollution in Schools

a) Carry out a multiple regression analysis, with black smoke as the response and distance from freeway,
truck volume, and automobile volume as predictors. Give the equation of the fitted regression model.

b) Based on the fitted regression model, by how much does the black smoke concentration decrease, on
average, for each one-meter increase in distance from the freeway (while holding the other predictors
constant)?

c) Based on the fitted regression model, by how much does the black smoke concentration increase,
on average, for each one-thousand-vehicle increase in truck traffic volume (while holding the other
predictors constant)?

d) Based on the fitted regression model, by how much does the black smoke concentration decrease, on
average, for each one-thousand-vehicle increase in automobile traffic volume (while holding the other
predictors constant)?

e) Based on the regression analysis of part a, which (if any) of the three predictors exhibit a statistically
significant relationship to black smoke? Use a level of significance α = 0.05.

f) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the t tests, that the error term ε is normally
distributed appear to be met?

g) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the t tests, that the standard deviation σ of the
error distribution is the same for different values of the predictors appear to be met?

h) Assuming that σ is the same for the different values of the predictors, what’s the estimated value of
σ?

i) Compute the coefficient of multiple determination R2. What proportion of the variation in black
smoke can be explained by the three predictors distance from freeway, truck volume, and automobile
volume?

13.3 Refer to the study of the effects of freeway air pollution on the respiratory health of children in
nearby schools described in Problem 13.2.

In this problem, we’ll analyze the NO2 data. A scatterplot matrix of the NO2, distance from freeway, and
truck and automobile volumes is below.
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Scatterplot Matrix of Freeway Pollution in Schools
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a) Carry out a multiple regression analysis, with NO2 as the response and distance from freeway, truck
volume, and automobile volume as predictors. Give the equation of the fitted regression model.

b) Based on the fitted regression model, by how much does the NO2 concentration decrease, on average,
for each one-meter increase in distance from the freeway (while holding the other predictors constant)?

c) Based on the fitted regression model, by how much does the NO2 concentration increase, on average,
for each one-thousand-vehicle increase in truck traffic volume (while holding the other predictors
constant)?

d) Based on the fitted regression model, by how much does the NO2 concentration increase, on average,
for each one-thousand-vehicle increase in automobile traffic volume (while holding the other predictors
constant)?

e) Based on the regression analysis of part a, which (if any) of the three predictors exhibit a statistically
significant relationship to NO2? Use a level of significance α = 0.05.

f) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the t tests, that the error term ε is normally
distributed appear to be met?

g) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the t tests, that the standard deviation σ of the
error distribution is the same for different values of the predictors appear to be met?

h) Assuming that σ is the same for the different values of the predictors, what’s the estimated value of
σ?

i) Compute the coefficient of multiple determination R2. What proportion of the variation in NO2 can
be explained by the three predictors distance from freeway, truck volume, and automobile volume?
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13.4 Trace elements and three major elements were measured in coal samples from 24 worldwide deposits
to identify relationships between these elements [15]. The table below gives the data on the trace element
copper (Cu, µg/g) and the major elements aluminum, calcium, and iron (Al, Ca, and Fe, all mg/g).

Elements in Coal Deposits

Coal Specimen Country Cu Al Ca Fe
1 S. Africa 12.1 21.00 7.08 5.00
2 S. Africa 10.8 20.50 10.60 6.28
3 USA 5.7 4.44 4.62 3.17
4 USA 13.5 10.40 1.73 3.48
5 Japan 14.6 17.60 12.30 16.10
6 India 5.7 1.17 1.20 1.34
7 China 24.3 27.20 8.71 5.49
8 Colombia 4.2 0.96 0.15 0.72
9 India 9.1 12.70 1.03 3.23
10 China 17.7 33.60 4.72 3.71
11 Australia 16.5 16.30 2.91 6.88
12 China 6.8 1.98 15.70 4.10
13 Australia 22.1 23.90 1.21 4.38
14 China 15.3 25.80 4.21 3.34
15 India 3.0 2.18 0.51 1.62
16 India 2.4 3.08 1.01 0.69
17 Australia 25.5 18.50 0.87 1.93
18 Australia 11.6 13.40 1.09 1.74
19 India 8.8 15.50 1.88 7.37
20 China 10.5 9.62 9.49 6.11
21 Australia 16.1 13.80 13.60 5.04
22 USA 28.5 11.20 9.24 27.90
23 USA 13.3 7.26 13.60 4.21
24 USA 19.5 3.90 14.80 4.43

We’ll investigate the relationship between the trace element Cu and the three major elements Al, Ca, and
Fe. A scatterplot matrix of these variables is below.
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Scatterplot Matrix of Elements in Coal Deposits

a) Perform a multiple regression analysis with Cu as the response and Al, Ca, and Fe as predictors.
Give the equation of the fitted regression model.

b) Based on the fitted regression model, by how many µg/g and does the Cu concentration increase, on
average, for each one-mg/g increase in Al (while holding the other predictors constant)?

c) Based on the fitted regression model, by how many µg/g and does the Cu concentration increase, on
average, for each one-mg/g increase in Ca (while holding the other predictors constant)?

d) Based on the fitted regression model, by how many µg/g and does the Cu concentration increase, on
average, for each one-mg/g increase in Fe (while holding the other predictors constant)?

e) Based on the regression analysis of part a, which (if any) of the three predictors exhibit a statistically
significant relationship to Cu? Use a level of significance α = 0.05.
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f) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the t tests, that the error term ε is normally
distributed appear to be met?

g) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the t tests, that the standard deviation σ of the
error distribution is the same for different values of the predictors appear to be met?

h) Assuming that σ is the same for the different values of the predictors, what’s the estimated value of
σ?

i) Compute the coefficient of multiple determination R2. What proportion of the variation in Cu can
be explained by the three predictors distance from freeway, truck volume, and automobile volume?

13.5 A groundwater budget analysis is an attempt to quantify the amount of water entering and leaving
an aquifer via recharge from rainfall and surface water sources, pumping for human usage, and loss through
evaporation and discharge into rivers.

Near coastal areas, fresh groundwater is lost not only by discharge into rivers but also by submarine
groundwater discharge, which refers to underground seepage into the oceans and flow from submarine
springs. In such areas, understanding the relationship between submarine groundwater discharge and the
other variables that affect an aquifer’s groundwater supply is important for a groundwater budget analysis.

