
Chapter 3

Graphing and Summarizing Data

Chapter Objectives

• Produce and interpret dot plots and histograms.
• Compute and interpret measures of center (mean, median, trimmed mean, geometric mean).
• Compute and interpret measures of variation (variance and standard deviation, interquartile range,

median absolute deviation).
• Compute and interpret measures of skewness (coefficient of skewness and quartile skew coefficient).
• For a given data set, decide which measures of center, variation, and skewness are appropriate.
• Produce and interpret box plots.

Key Takeaways

• Histograms and dot plots reveal the shape, center, and spread of the distribution of a variable’s values
in a random sample, and these features can be inferred in the population.
• Statistics are used to summarize various features of a data set, including its center, variation, and

skewness, and to infer these features in the population.
• There is usually more than one way to summarize a given feature of a data set, and the choice will

depend on whether the data have outliers and whether their distribution is skewed.
• Boxplots are useful for comparing samples from two or more populations side by side in the same

graph.

3.1 Introduction

The amount of information in large data sets can be overwhelming, so when analyzing a data set we
usually prefer to just focus on its key features such as any overall patterns of variation or relationships
between variables. To explore and then communicate these aspects of the data, we use graphical displays
and numerical summaries.

One goal of graphing or summarizing data is to describe the distribution of the variable in the data set.
The distribution of a variable refers to the range of values that the variable takes and the frequencies
with which it takes those values. One way to represent a distribution is in a frequency distribution
table showing how many times each value appears in the data set, as illustrated in the next example.

Example 3.1: Distribution of a Variable

A researcher at the Connecticut Agricultural Experiment Station took a random sample of n = 150
leaves from McIntosh apple trees on July 18, 1951, and counted the number of European red mites
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on each leaf [4], [6]. The data are below.

0 2 4 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 1 3 1 1 1 1 2 1 2 0 2 0 0 1 0 1 0 5 5
0 1 1 0 0 0 6 1 4 2 3 1 0 0 1 0 4 0 0 2 0 3 1 0
0 2 2 3 0 4 1 2 0 0 0 0 1 0 4 0 1 0 0 2 2 0 0 3
1 0 0 2 5 1 2 4 1 1 2 1 0 1 0 3 0 0 4 0 1 0 1 2
0 4 1 1 0 1 2 3 0 1 0 1 0 0 0 6 0 0 7 3 1 0 0 3
1 0 4 3 0 1

The distribution of the variable (number of mites on a leaf) is represented by the following frequency
distribution table.

Value of the variable 0 1 2 3 4 5 6 7

Number of leaves (frequency) 70 38 17 10 9 3 2 1

The table shows that most leaves (108 out of 150) have either no mites at all or just one, but a few
have as many as six or seven. The distribution could also be represented by this relative frequency
distribution table:

Value of the variable 0 1 2 3 4 5 6 7

Proportion of leaves 0.47 0.25 0.11 0.07 0.06 0.02 0.01 0.01
(relative frequency)

Notice that the frequencies in the first table sum to 150 (the total sample size), and the relative
frequencies (proportions) in the second sum to one.

A variable’s distribution can also be represented a few different ways in a graph, as will be seen in the next
section.

3.2 Graphing Data

Two useful graphs for displaying distributions are dot plots and histograms.

3.2.1 Dot Plots

Dot plots are especially useful for displaying small to moderate sized data sets containing only a handful
of distinct values, some of which may appear multiple times.

Creating a Dot Plot: To construct a dot plot,

1. Draw a horizontal axis that spans the range of values in the data set.

2. For each observation in the data set, place a dot just above the horizontal axis at that value. If two
or more observations have the same value, stack the dots. Rounding the data before plotting them
can result in more observations having the same value, which sometimes enhances the appearance of
the plot.

Example 3.2: Dot Plots

A dot plot of the data on counts of mites on apple tree leaves from Example 3.1 is below.
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Dot Plot of Red Mite Counts

Red Mite Count
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Figure 3.1: Dot plot of counts of European red mites on apple tree leaves.

In the plot, there are 70 dots over the value 0, 38 over the value 1, etc., reflecting the frequencies
given in the first table of Example 3.1.

Dot plots are useful for comparing the distributions of a variable in samples drawn from two or more
populations, as in the next example.

Example 3.3: Dot Plots

A report by the U.S. Environmental Protection Agency to the U.S. Congress gave mercury concen-
trations (in µg/g wet fish weight) for three categories of fish: freshwater fish, marine finfish, and
marine shellfish [1]. The reported values are shown in the tables below.

Mercury in Freshwater Fish

Fish Mercury (µg/g)
Bass 0.157
Bloater 0.093
Bluegill 0.033
Smallmouth Buffalo 0.096
Carp, Common 0.093
Catfish (channel, largemouth, rock, etc.) 0.088
Crappie (black, white) 0.114
Fresh-water Drum 0.117
Northern Squawfish 0.330
Northern Pike 0.127
Perch (white and yellow) 0.110
Sauger 0.230
Sucker (bridgelip, carpsucker, klamath, etc.) 0.114
Trout (brown, lake, rainbow) 0.149
Walleye 0.100
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Mercury in Marine Finfish

Fish Mercury (µg/g) Fish Mercury (µg/g)
Anchovy 0.047 Pompano 0.104
Barracuda, Pacific 0.177 Porgy 0.522
Cod 0.121 Ray 0.176
Croaker, Atlantic 0.125 Salmon 0.035
Eel, American 0.213 Sardines 0.100
Flounder 0.092 Sea Bass 0.135
Haddock 0.089 Shark 1.327
Hake 0.145 Skate 0.176
Halibut 0.250 Smelt, Rainbow 0.100
Herring 0.013 Snapper 0.250
Kingfish 0.100 Sturgeon 0.235
Mackerel 0.081 Swordfish 0.950
Mullet 0.009 Tuna 0.206
Ocean Perch 0.116 Whiting (silver hake) 0.041
Pollack 0.150

Mercury in Marine Shellfish

Fish Mercury (µg/g)
Abalone 0.016
Clam 0.023
Crab 0.117
Lobster 0.232
Oysters 0.023
Scallop 0.042
Shrimp 0.047

Dot plots of these three data sets are shown below using a common horizontal scale to facilitate
comparisons.
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Figure 3.2: Dot plots of mercury concentrations (µg/g) in three types of fish: marine shellfish (top),
marine finfish (middle), and freshwater fish (bottom).

We see from the dot plots that with the exception of the three extreme observations in the fin-
fish data set, mercury concentrations in freshwater fish and marine finfish tend to be similar, but
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concentrations in shellfish tend to be lower than in the other two fish types.

3.2.2 Histograms

For large data sets, the dots in a dot plot would need to be made so small to fit into the plot that they
would be tiny specks. For such data sets histograms are preferred because the vertical scale on the graph
can easily be adjusted to accommodate any number of observations. Histograms are a favorite among
statisticians for graphing the distribution of a variable.

Creating a Histogram: To construct a histogram,

1. Choose the number of class intervals (or bins). Usually 5-15 works well for small data sets. More
than 15 is better for larger data sets.

2. Determine the class interval width:

Class interval width ≈ Largest observation− Smallest observation

Number of class intervals

Adjust the class interval width (round) and position the interval endpoints at convenient values
(such as multiples of five). The leftmost interval should extend below the smallest observation and
the rightmost above the largest. Each observation in the data set should fall into one of the intervals.

3. Determine the frequency (number of observations) or relative frequency (proportion of observations)
for each class interval. Observations falling on the borderline between two class intervals should be
placed in the upper interval.

4. Mark the class interval endpoints on a horizontal axis and place a bar over each interval, with bar
height equal to the frequency (or relative frequency) for that interval.

When making a histogram, it’s useful to first construct a frequency distribution table showing the class
intervals and their frequencies, as in the next example.

Example 3.4: Histograms

Mercury contamination in fish is a serious concern. Citizens of a group of islands in the Indian
Ocean called the Republic of Seychelles are among those who consume the most fish in the world
(80-100 kg per person per year, which translates to more than half a pound per person per day),
much of it predatory species. The following data are observations of the mercury content (in ppm)
in the hair of 40 fishermen in the Seychelles [11].

