
Chapter 4

Modeling Data as Random Variables and
Populations as Probability Distributions

Chapter Objectives

• Distinguish between discrete and continuous probability distributions.
• Interpret the mean and standard deviation of a probability distribution.
• Recognize binomial and Poisson random variables.
• Obtain probabilities from binomial and Poisson distributions.
• Recognize normal and lognormal random variables.
• Obtain probabilities from normal and lognormal distributions.
• Find and interpret percentiles of normal and lognormal distributions.
• Find and interpret the limit of detection for a given measurement error standard deviation.

Key Takeaways

• Random variables are values determined by chance. They can be discrete or continuous.
• The probability distribution of a random variable indicates the probabilities with which the variable

takes different values.
• Discrete probability distributions are represented by probability functions. Continuous ones are

represented by probability density functions.
• Binomial and Poisson distributions are used to model discrete counts.
• Normal distributions are bell-shaped, continuous distributions.
• Lognormal distributions are right-skewed, continuous distributions.
• Measurement error often follows a normal distribution with mean zero.
• The limit of detection is a value that separates nondetect measurements from detects.

4.1 Introduction and Notation

The E. coli level in a lake can vary from one surface location to the next, and for a randomly selected
location, the resulting E. coli value will be determined by chance. Any numerical variable whose value is
determined by chance is called a random variable.

If we knew the E. coli level at every location on the lake, we’d know which values we might end up with
and we could determine the probabilities of those values. The set of values a random variable might take
and the probabilities associated with those values together form what’s called the probability distribution
of the variable. Probability distributions are used in statistics to represent populations. Random variables
are used to represent sample values.

75



76CHAPTER 4. MODELING DATAAS RANDOMVARIABLES AND POPULATIONS AS PROBABILITY DISTRIBUTIONS

Throughout this chapter, we’ll use the following notational conventions:

• Upper case letters such as X, Y , and Z will be used to denote random variables whose values have
yet to be determined. For example X might represent the E. coli level in a water specimen that hasn’t
been drawn yet.

• Probabilities involving a random variable X will be denoted P (X = 3), P (X ≤ 6.5), and so on.

• Occasionally, a lower case letter such as x will be used in place of a number like 3 or 6.5 to denote a
generic probability, for example P (X = x) or P (X ≤ x).

A random variable is discrete or continuous depending on whether its set of possible values consists
of isolated numbers (e.g. integers) or a continuum. We’ll look at discrete random variables in Section 4.2,
followed by some special discrete variables that are counts in Section 4.3. Then in in Section 4.4, we’ll turn
to continuous random variables, with some special ones covered in Section 4.5.

4.2 Discrete Probability Distributions

4.2.1 Introduction

When working with a discrete random variable X, it’s convenient to use the shorthand notation p(x) for
P (X = x), and then think of p(x) as a function of x. The function p(x) is called the probability function
of the random variable X, and it characterizes the probability distribution of X. A graph of the probability
function, as described in the next example, is called the probability histogram of the distribution.

Example 4.1: Discrete Probability Distribution

The table below shows the vehicle occupancy rates on urban arterials and freeways in Miami-Dade
County, Florida (based on reports for 154,152 vehicles involved in accidents) [8].

Number of Occupants Percentage of Vehicles

1 82 %
2 12 %
3 4 %
4 2 %

The percentage of vehicles with five or more occupants was negligibly small, so it’s left out of the
table above.

We can interpret the percentages as the probabilities that a randomly selected vehicle will have 1,
2, 3, and 4 occupants, respectively.

Letting X denote the number of occupants in the randomly chosen vehicle, X is a discrete random
variable whose possible values are 1, 2, 3, and 4. The probability distribution of X is shown in the
table below.

x 1 2 3 4

p(x) 0.82 0.12 0.04 0.02

The table says, for example, that the probability of a randomly selected vehicle having only one
occupant is p(1) = P (X = 1) = 0.82.