A study was carried out near the southwestern coast of Taiwan at Fangsan, where fresh groundwater is
in short supply, to investigate the relationship between submarine groundwater discharge and three other
variables that impact groundwater supply [9]. The data below are values of the following variables (all in
104 m3) for each of the years 1997 - 2003:

Submarine groundwater discharge (SGD).
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Groundwater recharge (GR), for example from rainfall and surface water.
Groundwater pumped for human usage (GP).
River base flow (RBF), or groundwater discharged into rivers.

Groundwater Budget
Year SGD GR GP RBF
1997 321 1386 277 793
1998 205 1160 242 637
1999 161 1597 588 861
2000 294 1339 387 615
2001 94 1639 604 977
2002 178 905 390 347
2003 212 1093 170 676

A scatterplot matrix of these variables is below.
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Scatterplot Matrix of Groundwater Budget

a) Carry out a multiple regression analysis, with submarine groundwater discharge (SGD) as the re-
sponse and groundwater recharge (GR), groundwater pumped (GP), and river base flow (RBF) as
predictors. Give the equation of the fitted regression model.

b) Based on the fitted regression model, by how much does the submarine groundwater discharge in-
crease, on average, for each 104 m3 increase in groundwater recharge (while holding the other predic-
tors constant)?

c) Based on the fitted regression model, by how much does the submarine groundwater discharge de-
crease, on average, for each 104 m3 increase in groundwater pumped for human usage (while holding
the other predictors constant)?

d) Based on the fitted regression model, by how much does the submarine groundwater discharge de-
crease, on average, for each 104 m3 increase in river base flow (while holding the other predictors
constant)?

e) Based on the regression analysis of part a, which (if any) of the three predictors exhibit a statistically
significant relationship to submarine groundwater discharge? Use a level of significance α = 0.05.

f) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the t tests, that the error term ε is normally
distributed appear to be met?

g) A plot of the residuals versus the fitted values is below.

●

●

●

●

●

●

●

100 150 200 250 300

−4
0

−2
0

0
20

40

Residuals Versus Fitted Values

Fitted Value

R
es

id
ua

l

Based on the plot, does the assumption, required by the t tests, that the standard deviation σ of the
error distribution is the same for different values of the predictors appear to be met?

h) Assuming that σ is the same for the different values of the predictors, what’s the estimated value of
σ?

i) Compute the coefficient of multiple determination R2. What proportion of the variation in submarine
groundwater discharge can be explained by the three predictors groundwater recharge, groundwater
pumped, and river base flow?

13.6 In the study of the relationship between plant species diversity and various features of small islands
cited in Problem 11.7 in Chapter 11, for each of 86 islands in the Aegean archipelago, Greece, the species
richness (number of unique species) was measured along with the the island’s area (km2), elevation (m),
distance from the nearest large island (km), and number of habitat types [8]. All of the islands investigated
were 0.5 km2 or smaller. The table below shows data.
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Plant Species Richness on Small Islands

Species Distance to Number of
Island Richness Area Elevation Nearest Island Habitat Types

Ag. Kyriaki 59 0.150 76 1.3 3
Ag. Nikolaos 69 0.119 30 0.4 3
Antidragonera 89 0.150 40 0.6 3
Archontonisi 11 0.028 15 0.2 1
Arefousa 43 0.175 65 0.7 3
Aspronisi (east) 11 0.007 15 2.1 2
Aspronisi (east 1) 34 0.037 30 1.4 2
Aspronisi (north) 45 0.056 30 1.8 2
Aspronisi (northwest) 46 0.048 25 1.1 2
Aspronisi (west) 7 0.010 15 1.9 2
Diabates (east) 50 0.067 5 0.04 1
Diabates (west) 16 0.067 5 0.06 1
East Gourna 33 0.008 10 0.5 1
Faradonisi (northwest) 33 0.040 10 1.3 2
Faradonisi (south) 22 0.025 5 0.7 1
Faradonisi (southwest) 19 0.020 10 0.9 1
Faradonisi megalo 60 0.160 55 0.8 3
Fragkonisi 103 0.225 75 4.0 3
Glaronisi (north) 57 0.030 15 0.7 2
Glaronisi (south) 73 0.090 28 1.3 3
Ilias 6 0.023 10 0.03 1
Imia (east) 17 0.017 20 10.2 2
Imia (west) 20 0.020 15 9.8 2
Kalapodi megalo 55 0.039 25 3.2 3
Kalapodi mikro 12 0.005 5 3.1 1
Kalovolos 68 0.307 66 1.6 3
Kapelo 1 0.009 10 4.0 1
Kapparonisi 57 0.068 18 1.8 3
Katsaganaki 16 0.002 10 0.1 1
Katsagani 72 0.090 30 0.2 2
Kombi 68 0.090 20 0.4 1
Kommeno nisi 34 0.028 10 1.2 1
Koukonisi 11 0.472 10 0.2 2
Kouloura 1 76 0.078 20 0.7 2
Kouloura 2 45 0.020 30 0.2 2
Koumaro 37 0.100 20 0.1 2
Kounelonisi 59 0.230 50 1.7 3
Lidia 15 0.035 27 0.8 1
Lyra 55 0.050 40 0.2 3
Makronisi 15 0.034 30 0.4 3
Makronisi 1 76 0.261 40 0.4 3
Makronisi 2 58 0.197 30 2.1 3
Marathi 90 0.355 51 0.6 3
Mavra (east) 38 0.148 20 40.6 2
Mavra (west) 32 0.132 20 41.4 2
Megali Dragonera 109 0.320 36 0.6 3
Megalo Stroggylo 12 0.030 29 1.2 1
Megalo Trachili 11 0.225 5 0.2 2
Mikro Trachili 6 0.135 5 0.1 1
Minaronisi 45 0.021 20 0.4 2
Neronisi 27 0.500 63 0.2 3
Nisida Manoli 55 0.029 30 1.0 2
Paplomata 26 0.004 3 0.1 1
Patelidi 8 0.025 5 0.7 1
Piato 56 0.060 20 1.8 1
Piganousa 101 0.350 139 0.7 3
Pitta 22 0.024 20 8.0 2
Plakousa 17 0.050 10 0.6 2
Plochoros 60 0.067 20 0.7 2
Pontikos 18 0.103 30 0.8 3
Prassonisi 14 0.013 10 1.0 1
Prassonisi 3 15 0.040 13 0.2 1
Prassonisi 1 13 0.011 2 1.3 1
Prassonisi 2 32 0.012 15 8.0 1
Prassou 97 0.500 40 8.0 4
Psathi 67 0.052 20 1.5 2
Psathonisi 44 0.127 10 0.7 2
Psonos 93 0.071 30 1.3 2
Saraki 16 0.007 30 7.8 1
Spartonisi 39 0.025 15 1.3 2
Stroggyli 62 0.096 20 1.1 2
Stroggyli 1 67 0.207 91 1.1 2
Stroggyli 2 44 0.150 76 0.5 3
Thimonies 8 0.010 10 0.1 1
Tiganaki 55 0.042 20 0.1 1
Tigani 12 0.140 5 0.03 1
Trypiti megali 72 0.072 30 1.0 2
Trypiti mikri 44 0.020 15 0.8 1
Vatopoula 54 0.007 15 2.4 1
Vatos 93 0.386 30 2.6 3
Velona 63 0.070 15 0.3 3
West Gourna 7 0.006 8 0.5 1
Zouka (Megali) 86 0.028 20 0.4 1
Zouka (Mikri) 79 0.008 15 0.2 1
(unnamed 1) 12 0.005 10 1.2 1
(unnamd 2) 1 0.0005 2 1.7 2