13.3 32.4 18.1 58.2 64.0 68.2 35.4 33.9 23.9 18.3
22.1 39.1 31.4 18.5 21.0 5.5 7.9 5.2 28.7 26.3
13.9 25.9 9.8 26.9 16.8 37.7 19.6 21.8 31.6 30.1
42.4 16.5 21.2 33.0 9.8 10.6 29.6 40.7 12.9 13.8

We’ll make a histogram of these data using seven class intervals. Since the data range from 5.2 to
68.2 ppm, the class interval width is

Class interval width =
68.2− 5.2

7
= 9,

which we round up to 10 for convenience. The table below shows the class intervals and their
frequencies (and relative frequencies).
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Class Interval Frequency Relative Frequency

[0, 10) 5 0.125
[10, 20) 11 0.275
[20, 30) 10 0.250
[30, 40) 9 0.225
[40, 50) 2 0.050
[50, 60) 1 0.025
[60, 70) 2 0.050

40 1.000

Note that the frequencies sum to the total sample size (n = 40) and the relative frequencies sum to
one. the histogram, shown below, is obtained by marking the class interval endpoints on a horizontal
axis and placing over each interval a bar whose height is equal to the frequency (or relative frequency)
of the interval.

Histogram of Mercury Content in Hair
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Figure 3.3: Histogram of mercury (ppm) in the hair of Seychelles fishermen.

Comment: A histogram that uses too few class intervals might conceal important information in the data.
One that uses too many intervals might reveal information that’s too detailed. Usually between about 5
and 30 bars is appropriate.

Example 3.5: Histograms

The histograms below are both made from the same hair mercury data that were used to make the
one in Fig. 3.3. The histogram on the left has too few bars and the one on the right has too many.
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Histogram of Mercury Content in Hair
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Figure 3.4: Histograms of mercury (ppm) in the hair of Seychelles fishermen with too few bars (left)
and too many bars (right).

3.2.3 Interpreting Dot Plots and Histograms

A histogram or dot plot, by showing the distribution of values of a variable in a random sample, provides a
glimpse of the variable’s distribution in the population because we expect the two distributions to resemble
each other when the sample is representative of the population. We’re usually interested in just a few key
features of the population, so it’s useful to know what they are and how to examine them in a histogram
or dot plot of the sample.

Among the things to look for in histograms and dot plots are:

1. Shape

• Symmetric (left and right halves are ”mirror images” of each other, usually in the form of a
bell-shape)

• Right skewed (long ”tail” extending to the right)

• Left skewed (long ”tail” extending to the left)

2. Number of modes (peaks)

• Unimodal (having a single peak)

• Bimodal (having two peaks)

• Multimodal (having multiple peaks)

3. Center (the value of a ”typical” observation)

4. Spread (the amount of variation in the observations)

5. Outliers (extreme observations lying outside the overall pattern, often corresponding to an individual
from a population different from the one sampled)

6. Other interesting features (such as clumps of observations separated by large gaps, unusual or
unexpected patterns, etc.)

The figure below illustrates some of these histogram shapes, and the ensuing examples contextualize
some of the other features we’re interested in when examining histograms and dot plots.
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Bell−Shaped Histogram
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Figure 3.5: Histograms showing different shapes: symmetric and bell-shaped (top left), right skewed (top
right), left skewed (bottom left), and bimodal (bottom right).

Example 3.6: Interpreting Dot Plots and Histograms

The histogram of hair mercury in Fig. 3.3 shows a slightly right skewed distribution that’s essentially
unimodal, with a mode (peak) at about 15 ppm. It’s centered on 25, suggesting that a typical
mercury concentration is about 25 ppm, but it’s also quite spread out, indicating that there’s
considerable variation in the concentrations – they range from near zero to around 70 ppm.

Example 3.7: Interpreting Dot Plots and Histograms

The dotplot of red mite counts in Fig. 3.1 of Example 3.2 is severely right skewed with a mode
(peak) at zero. A typical count is around one or two, and the counts vary over the range from zero
to seven.

When unusual and unexpected features show up in a graph of data, effort should be made to identify
their causes. For example, an outlier in laboratory data might be a contaminated specimen or the result
of lab equipment malfunction. Separate mounds in a histogram of ecological data might correspond to
different habitat types, different environmental conditions, or distinct animal populations or plant species.
Unexpected variation in soil quality data might reflect disparity across sampling sites in human influences
or natural ones (or both).

Example 3.8: Interpreting Dot Plots and Histograms

The two rightmost outliers in the middle dot plot of Fig. 3.2 correspond to shark and swordfish.
Both have dangerously high mercury levels – the U.S. Food and Drug Administration’s limit for
human consumption is 1 ppm, or equivalently, 1 µg/g. One way fish accumulate mercury is by
eating other fish, and the cited EPA report placed these two fish in a separate category of finfish



3.3. SUMMARIZING DATA 45

(along with barracuda) because, to quote,

These are predatory, highly migratory species that spend much of their lives at the high
end of marine the food web. These fish are large and accumulate higher concentrations
of mercury than do lower trophic level, smaller fish.

3.3 Summarizing Data

3.3.1 Introduction and Notation

Recall that a statistic is any numerical quantity calculated from a set of random sample data. One
use of statistics is to summarize the data set’s essential information using just a few numerical values,
called summary statistics. At the very least, the summary should indicate the center of the distribution
of values in the data set, representing a typical value, and the spread of the distribution, representing
the amount of variation. It’s sometimes also useful to include a statistic that indicates the shape of the
distribution, and in particular its degree of skewness.

Throughout this manuscript, we’ll denote the observations in a numerical data set of size n by

X1, X2, . . . , Xn.

The subscripts on the X’s merely distinguish one observation from the next, and usually correspond to the
distinct individuals, items, or specimens that make up the sample. Thus X1 is the value of the variable
for the first individual in the sample, X2 the value for the second individual, and so on.

3.3.2 Measures of Center

We’ll look at four statistics all of which measure the center of a data set:

1. The sample mean

2. The sample median

3. The trimmed mean

4. The geometric mean

The choice will depend largely on the shape of the distribution and whether there are outliers. We’ll
see how to decide which one to use for a given data set after first looking at how they’re computed and
interpreted.

The Sample Mean

The sample mean, denoted X̄, is the most commonly used measure of center and is defined as follows.

Sample Mean: For data X1, X2, . . . , Xn, the sample mean is

X̄ =
1

n

n∑
i=1

Xi .

Thus X̄ is just the arithmetic average of the observations in the data set. Its computation is illustrated in
Example 3.9.
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Figure 3.6: The sample mean X̄ shown as the point where the data would balance if they were the positions
of weights on a (weightless) horizontal axis, and the sample median X̃ shown as a value separating the
smallest 50% of the data from the largest 50%.

The sample mean can be interpreted as the ”balancing point” or ”center of mass” of the data set in
the sense that if equal weights were placed at positions X1, X2, . . . , Xn along a (weightless) horizontal axis,
they’d balance on a fulcrum at the point X̄. See Fig. 3.6.

If data are a random sample from a population, then because samples tend to be representative of
populations, we can use X̄ as an estimate of the population mean, which is denoted by µ. We’ll see how
to gauge how far off the mark the estimate might be in Chapter 6.

Properties of X̄: For any set of observations X1, X2, . . . , Xn, the sample mean satisfies the following
properties.

1. Changing the measurement scale of the data results in the same change of scale for the mean. More
specifically, if we make a linear transformation of the Xi’s, that is, if for some constants a and b
we compute

Yi = aXi + b

for each i = 1, 2, . . . , n, then the mean of Y1, Y2, . . . , Yn is

Ȳ = aX̄ + b.

2. The deviations Xi − X̄ of the observations away from the mean sum to zero. That is, for any set
of data,

n∑
i=1

(Xi − X̄) = 0.

The first of the above two facts implies, for example, that if X1, X2, . . . , Xn’s are temperatures in degrees
Celsius with mean, say, X̄ = 24, and we convert each temperature to Fahrenheit via the transformation
Yi = (9/5)Xi+32, then the mean of the Fahrenheit temperatures Y1, Y2, . . . , Yn will be Ȳ = (9/5)(24)+32 =
75.2. The second fact holds because the above average and below average data values cancel each other
out when the deviations are summed. Both facts can be verified using the properties of summations given
in the appendix.
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The Sample Median

There’s no guarantee that half of the observations will be less than the mean and the other half greater.
For example, in Fig. 3.6, five observations are below X̄ and only three above it. The sample median, on
the other hand, is a statistic which does have this property. For example, in Fig. 3.6, four observations are
below the median and four above it.

The sample median, also called the 50th percentile of the sample, is denoted by X̃ and defined as
follows.

Sample Median: For data X1, X2, . . . , Xn, after putting them in order from smallest to largest,
the sample median is

X̃ =

{
The (n+1

2 )th ordered value if n is odd.
The average of the (n2 )th and the (n+2

2 )th ordered values if n is even.

For example, if n is five, the median is the third among the ordered data values, but if n is six, it’s the
average of the third and fourth values. The median separates the smallest 50% of the data from the largest
50%. (If n is odd, the median is one of the data values and is considered to be ”half” in the smallest 50% of
the data and ”half” in the largest 50%.) Like the mean, the median of a linear transformation of the data
set is equal to that same linear transformation of the original median. Computation of X̃ is illustrated in
Example 3.9.