The probability distribution is shown below as a probability histogram, with the possible values of X
on the horizontal axis and bars whose heights are the probabilities of those values. This probability
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distribution represents the population of vehicles in Miami-Dade County.
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Figure 4.1: Probability histogram for vehicle occupancy.

The last example illustrates the use of a probability distribution to represent a population from which
an elementary unit is randomly selected and a variable measured upon. If the distribution accurately
represents the population, and a random sample is drawn from the population, a histogram of the data
would approximately resemble the probability histogram.

Properties of Probability Functions: Every discrete probability function p(x) has the following prop-
erties:

1. 0 ≤ p(x) ≤ 1 for all values of x.

2.
∑

all x
p(x) = 1, where the summation is over all possible values x of the random variable X.

4.2.2 The Mean and Standard Deviation of a Discrete Probability Distribution

We measure the center of a probability distribution by its mean, denoted µ. If the bars in a probability
histogram were weights, µ is the point along the horizontal axis at which they’d balance. We can compute
the mean using the following.

Mean of a Discrete Probability Distribution: For a discrete random variable X whose prob-
ability function is p(x), the mean of the distribution is

µ =
∑
all x

x p(x), (4.1)

where the summation is over all possible values x of X.

Thus µ is computed by multiplying each of the possible values of the random variable by its probability
and then summing the results.

The mean µ has two interpretations:

1. It’s the mean of the population when the probability distribution represents a population.

2. It’s a typical value of the variable.
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Example 4.2: Mean of a Discrete Distribution

The mean of the probability distribution given in Example 4.1 is

µ =
∑
all x

x p(x)

= 1(0.82) + 2(0.12) + 3(0.04) + 4(0.02)

= 1.26.

Thus the population mean number of occupants is 1.26, which is the balancing point of the proba-
bility histogram in Fig. 4.1. On average, a randomly selected vehicle will have 1.26 occupants.

We measure the spread in a probability distribution (that is, variation in the values the random variable
takes) by its standard deviation, denoted σ. A larger value of σ corresponds to a more spread-out
distribution. To compute the standard deviation, we use the following.

Standard Deviation of a Discrete Probability Distribution: For a discrete random variable
X whose probability function is p(x), the standard deviation is

σ =

√∑
all x

(x− µ)2 p(x), (4.2)

where the summation is again over all possible values x of X.

Thus σ is computed by multiplying each possible squared deviation of the random variable away from the
mean by its probability, summing the results, and then taking the square root. The square of the standard
deviation, σ2, is called the variance of the distribution.

The standard deviation σ measures variation in the values that the random variable takes. It has two
interpretations:

1. It’s the standard deviation of the population when the probability distribution represents a population.

2. It’s the size of a typical deviation of the variable away from the mean µ.

Example 4.3: Standard Deviation of a Discrete Distribution

Continuing from the previous example, the standard deviation of the probability distribution is

σ =

√∑
all x

(x− µ)2 p(x)

=
√

(1− 1.26)2(0.82) + (2− 1.26)2(0.12) + (3− 1.26)2(0.04) + (4− 1.26)2(0.02)

= 0.63.

Together, the mean from Example 4.1 and standard deviation from above tell us that on average in
the population, a vehicle will have 1.26 occupants, plus or minus about 0.63 occupants.
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4.3 Probability Distributions for Counts

In the vehicle occupancy example (Example 4.1) the probability distribution was based on accurate infor-
mation about the population of vehicles. In the absence of such accurate information, we have to choose
from a set of stock theoretical distributions the one that we think describes the population. Then proba-
bilities involving randomly selected elementary units can be obtained from the theoretical distribution.

The first step is to identify whether the random variable is discrete or continuous. Discrete variables
are most often counts. Two commonly used theoretical distributions for counts are:

1. The binomial distribution

2. The Poisson distribution

The first is used for counts of the number of times a particular outcome occurs among several trials or
occasions. The second is used for counts of the number of times an event occurs over a given time period
or over a given spatial region.