We’ll investigate the relationship between the species richness of an island and its area, elevation, distance
to nearest large island, and number of habitat types. A scatterplot matrix of these variables is below.

a) Carry out a multiple regression analysis, with species richness as the response and area, elevation,
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distance to the nearest large island, and number of habitat types as predictors. Give the equation of
the fitted regression model.

b) Based on the fitted regression model, by how much does the species richness increase, on average,
for each one-km2 increase in area (while holding the other predictors constant)?

c) Based on the fitted regression model, by how much does the species richness increase, on average, for
each one-m increase in elevation (while holding the other predictors constant)?

d) Based on the fitted regression model, by how much does the species richness decrease, on average, for
each one-km increase in the distance to the nearest large island (while holding the other predictors
constant)?

e) Based on the fitted regression model, by how much does the species richness increase, on average, for
each one-habitat increase in the number of habitats (while holding the other predictors constant)?

f) Based on the regression analysis of part a, which (if any) of the four predictors exhibit a statistically
significant relationship to species richness? Use a level of significance α = 0.05.

g) A normal probability plot of the residuals is below.
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Based on the plot, does the assumption, required by the t tests, that the error term ε is normally
distributed appear to be met?

h) A plot of the residuals versus the fitted values is below.
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Based on the plot, does the assumption, required by the t tests, that the standard deviation σ of the
error distribution is the same for different values of the predictors appear to be met?

i) Assuming that σ is the same for the different values of the predictors, what’s the estimated value of
σ?

j) Compute the coefficient of multiple determination R2. What proportion of the variation in species
richness can be explained by the four predictors area, elevation, distance to the nearest large island,
and number of habitat types?

13.7 The fish stock off the coast of Greenland has declined dramatically since the early 1920s due to
fishing activities. The data below are from a study of the progressive commercial extinction of Atlantic
cod [10]. The response variable is the number of recruits at age three, that is, fish reaching their third
year (in millions), a measure of the reproductive success of the fish. The two predictor variables are the
spawning stock biomass (SSB), or total weight of all fish mature enough to reproduce (in thousands of
tons), and the sea surface water temperature (degrees C) in mid June. The data are for the years 1955 -
1989.
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Atlantic Cod off Greenland
Year Recruits SSB Temperature
1955 134.5 1817.5 1.2
1956 463.7 1519.5 0.9
1957 531.7 1331.3 2.3
1958 226.9 1469.3 2.2
1959 93.6 1042.4 1.6
1960 409.6 1228.8 2.7
1961 703.4 1083.5 3.2
1962 286.7 1035.9 2.2
1963 330.0 1020.4 1.6
1964 105.6 887.2 2.3
1965 37.5 716.2 2.1
1966 39.1 715.5 1.6
1967 22.8 828.7 1.5
1968 88.0 775.9 2.1
1969 4.2 572.0 0.3
1970 9.2 467.0 0.3
1971 6.2 378.3 0.8
1972 24.6 248.1 0.6
1973 154.6 109.5 1.7
1974 16.6 88.9 1.4
1975 20.1 54.8 1.9
1976 26.8 30.1 1.4
1977 71.1 20.6 2.2
1978 14.3 37.8 0.9
1979 56.5 78.8 2.3
1980 7.7 94.1 1.9
1981 13.8 71.1 1.6
1982 2.0 57.2 0.8
1983 10.9 46.6 0.4
1984 265.7 35.6 1.0
1985 85.1 29.9 2.1
1986 1.4 32.9 2.2
1987 1.6 36.2 2.1
1988 0.6 56.4 2.0
1989 0.3 83.6 0.9

a) Carry out a multiple regression analysis, with recruits as the response and SSB and temperature as
predictors. Give the equation of the fitted regression model.

b) Based on the fitted regression model, by how much does the number of recruits increase, on average,
with each one-thousand-ton increase in SSB?

c) Based on the fitted regression model, by how much does the number of recruits increase, on average,
with each one-degree increase in temperature?

d) Based on the regression analysis of part a, which (if any) of the two predictors are important for
determining the number of recruits? Use a level of significance α = 0.05.

e) Compute the coefficient of multiple determination R2. What proportion of the variation in recruits
can be explained by the two predictors SSB and temperature?

13.8 Biodegradation of pesticides in the environment results from the activities of soil microorganisms.
Degradation rates can vary spatially according to the abundance of the microorganisms and the chemical
properties of the soil such as its organic matter content, pH, and nutrient supply.

A study was carried out to investigate the influence of these soil characteristics on the degradation rate of
the herbicide isoproturon [14]. Soil specimens collected from 20 sites in a research field were analyzed for
nitrate, potassium, phosphorus (all in mg/kg), pH, organic matter (%), and microbial biomass (mg C/kg).
Each soil specimen was then treated with isoproturon and incubated for 65 days. The response variable
is DT50, the time (in days) required for the isoproturon concentration to decrease by 50%. The data are
below.
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Degradation Rates and Soil Properties
Site DT50 Nitrate Potassium Phosphorus pH Organic Matter Biomass
A2 16.3 4 107 58 6.50 3.01 173
A3 19.6 8 104 51 6.14 2.37 159
A4 18.0 8 111 68 6.47 2.27 140
A5 15.9 12 115 68 6.44 2.69 203
B1 7.1 13 128 62 7.44 2.51 257
B2 17.6 4 117 62 6.31 2.44 124
B3 17.4 3 94 60 6.26 2.50 125
C1 7.1 12 120 53 7.00 2.51 254
C2 19.8 9 98 60 6.70 2.40 191
C3 17.9 4 101 75 6.36 2.25 134
C6 19.2 7 141 48 6.26 2.63 166
D1 7.0 6 125 54 7.00 2.80 237
D2 17.0 10 121 56 6.28 2.72 165
D4 15.9 5 102 51 6.20 2.30 154
D5 13.4 3 129 53 6.26 2.28 135
E1 6.5 16 120 59 7.63 2.58 233
E3 15.7 3 107 64 6.17 2.22 172
E4 8.3 8 180 70 7.40 2.93 267
E5 15.4 29 144 66 7.15 2.60 221
E6 5.6 7 179 53 7.19 2.70 288