The Trimmed Mean

A trimmed mean of a sample is denoted X̄tr and defined as follows.

Trimmed Mean: For data X1, X2, . . . , Xn, after putting them in order from smallest to largest,
the trimmed mean is

X̄tr = The mean of the remaining observations after discarding a

selected number of observations from both ends of the

ordered data.

The trimming percentage of a trimmed mean is the percentage of observations deleted from each end of
the ordered list (same percentage deleted from each end). Thus a trimmed mean with trimming percentage
10% is obtained by eliminating the smallest 10% of the data and the largest 10%, and then calculating the
mean of the remaining observations. Good choices for a trimming percentage are values between 5% and
25%. Computation of X̄tr is illustrated in Example 3.9.

Comment: If the trimming percentage is 0% (that is, you don’t trim any observations), then the trimmed
mean is the same as the usual sample mean. At the other extreme, if the trimming percentage is close
enough to 50% that you trim all but the single middle value (when n is odd) or two middle values (when
n is even), then the trimmed mean is the same as the sample median. In this sense, a trimmed mean can
be thought of as a ”compromise” between the sample mean and sample median, and the value of X̄tr will
usually lie between the values of X̄ and X̃.

The Geometric Mean

Before defining the geometric mean, we’ll need to review logarithmic scales and logarithmic transformations.
We begin with the base-10 logarithmic scale and transformation, and then turn to the base-e, or natural
logarithmic scale and transformation.
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Recall that a base-10 logarithmic (or base-10 log) scale is a measurement scale on which each
increase of one unit corresponds to a tenfold increase in the quantity being measured. Two familiar base-
10 log scales are the Richter scale (for measuring earthquake magnitudes) and the pH scale (for measuring
acidity or alkalinity of a substance). An earthquake whose magnitude is 5.0 on the Richter scale is ten
times as strong as one whose magnitude is 4.0, and a substance whose pH is 9.0 is ten times more alkaline
than one whose pH is 8.0.

The base-10 logarithmic (or base-10 log) transformation of a non-negative variable X is a con-
version

Y = log10(X)

of X to a variable Y that satisfies
X = 10Y . (3.1)

Notice from (3.1) that each one-unit increase in Y corresponds to a tenfold increase in X, so Y is measured
on a base-10 log scale.

The natural (or base-e) logarithmic scale is similar to the base-10 log scale, but the exponential
constant

e = 2.718282 . . .

takes the place of 10. Thus a one-unit increase on the natural log scale corresponds to an increase by a
multiplicative factor e in the quantity being measured.

The natural (or base-e) logarithmic transformation of a non-negative variable X is the conversion

Y = log(X) (3.2)

of X to a variable Y that satisfies
X = eY . (3.3)

We see from (3.3) that for each one-unit increase in Y , X increases by the multiplicative factor e, so Y is
measured on a natural log scale.

The right side of (3.3), eY , is sometimes called the antilog of Y . Together, expressions (3.2) and (3.3)
show us how to convert back and forth between two measurement scales: the original measurement scale
of a variable X and the natural log scale of Y . For example, if X is measured in inches, then (3.2) converts
X to log inches, and if Y is a value measured in log inches, then taking the antilog as in (3.3) converts Y
back to inches.

Properties of the Log: The natural log Y = log(X) of a variable X has the following properties:

1. Each one-unit increase in Y corresponds to an increase in X by a multiplicative factor e, so Y is
measured on a natural log scale.

2. log(1) = 0 (since X = 1 in (3.3) implies Y = 0).

3. log(0) = −∞ (since X = 0 in (3.3) implies Y = −∞).

4. If 0 < X < 1 then −∞ < log(X) < 0.

5. log(X) is not defined for X < 0 (since there is no value for Y that satisfies (3.3) when X < 0).

6. log(e) = 1 (since X = e in (3.3) implies Y = 1).

7. The natural log is an order preserving transformation, meaning that if X1 < X2 then log(X1) <
log(X2).

The Log of a Product: The natural log has the following property:
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8. The natural log of a product equals the sum of the natural logs. Thus if X1 > 0 and X2 > 0,

log(X1X2) = log(X1) + log(X2).

To see, notice that if Y = log(X1X2), then by (3.3), Y is the value satisfying X1X2 = eY . But if
we define Y1 and Y2 as Y1 = log(X1) and Y2 = log(X2), then by (3.3), X1 = eY1 and X2 = eY2 , so
X1X2 = eY1eY2 = eY1+Y2 . It follows that the value Y satisfying X1X2 = eY is Y = Y1 + Y2, which is
to say log(X1X2) = log(X1) + log(X2).

The Log of an Exponentiated Variable: The natural log has the following property:

9. For any constant a,
log(Xa) = a log(X).

For intuition, when a is a nonnegative integer, Xa = XX · · ·X (a X’s multiplied together), and by
Property 8 (which extends to more than two X’s), log(XX · · ·X) = log(X)+log(X)+ . . .+log(X) =
a log(X).

The geometric mean of a sample is denoted GM and defined as follows.

Geometric Mean: For non-negative data X1, X2, . . . , Xn, the geometric mean is

GM = e
1
n

∑n
i=1 Yi = eȲ , (3.4)

where Yi = log(Xi) is the natural log of Xi for each i = 1, 2, . . . , n, and Ȳ is the sample mean of
Y1, Y2, . . . , Yn.

Thus the geometric mean is the antilog of the mean of the logs of the data. Computation of GM is
illustrated in Example 3.9.

It can be shown, using the properties of log transformations listed above, that an equivalent expression
for the geometric mean is as follows.

Geometric Mean (Alternative Formula): For non-negative data X1, X2, . . . , Xn, the geometric
mean can be calculated as

GM = (X1X2 · · ·Xn)
1
n = n

√√√√ n∏
i=1

Xi . (3.5)

The notation
∏n

i=1Xi is shorthand for the product X1X2 · · ·Xn, and the notation n
√

means the nth
root, which is the same as raising to the power 1/n.

The geometric mean is used as a measure of center for data sets that have right skewed distributions.
For such data sets, GM usually approximately equals the sample median. We’ll see why in Subsection
4.5.2 of Chapter 4.

The geometric mean is used also for averaging multiplicative factors. To illustrate, consider two suc-
cessive dilutions of polluted water by mixing in clean water. If the original water contains 1,000 ppm of
the pollutant, and we first dilute it to 10% of its original concentration and then to 20% of that, the final
concentration is 1,000×0.1×0.2 = 20 ppm. The geometric mean gives a more meaningful average of these
two dilution factors than the usual mean.

To see, suppose we averaged them using the usual mean. We’d get (0.1+0.2)/2 = 0.15. But diluting the
polluted water successively to this concentration gives 1,000 × 0.15 × 0.15 = 22.5 ppm, which is different
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from the 20 ppm obtained using the original dilution factors. However, if we average them using the
geometric mean, we get (from (3.5)) GM = (0.1× 0.2)1/2 =

√
0.1× 0.2 = 0.141. Diluting the polluted

water successively to this concentration gives 1,000×0.141×0.141 = 20 ppm, the same as using the original
dilution factors.

Calculating the Measures of Center

We now have four statistics for measuring the center of a data set. In the next example we’ll compute all
four and compare their values for one set of data. After the example, we’ll address the question ”Which
one should be used?”

Example 3.9: Calculating Measures of Center

The following data, ordered from smallest to largest, are carbon dioxide (CO2) emissions (in millions
of metric tons) from fossil fuel combustion (commercial, industrial, residential, transportation, and
electric utilities) for each of the n = 48 continental United States in 2004, as reported by the U.S.
Environmental Protection Agency.

CO2 Emissions from Fossil Fuel Combustion

State CO2 State CO2 State CO2

Vermont 7 Utah 64 New Jersey 130
Rhode Island 11 Mississippi 65 Missouri 138
South Dakota 14 Kansas 77 Alabama 140
Idaho 16 Iowa 80 Kentucky 150
Delaware 17 Maryland 81 North Carolina 150
New Hampshire 22 Massachusetts 83 Georgia 174
Maine 23 Washington 85 Michigan 187
Montana 35 South Carolina 89 Louisiana 198
Oregon 43 Colorado 92 New York 216
Nebraska 43 Arizona 96 Indiana 233
Connecticut 45 Oklahoma 99 Illinois 236
North Dakota 46 Minnesota 100 Florida 256
Nevada 47 Wisconsin 107 Ohio 262
New Mexico 58 West Virginia 112 Pennsylvania 275
Arkansas 63 Tennessee 125 California 394
Wyoming 64 Virginia 127 Texas 688

A histogram of the data, below, shows a right skewed distribution.
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Histogram of CO2 Emissions in 2004
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Figure 3.7: Histogram of carbon dioxide emissions for the 48 continental United States in 2004.