4.3.1 The Binomial Distribution

The following are examples of binomial random variables:

• The number of animal traps, among the 15 traps set, that catch animals.

• The number of fish, among 10 tested, that test positive for a certain disease.

• The number of water specimens, among the seven tested, that test positive for a certain trace chem-
ical.

In general, a binomial random variable is one for which the following conditions are met:

Conditions for a Binomial Random Variable:

1. There are a certain number of trials, n.

2. Each trial has two possible outcomes, success and failure, say.

3. The trials all have the same probability p of resulting in a success. Thus the probability of a
failure is 1 − p.

4. The trials are independent, meaning their outcomes don’t influence each other.

5. The random variable X is the count of the number of successes among the n trials.

Here are some more examples.

Example 4.4: Binomial Distribution

Human consumption of mercury (Hg) can impair brain and nervous system development in fetuses,
infants, and children. Mercury is known to accumulate in fish, and the World Health Organization
(WHO) suggests that fish with Hg concentrations greater than 0.5 mg/kg are unsafe for human
consumption.

In the U.S., much of the fish consumed comes in the form of canned tuna, which is sometimes sold
in packages of four cans. In a given package of four, the number of cans that have an unsafe Hg
level could be modeled as a binomial random variable.
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Example 4.5: Binomial Distribution

Studies of animal populations sometimes involve visiting several sites, each one on multiple
occasions, and recording whether the animal was seen or not during each visit.

Repeated visits to a given site yield a ”detection history” for that site, for example (0, 1, 0, 1, 0,
0) if the site was visited six times and the animal seen only on the second and fourth visits. The
variable of interest is how many of the visits led to a sighting (two in the example just given). This
count could be modeled as a binomial random variable.

Example 4.6: Binomial Distribution

A biological assay, or bioassay for short, is an experiment to determine the toxicity of a substance.

In a bioassay of wastewater treatment plant effluent, 10 aquatic organisms are placed in an effluent-
filled aquarium. After a set period of time, each organism is either dead or still alive. The variable
of interest is the number of deceased organisms, and it could be modeled as a binomial random
variable.

The Binomial Probability Function

To determine, in Example 4.4, how likely it would be to end up with, say, two unsafe tuna cans out of a
package of four, we can use the binomial probability function:

Binomial Probability Function: If X is a binomial random variable with n trials, each of which
results in a successes with probability p and failure with probability 1− p, then

p(x) =
n!

x!(n− x)!
px(1− p)n−x for x = 0, 1, 2, . . . , n, (4.3)

where the notation n! (read ”n factorial”) is defined (for each positive integer n) as

n! = n(n− 1)(n− 2) · · · (1)

and, by definition, 0! = 1.

This probability function characterizes the binomial distribution, and we refer to n and p as its param-
eters. Later we’ll see how the probability function was derived, and we’ll see that its parameters control
its shape, center, and spread.

We’ll use the notation
X ∼ Binomial(n, p)

to mean that the random variable X follows a binomial distribution with parameters n and p.

Example 4.7: Binomial Distribution

Continuing with the canned tuna example (Example 4.4), we have n = 4 cans (trials), and each is
either unsafe (success) or safe (failure). According to one study, 10% of tuna cans sold are unsafe,
so the probability that a given can will be unsafe is p = 0.1 [10].



4.3. PROBABILITY DISTRIBUTIONS FOR COUNTS 81

If the safety statuses of the four cans are independent of each other, the number of unsafe cans X
in a given package is a binomial variable with parameters n = 4 and p = 0.1, which we write as

X ∼ Binomial(4, 0.1).

Using (4.3), the chance that exactly two of the four cans will be unsafe (and the other two safe)

p(2) =
4!

2!(4− 2)!
0.12(1− 0.1)4−2

= 0.049.

The probabilities for each of the values x = 0, 1, . . . , 4 are computed in a similar manner, and are
shown below.

x 0 1 2 3 4

p(x) 0.656 0.292 0.049 0.004 0.000

A probability histogram of this binomial distribution is below.
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Figure 4.2: Probability histogram for the number of unsafe tuna cans in a package of four.