A scatterplot matrix of the data is below.
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Scatterplot Matrix of DT50 and Soil Properties

a) Carry out a multiple regression analysis with DT50 as the response and nitrate, potassium, phos-
phorus, pH, organic matter, and biomass as predictors. Give the equation of the fitted regression
model.

b) Based on the regression analysis of part a, which (if any) of the six predictors exhibit a statistically
significant relationship to DT50? Use a level of significance α = 0.05.

c) Carry out a backward elimination procedure to reduce the number of predictors in the model. Which
predictors end up in the final model?

d) Now use a backward stepwise procedure to reduce the number of predictors in the model from the
original six. Which predictors end up in the final model? Compare this final model to the one in
part c.

13.9 In a study of heavy metals deposited by precipitation and wind-blown particles in the Alps moun-
tain range, mosses were collected at sites along five transects following altitudinal gradients and the metal
concentrations measured in the moss shoots [16]. For each site, the altitude and total precipitation during
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the moss growth period (1989 - 1991) were recorded.

Of interest were the relationships between the metals and the two predictors, altitude and precipitation.
The table below shows the concentrations of lead, vanadium, iron, copper, nickel, and arsenic (Pb, V, Fe,
Cu, Ni, As, all µg/g), the altitudes (m), and the precipitation levels (mm).

Metals in the Alps

Site Pb V Fe Cu Ni As Altitude Precipitation
1/1 11.1 1.3 215 5.3 1.1 0.30 900 3855
1/2 9.8 1.4 235 5.2 0.3 0.23 1100 4200
1/3 14.5 5.2 931 4.7 2.4 0.71 1400 4800
1/4 29.7 6.5 1239 6.6 2.0 0.81 1660 5100
2/1 12.0 1.4 844 5.6 2.2 0.94 650 3060
2/2 7.8 1.6 952 6.1 2.7 0.95 1000 3560
2/3 8.1 0.6 230 5.6 0.7 0.34 1250 4010
2/4 18.9 0.7 394 5.8 1.4 0.42 1550 4490
2/5 12.6 0.9 273 5.6 1.4 0.29 1750 4850
2/6 24.3 1.4 364 5.9 1.3 0.34 1950 5210
2/7 18.7 0.9 322 5.4 1.5 0.24 2130 5540
2/8 24.5 1.6 521 5.9 3.2 0.54 2260 5900
3/1 12.6 0.8 672 5.4 2.3 1.33 1000 3555
3/2 12.1 1.0 503 5.6 3.8 0.59 1250 4000
3/3 15.1 0.5 288 5.4 2.1 0.39 1550 4500
3/4 13.0 1.4 391 6.3 1.9 0.63 1450 4360
3/5 10.8 0.6 369 5.2 3.3 0.66 1650 4720
3/6 15.4 1.0 336 5.8 2.1 0.29 1850 5080
3/7 17.9 1.8 717 5.9 2.6 0.64 2100 5530
3/8 19.9 1.7 613 6.6 2.1 0.75 2050 5440
3/9 15.2 1.2 609 6.5 3.0 0.80 2150 5620
4/1 6.9 1.4 368 4.4 2.2 0.21 350 4263
4/2 11.5 5.9 2087 7.7 6.9 0.84 550 4500
4/3 8.6 5.4 1248 6.2 7.0 0.82 750 4800
4/4 12.0 2.4 1144 6.9 4.0 0.69 1100 5400
4/5 13.2 2.1 392 6.3 1.8 0.48 1250 5500
5/1 18.8 2.5 470 6.3 1.9 0.40 1000 2681
5/2 17.2 1.6 477 4.9 1.4 0.36 1200 3050
5/3 23.0 1.7 527 7.4 2.2 0.52 1300 3250
5/4 16.9 1.8 466 5.9 1.9 0.39 1440 3600
5/5 22.8 1.7 355 7.3 1.9 0.77 1600 3750
5/6 14.4 3.1 1970 4.8 4.6 1.19 1760 4120

In this problem, we’ll investigate the relationship between the response variable Pb and the two predictors,
altitude and precipitation. A scatterplot matrix of the data is below.

Pb
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Scatterplot Matrix of Lead in the Alps

a) Carry out a multiple regression analysis with response variable Pb and predictors altitude and pre-
cipitation.

b) Based on the regression analysis of part b, which (if any) of the predictors are important for deter-
mining the Pb value?
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c) By how much does the Pb concentration tend to increase, on average, with each one-meter increase
in altitude?

d) What proportion of the total variation in Pb is explained by the regression model that includes
altitude and precipitation as predictors?

13.10 A common method for disposing of household and industrial waste is incineration. But waste
incineration emits pollutants, including dioxin. Several components of the incineration process can be
adjusted to try to reduce dioxin emissions. In a study of the relationship between several incinerator com-
bustion conditions and dioxin emissions, an incineration process was run 18 times under different operating
conditions and dioxin measurements made for each test run [3].

The components of the incineration process that were adjusted included:

X1 = furnace bed temperature
X2 = furnace top temperature
X3 = oxygen (O2)
X4 = secondary/primary air ratio
X5 = total air supply
X6 = nitrogen oxide (NOx)

The resulting data are shown in the table below.