The sample mean is

X̄ =
1

n

n∑
i=1

Xi

=
1

48
(7 + 11 + 14 + 16 + 17 + . . .+ 394 + 688)

= 122.2.

Since n = 48 is even, the sample median is the average of the 24th and 25th observations (n/2 = 24
and (n+ 2)/2 = 25) in the ordered list:

X̃ =
89 + 92

2
= 90.5.

Trimming six observations off of each end of the ordered data amounts to a trimming percentage
of 12.5% (since 6/48 = 0.125). The mean of the remaining 36 observations is the 12.5% trimmed
mean:

X̄tr =
1

36
(23 + 35 + 43 + 43 + 45 + . . .+ 216 + 233)

= 101.8.

Finally, we’ll use expression (3.4) to calculate the geometric mean. Taking the natural log of each
observation (using statistical software) gives the following log-transformed values:
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Log CO2 Emissions from Fossil Fuel Combustion

State Log CO2 State Log CO2 State Log CO2

Vermont 1.9 Utah 4.2 New Jersey 4.9
Rhode Island 2.4 Mississippi 4.2 Missouri 4.9
South Dakota 2.6 Kansas 4.3 Alabama 4.9
Idaho 2.7 Iowa 4.4 Kentucky 5.0
Delaware 2.8 Maryland 4.4 North Carolina 5.0
New Hampshire 3.1 Massachusetts 4.4 Georgia 5.2
Maine 3.1 Washington 4.4 Michigan 5.2
Montana 3.6 South Carolina 4.5 Louisiana 5.3
Oregon 3.7 Colorado 4.5 New York 5.4
Nebraska 3.8 Arizona 4.6 Indiana 5.5
Connecticut 3.8 Oklahoma 4.6 Illinois 5.5
North Dakota 3.8 Minnesota 4.6 Florida 5.5
Nevada 3.9 Wisconsin 4.7 Ohio 5.6
New Mexico 4.1 West Virginia 4.7 Pennsylvania 5.6
Arkansas 4.2 Tennessee 4.8 California 6.0
Wyoming 4.2 Virginia 4.8 Texas 6.5

The sample mean of the log-transformed values is

Ȳ =
1

48
(1.9 + 2.4 + 2.6 + 2.7 + 2.8 + . . .+ 6.0 + 6.5)

= 4.41,

and its antilog is the geometric mean:

GM = e4.41 = 82.3.

The four measures of center are shown below for comparison:

Statistic Value

Sample mean X̄ 122.2

Sample median X̃ 90.5
Trimmed mean X̄tr 101.8
Geometric mean GM 82.3

The mean is the larger than the median, which is typical for a right skewed distribution. The
trimmed mean lies between the mean and the median, which is typical regardless of the shape of
the distribution. The median and geometric mean are relatively close to each other, which is again
typical for a right skewed distribution.

Comparison of the Measures of Center

The table below lets us compare the four measures of center to decide which one to use for a given set of
data.
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Statistic Interpretation Properties Uses

Sample mean X̄ Arithmetic average, Not resistant to Commonly used, except
”balancing point” of outliers with skewed distributions
the data and data with outliers

Sample median X̃ Middle value of Resistant to Commonly used, especially
the data, 50th outliers with skewed distributions
percentile and data with outliers

Trimmed mean X̄tr Average of middle Resistant to Rarely used, but occasionally
portion of data outliers with data with outliers

Geometric mean GM Antilog of average Not resistant Rarely used, but occasionally
of logs of data to outliers with skewed distributions or

data that are multiplicative
factors

A statistic is said to be resistant to outliers if its value isn’t influenced by their presence in the data
set. The sample mean can be strongly influenced by outliers – a single large outlier can inflate its value
dramatically – so it’s not resistant. The median and trimmed mean, however, are both resistant. The
geometric mean isn’t entirely resistant, but its value usually isn’t severely affected by outliers when they’re
present. The following example illustrates.

Example 3.10: Resistance to Outliers

The outlier on the right side of the histogram in Example 3.9 is Texas, whose CO2 emissions were
688 million tons. The four measures of center from that example are shown again below along with
their recomputed values after reducing Texas’ emissions to 394 million tons, the same level as the
next highest state (California):

Statistic Original Value Recomputed Value Change

Sample mean X̄ 122.2 116.1 ↓ 6.1

Sample median X̃ 90.5 90.5 None
Trimmed mean X̄tr 101.8 101.8 None
Geometric mean GM 82.3 81.5 ↓ 0.8

Notice that the mean decreased upon diminishing the large outlier, but neither the median nor the
trimmed mean changed. The geometric mean decreased, but only slightly.

The mean will typically be larger than the median when the data follow a right skewed distribution,
but approximately equal to the median when they follow a symmetric one. To see why, recall that the
mean is the ”balancing point” of a data set and is inflated by large outliers, whereas the median is the
”middle value” and is resistant to outliers. In a histogram, the bars would balance (approximately) along
the horizontal axis at the mean if they were weights, and their total area would be split into equal halves at
the median (the ”equal areas point”). As seen in Fig. 3.8, the ”balancing point” (mean) is also the equal-
areas split point (median) for the symmetric distribution. But the ”balancing point” is pulled rightward
of the equal-areas point for the right skewed distribution by the observations in the right tail.
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Figure 3.8: Histograms illustrating the relative positions of the sample mean X̄ (green triangle) and median
X̃ (light and dark blue areas split point). For a symmetric distribution (top), the mean and median are
approximately equal. For a right skewed distribution (bottom), the mean is greater than the median.

Choosing a Measure of Center: The following guidelines can be used when choosing which measure of
center to use for a given set of data.

• For data with a symmetric distribution and no outliers, the mean and median are both representative
of a typical value. The mean is preferred because, as we’ll see (in later chapters), it’s more amenable
to making inferences about the population.

• For data with a right skewed distribution, the median is representative of a typical value and is
preferred over the mean, which is too large.

• For data with outliers, the median is representative of a typical value because it’s resistant, so it’s
preferred over mean, which is influenced by the outliers.

3.3.3 Measures of Variation

We’ll also be interested in summarizing the amount of variation, or dispersion, in a set of data. For
example, if the data are temperatures, we’ll want to summarize how much they fluctuate. If they’re
rainfall measurements, we may want to summarize how much they typically differ from their average.
We’ll look at four measures of variation in data:

1. The sample variance

2. The sample standard deviation

3. The interquartile range

4. The median absolute deviation

We’ll also compare their properties, which will help us decide which one to use for a given set of data.
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The Sample Variance and Sample Standard Deviation

The sample variance and sample standard deviation are based on the deviations Xi−X̄ of the observations
X1, X2, . . . Xn away from their mean x̄.

The sample variance, denoted s2, is defined as

Sample Variance: For data X1, X2, . . . , Xn, the sample variance is

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2. (3.6)

The variance is computed by ”averaging” the squared deviations (using n − 1 instead of n). Its value is
interpreted as the size of a typical squared deviation away from the mean. It’s measured in the squared
units of the original data (for example inches squared if the data are rainfalls in inches), so it’s not very
useful. Instead, we take its square root, which gives the sample standard deviation, denoted by s:

Sample Standard Deviation: For data X1, X2, . . . , Xn, the sample standard deviation is

s =
√
s2 =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2.

The standard deviation is interpreted as the size of a typical deviation away from the mean, and is
measured in the same units as the original data (inches if the data are in inches). It’s the most commonly
used measure of variation. Example 3.11 illustrates its computation.

If the data are a random sample from a population, we can use s2 as an estimate of the population
variance, which is denoted σ2.

Some Properties of s: For any set of observations X1, X2, . . . , Xn, the sample standard deviation s
satisfies the following properties.

1. s = 0 only when the observations are all the same value, that is, when there’s no variation in their
values. Otherwise s > 0, and the more the data values vary, the larger s will be.

2. If we change the measurement scale of the Xi’s by making a linear transformation, that is,

Yi = aXi + b for i = 1, 2, . . . , n,

then the standard deviation sy of Y1, Y2, . . . , Yn is

sy = | a | s,

where | | denotes the absolute value.

Comment: Why do we divide by n − 1 instead of by n when we compute s2 and s? It turns out that
if we divided by n, the resulting statistic would tend to underestimate the true value σ2. The reason for
this is that the deviations Xi − X̄ used to compute s2 tend to be smaller than the deviations X − µ used
to compute σ2 because the value of X̄ varies so as to always be ”close” to (somewhere in the middle of)
the sample values X1, X2, . . . , Xn, but the value of µ is fixed. When we divide by n − 1 instead of n, the
resulting statistic s2 no longer has the tendency to underestimate the true value.