Test Dioxin at Total Air Secondary/Pri- Furnace Bed Furnace Top
Run Outlet Supply mary Ratio Temperature Temperature O2 NOx

1 13.70 29800 1.48 618 845 11.3 101
2 29.53 31500 1.63 609 783 12.1 116
3 14.98 31800 1.65 597 746 13.2 130
4 18.15 32100 1.79 589 858 12.5 118
5 8.89 31800 1.77 583 876 12.5 123
6 6.61 31500 1.76 604 874 12.7 147
7 20.12 29600 1.47 612 858 12.5 92
8 7.08 33580 2.04 603 864 11.9 107
9 11.49 36250 2.31 601 866 11.6 93

10 19.34 30520 1.78 603 890 12.1 NA
11 19.4 30520 1.78 603 890 12.1 NA
12 5.20 29110 1.64 601 915 12.8 128
13 11.00 32740 1.98 605 840 12.1 96
14 14.00 31270 1.82 603 861 11.8 100
15 25.78 26790 1.23 600 930 10.8 134
16 26.38 26780 1.23 600 930 10.8 132
17 30.41 27700 1.50 593 961 11.0 113
18 31.27 26500 1.39 596 948 11.5 93

a) Make a scatterplot matrix that includes the seven numerical variables in the table above.

b) Based on the scatterplot matrix of part a, which two predictors appear to be the most highly corre-
lated (either positively or negatively)?

c) Perform a multiple regression analysis with Dioxin at Outlet as the response and Secondary/Primary
Air Ratio, Furnace Bed Temperature, Furnace Top Temperature, O2, and NOx as the predictors.
Give the equation of the fitted regression model.

d) Based on the regression analysis of part c, which of the seven predictors appear to be important in
determining the Dioxin at Outlet? Use a level of significance α = 0.05.



538 CHAPTER 13. MULTIPLE LINEAR REGRESSION

e) Calculate the R2 for the model of part c. What proportion of the total variation in Dioxin at Outlet
can be explained by the model?

f) The scatterplot matrix of part a shows that total air supply and secondary/primary air ratio are
highly correlated, which suggests that it may not be necessary to include both of these variables in
the model. Carry out the multiple regression analysis again, this time omitting secondary/primary
air ratio from the model. Give the equation of the fitted regression model.

g) Based on the regression analysis of part f, which of the six predictors appear to be important in
determining the dioxin at outlet? Use a level of significance α = 0.05.

h) Why do the p-values for the six predictors left in the model change so dramatically when Sec-
ondary/Primary Air Ratio is removed from the model?

i) Calculate the R2 for the model of part f. What proportion of the total variation in Dioxin at Outlet
can be explained by the model?

j) Compare the R2 of part i to the R2 of part e. Does it appear that omitting secondary/primary air
ratio from the model results in a much poorer fit to the data? Explain your answer.

13.11 Data were collected over the years 1980 - 1989 to document the recovery of a sparrowhawk pop-
ulation in Rockingham Forest, east-central England, in relation to declining levels of DDE and HEOD
pesticide residues and declining levels of polychlorinated biphenyls (PCBs) in the region [7]. Each year
during the study period, sparrowhawk nests were examined and unhatched eggs were collected for physical
and chemical analysis. The following variables were recorded for each year:

DDE = Geometric mean of levels in sparrowhawk eggs (µg/g).
HEOD = Geometric mean of levels in sparrowhawk eggs (µg/g).
PCB = Geometric mean of levels in sparrowhawk eggs (µg/g)
Young Per Clutch = Mean number of surviving offspring per clutch, a measure of

breeding success.
Clutches Hatched = Percentage of clutches for which one or more eggs hatched.
Shell Index = Mean of an index of egg shell thickness defined as

Shell Weight (mg)
Shell Length (mm)×Shell Width (mm)

.

Geometric means were used to represent the pesticide residues and PCBs because the distributions of these
variables were right skewed. The table below shows the data.

Young Clutches Shell
Year Per Clutch Hatched Index DDE HEOD PCB
1980 1.8 58.8 1.18 10.66 0.94 5.69
1981 1.8 50.0 1.15 14.22 0.79 1.57
1982 1.8 50.0 1.20 9.55 0.98 2.50
1983 2.2 68.2 1.28 5.79 0.49 3.20
1984 2.1 71.1 1.28 5.94 0.78 4.61
1985 2.2 67.3 1.26 7.65 0.56 1.32
1986 2.8 75.9 1.33 5.52 0.64 2.84
1987 3.2 77.4 1.35 3.83 0.36 3.02
1988 2.9 76.4 1.33 4.17 0.82 4.56
1989 2.9 84.6 1.33 4.40 0.33 4.94

In this problem, we’ll examine the relationship between the response variable young per clutch and the
three predictors DDE, HEOD, and PCB.
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a) Make a scatterplot matrix of the variables young per clutch, DDE, HEOD, and PCB.

b) Calculate the correlation matrix of the variables young per clutch, DDE, HEOD, and PCB.

c) From the scatterplot and correlation matrices of parts a and b, describe the relationship between
young per clutch and DDE, between young per clutch and HEOD, and between young per clutch
and PCB.

d) Based on the correlation matrix of part b, which of the predictors are most correlated with each
other?

e) Perform a multiple regression analysis with young per clutch as the response variable and DDE,
HEOD, and PCB as predictors. Give the equation of the fitted regression model.

f) Make a normal probability plot of the residuals from the regression analysis of part c. Based on the
plot, is there any strong indication of non-normality in the errors?

g) Based on the regression analysis of part c, which (if any) of the three predictors exhibit a statistically
significant relationship to young per clutch? Use a level of significance α = 0.05.

h) Perform the multiple regression analysis again, but this time omitting HEOD from the model. Which
(if any) of the two remaining predictors shows a significant relationship to young per clutch? Use a
level of significance α = 0.05.

i) Explain why DDE is statistically significant in the regression analysis of part j, but it wasn’t significant
in part d.