The Interquartile Range

The sample interquartile range, denoted IQR, is defined as
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Interquartile Range: For data X1, X2, . . . , Xn, the interquartile range is

IQR = Q3 −Q1,

whereQ1 is the 25th sample percentile (or first quartile), andQ3 is the 75th sample percentile
(or third quartile), defined by

Q1 = The median of the observations that are

less than or equal to the overall median X̃

Q3 = The median of the observations that are

greater than or equal to the overall median X̃

Together, the two quartiles and the median split the data into fourths, with Q1 separating the smallest
fourth from the rest, X̃ splitting the data into halves, and Q3 separating the largest fourth from the rest.
Thus the middle 50% of the data set lies between Q1 and Q3, and so the interquartile range measures the
spread in the middle 50% of the data. Example 3.11 illustrates the computation of the IQR.

The Median Absolute Deviation

The median absolute deviation, denoted MAD, is defined as

Median Absolute Deviation: For data X1, X2, . . . , Xn, the median absolute deviation is

MAD = The median of |X1 − X̃ |, |X2 − X̃ |, . . . , |Xi − X̃ |,

where X̃ is the median of the data set and | | denotes the absolute value.

The median of the absolute deviation is the median of the absolute values of the deviations away from the
sample median. It’s interpreted as the size of a typical deviation away from the median. Example 3.11
illustrates its computation.

A Comparison of the Measures of Variation

In the next example, we’ll compute each of the four measures of variation for a data set. After the example,
we’ll discuss how to decide which one to use for a given set of data.

Example 3.11: Comparison of Measures of Variation

The amount of solar radiation received at a greenhouse plays an important role in determining
the rate of photosynthesis. The following are n = 7 observations on incoming solar radiation (in
MJ/m2/d) in one particular greenhouse [7].

8.4 8.8 9.0 10.2 10.7 11.2 11.9

The mean of the data is X̄ = 10.03. To compute the sample variance and standard deviation, we
first calculate the squared deviations away from the mean, shown in the last column below.
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Squared
Xi Deviation Xi − X̄ Deviation (Xi − X̄)2

8.4 8.4− 10.03 = −1.63 2.66
8.8 8.8− 10.03 = −1.23 1.51
9.0 9.0− 10.03 = −1.03 1.06

10.2 10.2− 10.03 = 0.17 0.03
10.7 10.7− 10.03 = 0.67 0.45
11.2 11.2− 10.03 = 1.17 1.37
11.9 11.9− 10.03 = 1.87 3.50∑

(Xi − X̄)2 = 10.58

The sum of the squared deviations, shown at the bottom of the last column, is 10.58. Thus, using
(3.6), the sample variance is

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

=
1

6
(10.58)

= 1.76,

and the sample standard deviation is

s =
√
s2

=
√

1.76

= 1.33.

Together the mean and standard deviation tell us that in this data set, a typical sunlight measure-
ment is about 10.03 MJ/m2/d, plus or minus 1.33 MJ/m2/d.

Because n is odd, the median is just the middle value in the sorted list,

X̃ = 10.2.

The first quartile Q1 is the median of the observations that are less than or equal to 10.2. Thus
Q1 = (8.8 + 9.0)/2 = 8.9. Likewise, the third quartile Q3 is the median of the observations that are
greater than or equal to 10.2, so Q3 = (10.7 + 11.2)/2 = 10.95. Therefore the interquartile range is

IQR = Q3 −Q1

= 10.95− 8.9

= 2.05.

To compute the median absolute deviation, we first need the absolute values of the deviations away
from the median, which are shown in the last column of the table below:

Observation Xi Deviation Xi − X̃ Absolute Deviation |Xi − X̃ |
8.4 8.4− 10.2 = −1.8 1.8
8.8 8.8− 10.2 = −1.4 1.4
9.0 9.0− 10.2 = −1.2 1.2
10.2 10.2− 10.2 = 0.0 0.0
10.7 10.7− 10.2 = 0.5 0.5
11.2 11.2− 10.2 = 1.0 1.0
11.9 11.9− 10.2 = 1.7 1.7
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The median absolute deviation is the median the absolute deviations,

MAD = 1.2.

Properties of the Measures of Variation

Because the variance and standard deviation are based on the squared deviations (Xi − X̄)2, which can
be very large if Xi is an outlier, they’re not resistant to outliers. More precisely, outliers at either extreme
of the data set will inflate the values of the variance and standard deviation. The interquartile range and
median absolute deviation are both resistant to outliers, though. The next example illustrates.

Example 3.12: Resistance to Outliers

Suppose in Example 3.11 that the largest radiation reading was 17.4 (an outlier) instead of 11.9.
The recomputed variance, standard deviation, interquartile range, and median absolute deviation
are shown below, along with their original values (from Example 3.11) for comparison:

Recomputed value after
Statistic Original value inserting the outlier

Sample variance s2 = 1.76 s2 = 9.51
Sample standard deviation s = 1.33 s = 3.08
Interquartile range IQR = 2.05 IQR = 2.05
Median absolute deviation MAD = 1.20 MAD = 1.20

We see that s and s2 are inflated by the outlier, but the IQR and MAD are unchanged.

Choosing a Measure of Variation: The following guidelines can be used when choosing between the
four statistics that summarize the variation in a data set:

• Use the standard deviation when the mean is used to summarize the center, that is, if there are no
outliers and the distribution is roughly symmetric.

• Use the interquartile range or median absolute deviation if the median is used to summarize the
center, that is, if there are outliers or the distribution is skewed (in either direction).

• The sample variance is rarely used because it’s measured in the squared units of the data.

3.3.4 Measures of Skewness

Because environmental data often exhibit right skewed distributions, it’s useful to be able to summarize
the extent of the skewness with a statistic. We’ll look at two measures of skewness:

1. The coefficient of skewness

2. The quartile skew coefficient

We’ll also look their properties, which will guide us when deciding which one to use for a given set of data.

The Coefficient of Skewness

The coefficient of skewness, denoted g, is defined (for n ≥ 3) as
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Coefficient of Skewness: For data X1, X2, . . . , Xn, the coefficient of skewness is

g =
n

(n− 1)(n− 2)

n∑
i=1

(Xi − X̄)3

s3
. (3.7)

The coefficient of skewness is computed by calculating the deviations Xi− X̄ away from the mean, cubing
each one, dividing each cubed deviation by the cube of the standard deviation, summing the results, and
multiplying by n/((n− 1)(n− 2)).

If we let

zi =
Xi − X̄

s
,

we can write coefficient of skewness as

Coefficient of Skewness (Alternative Formula Using Z-Scores): For data X1, X2, . . . , Xn,
the coefficient of skewness is

g =
n

(n− 1)(n− 2)

n∑
i=1

z3
i .

The quantities z1, z2, . . . , zn are sometimes called z-scores. They indicate how many standard deviations
their corresponding Xi values are above or below the mean. Example 3.13 illustrates the computation of
the coefficient of skewness.

Some Properties of g: The following properties are useful for interpreting the value of g:

• For data whose distribution is symmetric, g ≈ 0.

• For data whose distribution is right skewed, g > 0. The more right skewed the distribution is, the
larger g will be.

• For data whose distribution is left skewed, g < 0. The more left skewed the distribution is, the larger
in the negative direction g will be.

To get a feel for how the value of g reflects different degrees of skewness, the figure below shows several
histograms with varying degrees of skewness along with the corresponding value of g.

Example 3.13: The Coefficient of Skewness

We’ll compute the coefficient of skewness for the n = 7 mercury concentrations in marine shellfish
from Example 3.3, shown again below ordered from smallest to largest.

0.016 0.023 0.023 0.042 0.047 0.117 0.232

A dot plot (below) reminds us that the distribution is right skewed, so we can expect to get a positive
value for g.
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Figure 3.9: Distributions of data with varying degrees of skewness and the corresponding values of the
coefficient of skewness g and quartile skew qs.
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Figure 3.10: Dot plots of mercury concentrations (µg/g) in marine shellfish.

The sample mean and standard deviation are X̄ = 0.071 and s = 0.079. The cubed deviations away
from the mean, divided by the cubed standard deviation, are given below.
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Xi z3
i = (Xi−X̄)3

s3

0.016 (0.016−0.071)3

0.0793
= −0.027

0.023 (0.023−0.071)3

0.0793
= −0.018

0.023 (0.023−0.071)3

0.0793
= −0.018

0.042 (0.042−0.071)3

0.0793
= −0.004

0.047 (0.047−0.071)3

0.0793
= −0.002

0.117 (0.117−0.071)3

0.0793
= 0.016

0.232 (0.232−0.071)3

0.0793
= 0.669∑ (Xi−X̄)3

s3
= 0.616

Their sum, shown at the bottom of the table above, is 0.616. Thus, using (3.7), we get the coefficient
of skewness:

g =
7

(6)(5)
(0.616) = 0.144.

As expected, g is positive because the distribution of the data is right skewed.

Comment: How is it that g measures skewness? First note that the multiplier n/((n− 1)(n− 2)) and the
divisor s3 in (3.7) are always positive, so the sign of g is determined solely by that of the sum

∑
(Xi− X̄)3.

A cubed deviation (Xi − X̄)3 will be positive if the observation Xi is greater than the mean X̄, and neg-
ative if it’s less than the mean. The farther Xi is away from the mean in either direction, the larger the
magnitude of its cubed deviation will be. If the distribution is right skewed, the Xi’s in the long, right
tail of the distribution will produce large positive cubed deviations, forcing

∑
(Xi − X̄)3, and therefore g,

to be positive. If the distribution is left skewed, the Xi’s in the left tail will produce large negative cubed
deviations, forcing g to be negative. The more pronounced the skewness is in either direction, the farther g
will be away from zero in that direction. On the other hand, if the distribution is symmetric, any positive
cubed deviations will tend to be canceled out by negative ones of equal magnitude, leading to a g value
near zero.

Comment: The multiplier n/((n − 1)(n − 2)) in the formula for g plays a role similar to the multiplier
1/(n− 1) in the the sample variance, that is to ”average” the (cubed) deviations. The exact form n/((n−
1)(n−2)) is used because it makes g a more accurate estimator of the skewness in the population, correcting
for any tendency to underestimate the true value.

The Quartile Skew Coefficient

The quartile skew coefficient, denoted qs, is defined as

Quartile Skew Coefficient: For data X1, X2, . . . , Xn, the quartile skew coefficient is

qs =
(Q3 − X̃)− (X̃ −Q1)

IQR
, (3.8)

where X̃ is the median and IQR is the interquartile range.

In words, the quartile skew coefficient is the difference between the spreads of the upper and lower quartiles
away from the median, relative to the size of the IQR. Example 3.14 will illustrate its computation.

Some Properties of qs: The following properties are useful for interpreting the value of qs:
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• For data whose distribution is symmetric, qs ≈ 0.

• For data whose distribution is right skewed, qs > 0. The more right skewed the distribution is, the
larger qs will be.

• For data whose distribution is left skewed, qs < 0. The more left skewed the distribution is, the
larger qs will be in the negative direction.

Fig. 3.9 shows the value of qs for several histograms with varying degrees of skewness.

Example 3.14: The Quartile Skew Coefficient

We’ll compute the quartile skew coefficient for the n = 7 mercury concentrations in marine shellfish
from Examples 3.3 and 3.13, shown again below.

0.016 0.023 0.023 0.042 0.047 0.117 0.232

The median is X̃ = 0.042 and the quartiles are Q1 = 0.023 and Q3 = 0.082. Thus the interquartile
range is

IQR = 0.082− 0.023 = 0.059,

so the quartile skew coefficient is

qs =
(Q3 − X̃)− (X̃ −Q1)

IQR

=
(0.082− 0.042)− (0.042− 0.023)

0.059
= 0.356.

As expected, qs is positive because the distribution of the data is right skewed.

Comment: To see how the quartile skew qs measures skewness, first note that the IQR will always be
positive, and so the sign of quartile skew is determined solely by the sign of the numerator in (3.8). If the
distribution is right skewed, upper half of the data will be more spread out than the lower half, meaning
that Q3 will be farther above the median X̃ than Q1 will be below it, so the numerator in (3.8) will be
positive, and therefore the quartile skew will be positive too. By a similar argument, if the distribution
is left skewed the numerator in (3.8), and thus qs, will be negative. If the distribution is symmetric, Q1

and Q3 will be approximately equidistant from the median, so the numerator of (3.8), and therefore the
quartile skew, will be close to zero.

Some Properties of the Measures of Skewness

Because the coefficient of skewness is based on the cubed deviations (Xi− X̄)3, which can be very large (in
magnitude) if Xi is an outlier, it’s not resistant to outliers. Outliers in the positive direction will inflate
the value of the coefficient of skewness, and outliers in the negative direction will inflate it’s value in the
negative direction. The quartile skew coefficient, on the other hand, is resistant to outliers.

Choosing a Measure of Skewness: The following guidelines can be used when choosing a statistic to
summarize the skewness of a set of data:

• Use the coefficient of skewness when the mean and standard deviation are used to summarize the
center and variation, and in particular, when there are no outliers in the data.
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• Use the quartile skew when the median and interquartile range or median absolute deviation are used
to summarize the center and variation, and in particular, when there are outliers in the data.

3.4 Boxplots and the Five Number Summary

We can simultaneously summarize the center, variation, and skewness of a set of data using the five
number summary, defined as the smallest observation, first quartile, median, third quartile, and largest
observation:

Five Number Summary: For data X1, X2, . . . , Xn, the five number summary is

Minimum, Q1, X̃, Q3, Maximum.

A boxplot is a graphical display of the five number summary.

Creating a Boxplot: To construct a boxplot,

1. Draw a box next to a vertical axis, with bottom of the box bottom level with the first quartile, and
the top of the box level with the third quartile.

2. Draw a horizontal line through the box level with the median.

3. Draw lines (called whiskers) extending from the bottom of the box down to the minimum observation
and from the top of the box up to the maximum.

Example 3.15: Boxplots and the Five Number Summary

On November 28, 2011 a spill of toxic materials from the Suncor Energy oil refinery north of Denver,
Colorado was discovered seeping into Sand Creek, which flows into the South Platte River, the
Denver area’s main water source [3]. The Colorado Department of Public Health and Environment
monitored the spill by measuring benzene concentrations (ppb) on n = 13 days at two locations,
the confluence of Sand Creek with the South Platte River, and a location on the South Platte
downstream from its confluence with Sand Creek. The data are below.

Benzene in South Platte River

Benzene at Confluence Benzene Downstream
Date with Sand Creek from the Confluence
Dec. 27 640 190
Dec. 28 240 300
Dec. 29 140 130
Dec. 30 190 130
Dec. 31 170 160
Jan. 2 300 240
Jan. 3 730 250
Jan. 4 630 240
Jan. 5 650 240
Jan. 6 190 590
Jan. 7 310 260
Jan. 8 400 260
Jan. 9 720 240

The data from the first location, in sorted order, are
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140 170 190 190 240 300 310 400 630 640 650 720 730

The five number summary is

Min Q1 X̃ Q3 Max

140 190 310 640 730

and the boxplot (with five number summary labels) is shown below.
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Figure 3.11: Boxplot of benzene concentrations at the confluence of the South Platte River with
Sand Creek in Denver, Colorado.

When there are outliers in the data, we show them as isolated points in the boxplot. For this purpose,
an outlier is defined to be any observation that lies farther than one and a half interquartile ranges away
from the nearest quartile, that is, outside the two ”fences”:

Lower and Upper Fences: For data X1, X2, . . . , Xn, the lower and upper fences for deciding
whether an observation is an outlier are

Lower fence = Q1 − 1.5(IQR) Upper fence = Q3 + 1.5(IQR)

When outliers are shown as isolated points in a boxplot, the whiskers extend only as far as the largest and
smallest observations that aren’t outliers. The next example illustrates.

Example 3.16: Boxplots Showing Outliers

Refer to the data on benzene concentrations in the South Platte River in Example 3.15. For the
data collected downstream of the confluence with Sand Creek, the five number summary is

Min Q1 X̃ Q3 Max

130 190 240 260 590

and so the interquartile range is IQR = 260 − 190 = 70. We’ll deem as outliers any observations
greater than

Q3 + 1.5(IQR) = 260 + 1.5(70) = 365
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or less than

Q1 − 1.5(IQR) = 190− 1.5(70) = 85.

The largest benzene concentration, 590 ppb, is therefore an outlier, but it’s the only one. A boxplot
showing this outlier as an isolated point is shown below. Notice that the upper whisker extends only
as far as 300 ppb, the largest observation that’s not an outlier.
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Figure 3.12: Boxplot of benzene concentrations downstream of the confluence of the South Platte
River with Sand Creek in Denver, Colorado.

Comment: Although the ”1.5 IQRs” criterion is a useful way of identifying unusual observations, it often
singles out observations that shouldn’t be considered unusual. In particular, observations in the long tail
of a skewed distribution often appear as outliers in boxplots even though such isolated observations are to
be expected in skewed distributions.

The true usefulness of boxplots is for comparing samples from two or more populations, side by side in
the same graph, as in the next example.

Example 3.17: Side-By-Side Boxplots

For the benzene concentrations from Examples 3.15 and 3.16, we can make comparisons between
the two locations using boxplots shown side by side in the same graph, as below.
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Figure 3.13: Side-by-side boxplots of benzene concentrations at two locations along the South Platte
River in Denver, Colorado.