13.12 In a study of the composition of municipal solid waste worldwide, data from cities throughout the
world or nation averages were compiled from several sources [1]. The goal of the study was to investigate
the relationship between food waste and waste from materials used in packaging food. One potential
question was whether lower levels of food waste are associated with higher levels of packaging waste, which
would suggest that more packaging reduces the amount of food discarded. The table below shows the data,
in proportions of total waste, along with the years the data were collected or first reported.
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Paper Food
Country City Year and Board Metal Glass Waste Plastics
Austria Vienna 1975 0.383 0.081 0.092 0.186 0.061
Austria Vienna 1982 0.403 0.049 0.081 0.244 0.090
Belgium Average 1976 0.300 0.053 0.080 0.400 0.050
Bulgaria Sofia 1977 0.100 0.017 0.016 0.540 0.017
Columbia Medellin 1979 0.220 0.010 0.020 0.560 0.050
Czechoslovakia Prague 1975 0.134 0.062 0.066 0.418 0.042
Denmark Average 1978 0.329 0.041 0.061 0.440 0.068
Denmark Average 1970 0.450 0.040 0.080 0.130 NA
England Average 1969 0.380 0.097 0.105 0.195 0.014
England Average 1935-6 0.143 0.040 0.034 0.137 NA
England Average 1963 0.230 0.082 0.086 0.141 NA
England Average 1967 0.295 0.080 0.081 0.155 0.012
England Average 1968 0.369 0.089 0.091 0.176 0.011
England Doncaster 1985 0.210 0.070 0.060 0.150 0.050
England Doncaster 1982 0.240 0.080 0.080 0.280 0.050
England Doncaster 1985 0.280 0.090 0.080 0.200 0.070
England London 1980 0.421 0.110 0.117 0.170 0.040
England Stevenage 1979 0.330 0.070 0.090 0.160 0.030
Finland Average 1978 0.550 0.050 0.060 0.200 0.060
France Laval 1985 0.340 0.050 0.120 0.300 0.060
France Paris 1979 0.340 0.040 0.090 0.150 0.040
Gabon Average 1977 0.060 0.050 0.090 0.770 0.030
Germany (FRG) Aachen 1974 0.308 0.069 0.135 0.164 0.045
Germany (FRG) Aachen 1979 0.310 0.030 0.130 0.160 0.040
Germany (FRG) Berlin 1978 0.218 0.049 0.191 0.314 0.060
Germany (FRG) Dusseldorf 1974 0.278 0.044 0.164 0.342 0.062
Germany (FRG) Hamburg 1975 0.231 0.045 0.227 0.300 0.046
Germany (FRG) Munich 1974 0.406 0.061 0.069 0.075 0.075
Germany (FRG) Stuttgart 1974 0.147 0.053 0.099 0.524 0.062
Germany (FRG) Tubingen 1974 0.137 0.047 0.138 0.443 0.076
India Calcutta 1976 0.030 0.010 0.080 0.360 0.010
India Lucknow 1980 0.020 0.030 0.060 0.800 0.040
Indonesia Bandung 1979 0.100 0.020 0.010 0.720 0.060
Indonesia Bandung 1978 0.096 0.022 0.004 0.716 0.055
Indonesia Bogor 1985 0.060 NA NA 0.800 0.040
Indonesia Jakarta 1978 0.020 0.040 0.010 0.820 0.030
Indonesia Jakarta 1978 0.080 0.014 0.005 0.795 0.037
Indonesia Surabaya 1983 0.020 0.005 0.010 0.940 0.020
Iran Teheran 1978 0.172 0.018 0.021 0.698 0.038
Italy Average 1979 0.310 0.070 0.030 0.360 0.070
Italy Milan 1984 0.300 0.030 0.080 0.390 0.100
Italy Rome 1980 0.250 0.025 0.013 0.500 0.060
Italy Rome 1979 0.180 0.030 0.040 0.500 0.040
Japan Gifu 1985 0.210 0.057 0.039 0.500 0.062
Japan Mito 1985 0.301 0.015 0.011 0.418 0.056
Japan Sakai (new area) 1985 0.230 0.022 0.053 0.541 0.081
Japan Sakai (old area) 1985 0.295 0.039 0.049 0.404 0.071
Japan Tokyo 1972 0.382 0.041 0.071 0.227 0.073
Japan Tokyo 1978 0.436 0.012 0.010 0.340 0.056
Japan Utsunomiya 1985 0.249 0.016 0.015 0.502 0.073
Kenya Mombasa 1974 0.122 0.027 0.013 0.426 0.010
Netherlands Amsterdam 1979 0.260 0.030 0.140 0.460 0.060
Netherlands Average 1974 0.341 0.036 0.055 0.376 0.057
Netherlands Average 1978 0.222 0.032 0.119 0.500 0.062
Netherlands Average 1971 0.223 NA 0.081 0.536 0.068
Nigeria Kano 1980 0.170 0.050 0.020 0.430 0.040
Nigeria Lagos NA 0.140 0.040 0.030 0.600 NA
Norway Oslo 1985 0.382 0.020 0.075 0.304 0.065
Pakistan Lahore 1980 0.040 0.040 0.030 0.490 0.020
Philippine Is. Manilla 1978 0.170 0.020 0.050 0.430 0.040
Spain Average 1978 0.180 0.040 0.030 0.500 0.040
Spain Madrid 1979 0.190 0.060 0.030 0.500 0.080
Sri Lanka Colombo 1981 0.080 0.010 0.060 0.800 0.010
Sudan Khartoum 1984 0.040 0.030 NA 0.300 0.026
Sweden Average 1977 0.500 0.070 0.080 0.150 0.080
Sweden Stockholm 1985 0.390 0.050 0.140 0.150 0.080
U.S.A. Average 1975 0.289 0.093 0.104 0.178 0.034
U.S.A. Average 1973 0.427 0.092 0.103 0.146 0.017
U.S.A. Berkeley, CA 1967 0.446 0.087 0.113 0.125 0.019
U.S.A. Estimated 1975 0.290 0.091 0.104 0.178 0.034
U.S.A. Estimated 1971 0.295 0.091 0.096 0.176 0.034
U.S.A. Estimated 1975 0.272 0.153 0.103 0.154 0.032
U.S.A. Estimated 1971 0.293 0.155 0.090 0.164 0.026
U.S.A Johnson City, TN 1968 0.349 0.093 0.090 0.346 0.034
U.S.A. New Orleans, LA 1972 0.394 0.122 0.146 0.189 0.038
U.S.A. N. Little Rock, AK 1978 0.541 0.117 0.082 0.068 0.087
U.S.A. Several 1970 0.442 0.087 0.085 0.116 0.012
U.S.A. Wilmington, DE 1973 0.337 0.066 0.147 0.165 0.033

a) Make a scatterplot matrix with the variables food waste, paper and board, metal, glass, and plastics.

b) Compute the correlation matrix for the five variables of part a.

c) Perform a multiple regression analysis with food waste as the response and paper and board, metal,
glass, and plastics as predictors. Give the equation of the fitted regression model.

d) Make a histogram of the residuals. Does the assumption of normality in the error terms appear to
be met?
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e) Which (if any) of the four predictors show a statistically significant relationship to clutches hatched?
Use a level of significance α = 0.05.

f) The cited paper includes the following quote:

The fraction of food waste decreases as the fractions of waste from paper and board, metals
and glass increase.

Do your regression analysis agree with this conclusion? Explain your answer.

13.13 The study on municipal waste composition cited in Problem 13.12 also reported data specific to
the U.S.

Paper Food
Year and Board Glass Steel Aluminum Plastics Waste

1960 0.144 0.077 0.060 0.002 0.002 0.147
1965 0.162 0.087 0.051 0.003 0.011 0.131
1970 0.158 0.106 0.048 0.005 0.019 0.115
1975 0.144 0.108 0.042 0.006 0.024 0.118
1980 0.145 0.105 0.027 0.007 0.034 0.093
1981 0.151 0.104 0.025 0.006 0.034 0.089
1982 0.144 0.102 0.023 0.006 0.033 0.088
1983 0.149 0.095 0.021 0.007 0.035 0.085
1984 0.156 0.089 0.021 0.007 0.037 0.081
1990 0.153 0.080 0.019 0.008 0.043 0.076
1995 0.157 0.074 0.016 0.009 0.048 0.073
2000 0.158 0.068 0.014 0.009 0.052 0.068

a) Make a scatterplot matrix of year and the six municipal waste variables.

b) Perform a multiple regression analysis with food waste as the response and year, paper and board,
glass, steel, aluminum, and plastics as predictors. Give the equation of the fitted regression model.

c) Note that none of the seven predictor show a statistically significant relationship to food waste, but
the overall model F test is highly significant. Explain how this situation arose.

13.14 Refer to the study of the relationship between water usage and wealth and size for metropolitan
areas described in Example 13.1. The table below shows data on water consumption for commercial,
industrial, and residential uses for each of 26 Chinese cities. Also shown for each city are the population
(city and its surrounding area), a wealth score, and a measure of the local water resources.
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Population Water Usage Local Water
Population Area Density Wealth (million Resources

City (2000) (km2) (pop/km2) Score liters/day) (kiloliters/day)
Shanghai 10,185,900 6341 1606.36 1.361 7895 11.61
Beijing 9,201,200 16,808 547.43 1.216 3064 3.94
Tianjin 5,937,500 11,920 498.11 0.150 1964 2.72
Chongqing 5,584,000 82,403 67.76 -0.619 1609 6.38
Wuhai 5,241,300 8467 619.03 -0.496 2823 11.92
Shenyang 4,791,000 12,980 369.11 -0.712 1720 5.84
Guangchou 3,956,500 7434 532.22 2.094 3369 22.33
Xi-An 3,734,900 9983 374.13 -0.708 1024 3.05
Chengdu 3,219,200 12,390 259.82 -0.164 1266 12.47
Haerbin 2,965,200 53,067 55.88 -0.895 976 2.37
Nanjing 2,732,600 6516 419.37 0.503 3688 10.09
Ji-nan 2,548,200 8154 312.51 0.177 840 4.26
Lanzhou 1,724,400 13,086 131.77 -0.487 1050 1.14
Kunming 1,697,100 15,561 109.06 0.075 605 6.81
Hangzhou 1,692,900 16,596 102.01 0.762 865 18.15
Fuzhou 1,416,800 11,968 118.38 -0.023 841 11.02
Wu-lu-mo-qi 1,361,200 12,000 113.43 -0.060 387 3.89
Datong 1,234,400 14,127 87.38 -0.731 363 1.76
Shenzhen 1,094,600 2020 541.88 3.090 1028 5.03
Huhehaote 986,800 17,224 57.29 -0.929 306 1.55
Liuzhou 875,400 5284 165.67 -0.434 1156 10.28
Mudanjiang 789,200 33,569 23.51 -1.163 400 2.41
Qinhuangdao 664,200 7523 88.29 -0.134 491 6.54
Guilin 603,500 4195 143.86 -0.595 403 16.13
Lianyungang 593,900 7444 79.78 -0.569 223 5.75
Yinchuan 573,400 3499 163.88 -0.709 302 0.65

a) Convert the populations to units of millions of people and take the logs of the water usage values,
then fit a multiple linear regression model with response log of water usage and two predictors, wealth
(z-score) and city size (population in millions). Write out the equation of the fitted regression model.

b) Controlling for the size of a city, by how much does water usage increase, on average, for each one
unit increase in wealth?

c) Make a histogram and normal probability plot of the residuals. Do the plots provide any indication
that the normality assumption of the error term in the multiple regression model is not met?

d) What proportion of the variation in water usage can be explained by the model with wealth and city
size?

13.15 Particulate matter smaller than 2.5 µm in diameter (PM2.5) in the air can trigger asthma attacks
in asthmatic children. It is desirable, therefore, that children not be exposed to high PM2.5 levels immedi-
ately upon being dismissed from schools at the end of each day. To assist schools in developing end-of-day
dismissal procedures that limit children’s exposure to PM2.5, a study investigated the impact of car and
truck traffic and meteorological variables on PM2.5 concentrations near schools [11].

For each of 13 days in the fall of 2006, PM2.5 concentrations were measured at one minute intervals be-
tween 1:45 and 3:30 pm near the intersection of Madison Avenue and E. 104th Street in the East Harlem
neighborhood, New York City. The site was in close proximity to two schools, the Reece School and Public
School 171, and the sampling period 1:45 - 3:30 encompasses the end-of-day dismissals for the schools.

Also recorded were the number of gasoline vehicles (cars and pickup trucks) and diesel vehicles (buses and
large trucks) passing by (through a green light) or idling (at a red light or while parking). In addition,
during the sampling period 1:45 - 3:30 for each day, the temperature, wind speed, relative humidity,
barometric pressure and background PM2.5 concentrations were averaged over several sites in New York
City. The data are shown below.
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PM2.5 PM2.5 Wind Relative Barometric
Date Avg Background Temp Speed Humidity Pressure Idling Idling Passing Passing

(mm/dd) (ng/m3) (ng/m3) (◦C) (m/s) (%) (mm Hg) Diesel Gasoline Diesel Gasoline
10/31 49245 19367 20 7.4 56 756 60 117 158 152
11/01 44873 14094 21 5.0 61 758 73 52 99 162
11/02 20769 8237 12 5.8 53 759 85 201 244 193
11/03 15864 5007 9 6.3 45 766 138 287 334 169
11/06 52143 18377 14 5.2 43 769 109 156 219 130
11/07 11689 9022 14 5.9 85 764 10 60 84 146
11/09 15146 6880 20 7.3 68 749 55 148 187 133
11/10 6519 7501 16 5.1 54 759 73 173 207 157
11/13 30108 10099 16 10.6 94 756 45 88 125 134
11/14 19075 9558 16 5.8 86 754 76 154 204 154
11/15 69899 18047 16 4.5 95 759 81 79 120 134
11/16 22328 10032 19 14.4 93 752 83 146 192 244
11/17 8177 7822 16 9.7 61 754 93 121 165 143

We want to choose a model that adequately explains variation in PM2.5 concentrations in terms of just a
few of the the traffic, meteorological, and background PM2.5 explanatory variables. Carry out a stepwise
model selection procedure to select an appropriate model, and state the model suggested by the procedure.