It’s clear from the boxplots that the benzene concentrations tend to be lower at the location farther
downstream from the chemical spill. It’s also clear that there’s more day-to-day variation in the
concentrations at the location nearer to the spill.

Comment: Boxplots of data whose distribution is skewed will appear asymmetrical, with a shorter whisker
at one end and a longer whisker, often with isolated points, extending in the direction of the long tail of
the skewed distribution. As an example, the boxplots below were made from the same six data sets whose
histograms are shown in Fig. 3.9. The values of the coefficients of skewness, g, and quartile skew coefficients,
qs are also given.
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Figure 3.14: Boxplots of data whose distributions have varying degrees of skewness and the corresponding
values of the coefficient of skewness g and quartile skew qs.

3.5 Problems

3.1 The following data are water temperature measurements (◦C) made in 2001 at nine sites on Lake
Tahoe and Donner Lake, near the border of California and Nevada [10].

Lake Temperatures

Site Name Temperature

Tahoe City 17.5
TRG Buoy 17.5
Sugar Pine Point 17.8
Emerald Bay 18.3
Ski Run Marina 18.8
Camp Richardson 17.8
Tahoe Keys Marina East 19.3
Donner Lake Boat Ramp 20.3
Donner Lake Buoy 20.0

a) Calculate the mean of this set of data.

b) Calculate the median.

c) Calculate the geometric mean.

3.2 The table below shows data on the numbers of injuries and deaths by lightning strikes in the U.S.
for each of the years 1959 - 2005, as compiled by the National Climatic Data Center from reports by the
National Weather Service [8].
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Lightning Casualties
Year Injuries Deaths Year Injuries Deaths
1959 134 75 1983 203 49
1960 91 48 1984 156 33
1961 166 61 1985 149 34
1962 100 48 1986 120 32
1963 129 150 1987 190 35
1964 95 49 1988 146 30
1965 113 57 1989 175 23
1966 91 39 1990 152 39
1967 61 27 1991 207 36
1968 132 51 1992 161 25
1969 79 46 1993 147 20
1970 140 50 1994 288 32
1971 118 62 1995 233 43
1972 90 51 1996 309 52
1973 123 50 1997 306 42
1974 84 58 1998 285 44
1975 115 38 1999 243 46
1976 91 34 2000 364 51
1977 138 59 2001 370 47
1978 114 44 2002 256 51
1979 79 24 2003 236 44
1980 186 39 2004 278 33
1981 184 40 2005 309 38
1982 63 33

a) Make a histogram of the deaths due to lightning strikes. What unusual feature do you notice in the
histogram?

b) Compute the mean and the median of the death counts. Which statistic has the larger value? Explain
why.

c) Referring to the outlier in the data, the cited report states:

On December 8, 1963 the crash of a jetliner killing 81 people near Elkin, Maryland, was
attributed to lightning by the Civil Aeronautics Board investigators.

Subtracting 81 from the tabulated value (150) for 1963 gives a more reasonable death count for that
year. Recompute the mean and median with 69 replacing the outlier 150 for the year 1963. How do
the values of the mean and median compare to those computed in part b?

3.3 One possible way of reducing atmospheric carbon dioxide (CO2) emissions from power plants is to
store them in the earth’s subsurface below a sealing caprock. Depleted oil reservoirs are potential geologic
storage sites for CO2.

One criterion for determining the suitability of a depleted oil reservoir as a CO2 storage site is its distance
from the power plant. The table below shows distances (km) of 15 depleted oil reservoirs in the Galveston,
Texas area from a power plant in Texas City, Texas [12].
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CO2 Storage Sites
Distance from

Field Name/Reservoir Name CO2 Source
Cedar Point/No name 32.9
Chocolate Bayou/Frio Upper 21.6
Chocolate Bayou/Alibel 21.6
Fig Ridge/Seabreeze 71.5
Franks/8900 Sand 8.9
Gillock/Big gas 12.6
Gillock/East Segment 12.6
South Gillock/No name 7.9
E. U. Frio Hastings/No name 26.1
W. Frio Hastings/No name 26.1
Moores Orchard/No name 91.0
Oyster Bayou/No name 60.4
Red Fish reef/Combined 25.2
North Thompson/No name 59.8
Webster/No name 31.4

a) Make a histogram of the data.

b) Is the shape of the distribution left skewed, right skewed, or approximately symmetric?

c) Based on your answer to part b, which measure of center’s value would you expect to be larger, the
sample mean’s or the sample median’s?

d) Calculate the sample mean and the sample median.

3.4 A study was carried out to investigate the use of a new method for measuring concentrations of
organic compounds in water [13], [5]. Fifteen laboratories participated in the study by using the method
to measure chlorobenzene (µg/L) in four reference water specimens having known chlorobenzene concen-
trations 0.88, 1.10, 4.41, and 5.29 µg/L. The table below shows the resulting data.

Chlorobenzene Measurements
Laboratory Conc= 0.88 Conc= 1.10 Conc= 4.41 Conc= 5.29

1 1.08 1.24 4.45 5.71
2 2.35 0.96 4.53 5.24
3 1.30 1.30 4.90 6.80
4 1.20 1.40 3.90 4.80
5 2.20 0.93 4.90 4.00
6 1.21 1.10 4.50 5.37
7 1.20 1.20 4.40 4.90
8 1.10 1.00 4.30 5.80
9 0.80 1.00 5.30 5.50
10 1.30 1.70 4.70 6.60
11 1.10 1.20 4.10 5.30
12 1.00 1.30 4.90 5.40
13 1.20 1.10 4.80 5.60
14 0.55 0.79 3.33 3.65
15 1.00 1.30 4.70 5.80

a) Make a dot plot of the chlorobenzene measurements made on the 1.10µg/L reference specimens.

b) Is the shape of the distribution left skewed, right skewed, or approximately symmetric?
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c) Calculate the sample mean and compare it to the true concentration value 1.10.

3.5 Repeat Problem 3.4 using the chlorobenzene measurements made on the 0.88µg/L reference speci-
mens.

3.6 Repeat Problem 3.4 using the chlorobenzene measurements made on the 4.41µg/L reference speci-
mens.

3.7 Repeat Problem 3.4 using the chlorobenzene measurements made on the 5.29µg/L reference speci-
mens.

3.8 In a study of heavy metal contamination in soil due to industrialization near the Manali area in
Chennai, Southern India, metals were measured in soil at 32 sites in the region [9]. The table below shows
their concentrations (mg/kg).

Metals in Soil
Site As Co Cr Pb Sr
M-1 1.02 32.9 207.4 3.66 172.3
M-2 0.69 30.8 150.2 1.80 63.9
M-3 1.36 32.1 156.1 1.50 122.5
M-4 0.89 15.9 150.7 10.30 256.3
M-5 0.58 17.1 158.3 5.35 214.3
M-6 0.74 23.1 191.0 6.17 112.5
M-7 0.25 9.2 230.0 8.84 213.6
M-8 0.99 11.1 150.0 9.79 86.5
M-9 0.36 13.4 240.0 20.70 69.3

M-10 1.12 11.5 197.0 24.80 87.8
M-11 1.06 58.5 149.8 10.19 152.3
M-12 0.63 10.5 218.0 22.76 123.6
M-13 0.88 7.96 151.0 10.97 55.9
M-14 0.96 3.4 215.0 8.24 63.5
M-15 1.15 6.7 306.0 12.70 105.6
M-16 2.03 12.3 172.0 94.00 114.9
M-17 0.36 15.4 157.0 11.30 158.3
M-18 0.55 12.9 385.0 48.80 223.3
M-19 1.85 14.5 395.0 80.10 89.6
M-20 1.11 12.4 255.0 42.50 99.6
M-21 1.30 15.3 201.0 101.40 236.3
M-22 0.53 12.6 183.0 95.00 149.5
M-23 0.96 15.2 204.0 101.00 163.3
M-24 0.85 9.8 158.0 77.20 102.3
M-25 0.45 14.8 247.0 140.20 152.3
M-26 1.36 20.4 246.0 78.30 88.9
M-27 2.30 11.3 309.0 83.30 59.6
M-28 0.21 16.7 418.0 50.00 113.6
M-29 0.54 19.2 328.0 67.50 145.3
M-30 0.78 11.1 251.0 65.80 185.9
M-31 0.98 22.3 154.0 19.40 148.3
M-32 0.22 20.8 161.0 24.30 230.3

a) Make a histogram of the arsenic (As) concentrations, and describe the shape of the distribution.

b) Which of the two measures of center, the sample mean or median, would you expect to be larger for
this set of data?

c) Compute the sample mean and median.

d) Which measure of center, the sample mean or median, is more representative of a typical value for
this data set?