13.16 Dioxins are toxic chemical compounds that are released into the environment during incineration of
municipal waste, during forest fires, and via some industrial processes. They are poorly soluble, persistent,
and can bioaccumulate. Dioxins can pollute water bodies through stormwater runoff and wet and dry
atmospheric deposition of emissions.

To quantify dioxin levels in runoff in Houston, Texas, dioxins were measured in water from 10 small flood
control drainage channels in the Houston area during stormwater runoff events [12]. The table below shows
concentrations of one of the dioxins along with several variables characterizing the sampling sites, storm
events, and water flowing through the channels. The variables included in the data set are:

Sample collection information:
Site = Sampling site identification code
Date = Date of the storm event and sample collection from the site

Dioxin:
HpCDFs = Concentration(pg/L) of the heptachlorodibenzofuran dioxins in the

sampled water

Sampling site and storm event characteristics:
Downwind = Is the sampling site down wind of a known atmospheric dioxin source

(Yes/No)?
Dry Days = Antecedent dry period (days) preceding the storm event
Rainfall = Total rainfall (mm) during the storm event
Channel Flow = Total water flow (m3) through the channel during the storm event

Characteristics of the watershed (area from which water drains into the channel):
Area = The total area (ha) of the channel’s watershed
Developed = Percent of the channel’s watershed composed of developed land
Grass/Ag = Percent of the channel’s watershed composed of grassland or

agriculture
Woodland = Percent of the channel’s watershed composed of woodland
Open Water = Percent of the channel’s watershed composed of open water
Wetlands = Percent of the channel’s watershed composed of wetlands
Bare = Percent of the channel’s watershed composed of bare land

Characteristics of the water sampled from the channel:
TSS = Total suspended sediment (mg/L, solids retained after filtering the water
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through a 0.45 µm filter)
TOC = Total organic carbon (mg/L, total amount of carbon bound in organic

compounds in the water)
DOC = Dissolved organic carbon (mg/L, amount of carbon bound in organic

compounds and dissolved in the water)
Temp = Temperature of the water (◦C)
Conductivity = Conductivity (µS/cm) of the water (ability to pass electrical

current, an indicator of the presence of inorganic dissolved
solids)

Salinity = Salinity (%, the amount of dissolved salts in the water)
DO = Dissolved oxygen (mg/L, the concentration of oxygen incorporated in the

water)
PH = Acidity of the water (pH)

Down- Dry Rain- Channel Devel- Grass/
Site Date HpCDFs wind Days fall Flow Area oped Ag
SS-7 12/9/02 18.376 No 2 21.3 17032 1227 68 15
SS-8 12/9/02 32.645 Yes 2 20.3 16275 1059 48 13
SS-9 12/12/02 48.815 Yes 3 59.7 96139 1069 14 12

SS-10 12/3/02 40.709 Yes 6 18 12869 310 70 17
SS-11 1/26/03 60.224 Yes 7 31 56397 645 63 22 (cont’d)
SS-12 3/3/03 23.955 Yes 4 45.2 11733 833 15 67
SS-14 2/6/03 22.159 No 7 12.2 14761 1000 72 19
SS-15 3/3/03 46.143 No 4 17.3 186222 1152 89 8
SS-16 12/4/02 2.688 No 6 27.2 9084 876 63 26
SS-17 11/3/02 0.785 No 2 20.3 9462 1005 22 47

Wood- Open Wet- Conduc-
land Water lands Bare TSS TOC DOC Temp tivity Salinity DO PH

14 1 1 0 37.6 10.5 8.3 11.31 242.3 0.12 9 7.45
36 1 1 0 421.7 11.1 8.8 12.11 414.7 0.21 9.4 7.36
38 7 27 1 97 16.9 13.6 12.62 132.5 0.06 9.1 6.98
12 0 1 0 28.8 11.5 8 20.02 381.3 0.18 4.5 7.76
13 0 1 0 66.1 11.8 9.6 8.45 237.3 0.11 11.3 7.81
7 0 11 0 48.3 7.3 5.6 12.33 368.8 0.18 8.7 7.35
6 1 1 1 66.3 11.1 9.1 12.14 180.7 0.09 12.3 7.51
1 1 0 1 55.3 147.7 126.4 13.62 427.3 0.21 4.4 9.25
8 0 2 1 34.2 14.4 10 18.47 85.0 0.04 4.8 8.05

26 0 3 1 24.0 15.3 14.6 17.03 192.0 0.09 7.3 7.65

We want to fit a model, with dioxin (HpCDFs) as the response variable and no more than four predictors
from among the variables characterizing the sampling site, storm event and water sampled from the channel.

Use a forward stepwise regression procedure to determine which four predictors should be included in the
model.

13.17 Studies have shown that the number of eggs laid by females of the bird species blue tit (Parus
caeruleus) is that number which maximizes the number of offspring that survive to enter the population
(the recruitment rate). Laying more eggs or fewer would lead to smaller numbers of offspring surviving
each year.

It’s hypothesized that although the number of eggs laid is optimal for the survival of offspring, rearing
that many young may take its toll on parents and lead to lower survival and reproductive rates among the
parents. In other words, the parents may be paying a price for not rearing a smaller brood.

To test this hypothesis, an experiment was carried in which adult females were made rear one of five brood
sizes (3, 6, 9, 12, and 15). Allocation of females to brood sizes was done randomly. The survival status
after one year (yes/no) was then determined for each adult female. The data are shown below.
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Female Adult Brood Size Survived
1 3 No
2 3 No
3 3 No
4 3 No
5 3 Yes
6 3 No
7 3 No
8 3 Yes
9 3 Yes
10 3 No
11 6 No
12 6 No
13 6 No
14 6 No
15 6 Yes
16 6 No
17 6 No
18 6 No
19 6 No
20 6 Yes
21 9 No
22 9 No
23 9 No
24 9 Yes
25 9 No
26 9 No
27 9 No
28 9 No
29 9 No
30 9 No
31 12 No
32 12 No
33 12 No
34 12 No
35 12 No
36 12 No
37 12 No
38 12 Yes
39 12 No
40 12 No
41 15 No
42 15 No
43 15 No
44 15 No
45 15 No
46 15 No
47 15 No
48 15 No
49 15 No
50 15 No
51 15 No

Carry out a logistic regression to determine if there’s a relationship between survival status and brood size.
Use a level of significance α = 0.05.
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