3.9 Repeat Problem 3.8 using the cobalt (Co) concentrations.

3.10 Repeat Problem 3.8 using the chromium (Cr) concentrations.
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3.11 Repeat Problem 3.8 using the lead (Pb) concentrations.

3.12 Repeat Problem 3.8 using the strontium (Sr) concentrations.

3.13 The data below are cadmium concentrations (mg/kg) from the Sacramento Army Depot Superfund
Site (in EPA Region 9), as reported in [14].

Cadmium Concentrations

26.2 27.6 445.0 30.8 486.3 513.8 112.8 159.3 1300.0 6.7
33.7 35.0 11.0 22.1 830.9 125.1 40.8 345.5 384.8 183.0

2300.0 1500.0 260.3 32.1 166.2 31.7 12.4 614.5 639.5 116.2
119.4 111.6 10.3 1.7 3.3 10.5 11.7 10.3 122.3 283.0
265.1 125.5 131.1 47.9 119.3

a) Make a histogram of the data and describe its shape.

b) Calculate the sample mean and median of the data. Which is larger?

c) Take the log of each cadmium concentration and make a histogram of the log concentrations. How
does the shape of this histogram differ from the one in part a?

d) Calculate the geometric mean of the (original) cadmium concentrations.

3.14 The data below are counts of greenbugs (aphids) on each of 20 oat plants recorded in April, 1981
and reported in [15].

1 18 2 0 40 3 8 5 12 11
8 7 6 3 15 27 8 4 3 2

a) Make a histogram of the data and describe its shape.

b) Compute the sample mean and median of the data. Which is larger?

c) Compute the coefficient of skewness.

3.15 Refer to the data on water temperatures in Lake Tahoe and Donner Lake given in Problem 3.1.

a) Compute the sample standard deviation.

b) Compute the interquartile range.

c) Compute the median absolute deviation.

d) Compute the coefficient of skewness.

e) Compute the quartile skew.

3.16 Increased usage of groundwater for irrigation in Jordan in recent decades has raised concerns about
potential shortages where groundwater mechanics aren’t well understood.

To explore the origin and movement of groundwater in the upper Yarmouk Basin, northern Jordan, hydro-
chemical measurements were made on water samples from 40 wells throughout the region and examined
for spatial patterns [2]. The data below are the chlorine (Cl) measurements (mg/L).



72 CHAPTER 3. GRAPHING AND SUMMARIZING DATA

Chlorine in Groundwater
Well Cl Well Cl Well Cl Well Cl Well Cl

AD1001 113.0 AD1024 138.0 AD1064 141.0 AD1306 127.9 AD3023 87.6
AD1003 111.4 AD1037 111.0 AD1160 111.0 AD1307 87.7 AD3024 103.6
AD1007 220.0 AD1046 152.0 AD1168 97.0 AD1319 116.0 AD3025 91.1
AD1015 116.0 AD1050 98.0 AD1170 127.0 AD1320 134.0 AD3040 106.7
AD1016 103.0 AD1054 137.0 AD1230 102.0 AD1323 96.0 AD3044 88.7
AD1020 108.0 AD1055 123.0 AD1258 112.4 AD3004 134.8 AD3047 89.7
AD1021 117.0 AD1056 124.0 AD1260 109.5 AD3021 90.0 AD3057 128.0
AD1023 545.0 AD1063 130.8 AD1281 94.0 AD3022 97.9 AD3058 106.0

a) Determine if there are any outliers in the data using the ”1.5 IQRs” rule.

b) Make a boxplot of the data showing outliers, if any, as isolated points.

c) Choose and then compute an appropriate measure of center for this data set.

d) Choose and then compute an appropriate measure of variation for this data set.

e) Choose and then compute an appropriate measure of skewness for this data set.

3.17 The study cited in Problem 3.16 also reported the magnesium (Mg) measurements (mg/L) for the
40 wells in the Yarmouk Basin in Jordan. The Mg measurements are shown in the table below.

Magnesium in Groundwater

Well Mg Well Mg Well Mg Well Mg Well Mg
AD1001 23.3 AD1024 21.8 AD1064 25.5 AD1306 23.2 AD3023 21.4
AD1003 23.2 AD1037 20.2 AD1160 26.4 AD1307 25.5 AD3024 21.6
AD1007 26.3 AD1046 25.8 AD1168 26.0 AD1319 25.5 AD3025 20.0
AD1015 21.5 AD1050 21.7 AD1170 20.1 AD1320 25.8 AD3040 25.4
AD1016 21.6 AD1054 23.3 AD1230 21.5 AD1323 25.8 AD3044 23.2
AD1020 21.4 AD1055 25.6 AD1258 23.2 AD3004 25.6 AD3047 25.5
AD1021 23.4 AD1056 23.3 AD1260 23.4 AD3021 26.1 AD3057 23.0
AD1023 38.5 AD1063 25.7 AD1281 23.0 AD3022 20.1 AD3058 19.2

a) Determine if there are any outliers in the data using the ”1.5 IQRs” rule.

b) Make a boxplot of the data showing outliers, if any, as isolated points.

c) Choose and then compute an appropriate measure of center for this data set.

d) Choose and then compute an appropriate measure of variation for this data set.

e) Choose and then compute an appropriate measure of skewness for this data set.

3.18 In Example 2.9 of Chapter 2, two-stage sampling was used in a study of the zinc (Zn) and calcium
(Ca) concentrations in soil on a research field in Slovenia.

In the first stage, the field was partitioned into subplots, and a simple random sample of m = 5 subplots
was selected. In the second stage, from each of the selected subplots, a simple random sample of ñ = 3
soil specimens was selected and the Zn and Ca (both mg/kg) concentrations measured in each specimen.
The table below shows the data.
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Zinc and Calcium in Soil
Specimen from

Subplot the Subplot Zn Ca
1 51 0.78

1 2 41 0.57
3 52 0.44

1 54 0.57
2 2 55 0.51

3 47 0.53

1 47 0.41
3 2 48 0.55

3 48 0.54

1 48 0.55
4 2 45 0.43

3 48 0.57

1 39 0.49
5 2 39 0.58

3 43 0.47

In this problem we’ll summarize the data one subplot at a time.

a) To assess spatial variability in Zn concentrations, compute and compare the five subplot sample
means.

b) Based on the five sample means computed in part a, which subplot appears to have the highest Zn
concentrations?

c) It’s often the case that measurements made in close proximity spatially tend to be similar in value,
whereas ones farther apart tend to be dissimilar. This suggests that within each of the five subplots,
the Zn measurements should be fairly homogeneous, and therefore have small standard deviation.
Calculate the sample variance and sample standard deviation for each of the five subplots.

d) Based on the five sample standard deviations calculated in part c, for which subplot do the Zn
concentrations vary the most?

e) Make side by side boxplots of the Zn concentrations for the five subplots (one boxplot for each
subplot).

3.19 Repeat Problem 3.18 using the calcium (Ca) concentrations.

3.20 Problem 2.6 in Chapter 2 described a study of contaminants in eggs of herons and egrets in the Mai
Po Marshes Nature Reserve in Hong Kong. One question of interest was whether contaminant concentra-
tions in eggs would differ for the two species, for example due to different diets and metabolic characteristics.

An egg was taken from each of nine randomly selected Little Egret nests in the Mai Po egretry and nine
randomly selected Black-Crowned Night Heron nests in the A Chau egretry. Several contaminants were
measured in each of the sampled eggs. The data on chlordanes (CHLs, ng/g) and total organochlorines
(OCs, ng/g) are shown below.
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Contaminants in Eggs
Egg No. CHLs OCs

1 390 3710
2 240 2060
3 320 2100

Little Egret 4 470 3760
Eggs from 5 310 3530

Mai Po Village 6 450 2870
7 100 940
8 81 1140
9 180 1850

10 44 180
11 19 1270

Black-Crowned 12 66 1010
Night Heron Eggs 13 75 1150

from A Chau 14 30 550
15 13 470
16 6 870
17 24 480
18 6 360

In this problem we’ll examine the CHL concentrations.

a) Make side by side boxplots of the CHL concentrations for the two bird species.

b) Based on the boxplots in part a, which type of eggs, egrets’ or herons’, tend to have higher CHL
concentrations?

c) Based on the boxplots in part a, which type of bird eggs exhibit more variable concentrations of
CHLs?

3.21 Refer to the study described in Problem 3.20 and the data given there. In this problem we’ll examine
the OC concentrations.

a) Make side by side boxplots of the OC concentrations for the two bird species.

b) Based on the boxplots in part a, which type of eggs, egrets’ or herons’, tend to have higher OC
concentrations?

c) Based on the boxplots in part a, which type of bird eggs exhibit more variable concentrations of OCs?
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