The next example shows that the value of p affects the shape, center, and spread of the binomial
distribution.

Example 4.8: Binomial Distribution

Suppose in the bioassay study of Example 4.6 that 10 organisms are placed in each of two aquariums,
one containing treatment plant effluent and the other fresh water. Suppose also that a given or-
ganism will die with probability p = 0.7 in the effluent aquarium and p = 0.15 in the fresh water one.

If their death occur independently of each other, the numbers of deaths in the two aquariums at the
end of the study follow Binomial(10, 0.7) and Binomial(10, 0.15) distributions, respectively. These
distributions are shown below.
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Figure 4.3: Probability histograms for the number of organisms that die in the control aquarium
(top) and the treatment plant effluent aquarium (bottom).

The death-count distribution for the effluent aquarium (p = 0.7) lies farther to the right than the
one for the fresh-water aquarium (p = 0.15). Also, the two distributions have different shapes and
different amounts of spread.

Mean and Standard Deviation of a Binomial Distribution

The mean and standard deviation of a binomial distribution could be computed by constructing a table of
probabilities like the one in Example 4.7, and then using formulas (4.1) and (4.2). But it turns out there’s
an easier way. It’s clear from the last example that the mean (center) and standard deviation (spread)
of the distribution depend on the value of the parameter p. In fact, they also depend on the value of the
parameter n.

Here are shortcut formulas for computing the mean and standard deviation of a binomial distribution.

Mean and Standard Deviation of the Binomial Distribution: The mean µbin of a
Binomial(n, p) distribution is

µbin = np (4.4)

and the standard deviation σbin is
σbin =

√
np(1− p). (4.5)

In the next example, we’ll see that the shortcut formulas give the same results as (4.1) and (4.2).

Example 4.9: Binomial Distribution

Consider again the safety statuses of tuna cans (Examples 4.4 and 4.7). Using the shortcut formula
(4.4), the mean of the binomial distribution with with n = 4 and p = 0.1 is

µbin = np

= 4 (0.1)

= 0.4.

This says that the average number of unsafe cans in a package of four is 0.4.
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Now using the more general formula (4.1) with the table of probabilities in Example 4.7, we get

µ =
∑
all x

xp(x)

= 0(0.656) + 1(0.292) + 2(0.049) + 3(0.004) + 4(0.000)

= 0.4.

Thus the two results are the same.

The standard deviation of the binomial distribution, from the shortcut formula (4.5), is

σbin =
√
np(1− p)

=
√

(4)(0.1)(1− 0.1)

= 0.6.

This says that that actual number of unsafe cans in a package will typically differ from the mean
number, 0.4, by about 0.6 of a can. One standard deviation below the mean extends into negative
territory because the distribution is right skewed, as seen in Fig. 4.2.

It can be shown that we’d get the same value for σbin using the more general formula (4.2) with the
table of probabilities in Example 4.7.

The Binomial Distribution When n is Large

We’ve seen that the shape of the binomial distribution depends on the value of p (Example 4.8). What’s
effect of n on the shape? Fig. 4.4 shows binomial distributions with three different values of n. As n
increases, the distribution becomes more and more bell-shaped. It also shifts to the right and becomes more
spread out – the mean (4.4) and standard deviation (4.5) both increase as n does. If n is large enough, the
binomial distribution becomes indistinguishable from a perfect bell-shaped normal distribution, described
later in this chapter.
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Figure 4.4: Binomial distributions having different values of n: n = 5 (top), n = 12 (middle), and n = 30
(bottom). In each case, p = 0.2.
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Derivation of the Binomial Probability Function Formula

To see how the binomial probability function (4.3) was derived, we’ll use the safety statuses of four cans
of tuna as an example. We saw in Example 4.7 that the probability that exactly two of the four cans will
be unsafe is

p(2) =
4!

2!(4− 2)!︸ ︷︷ ︸
Number of ways

two of the four

cans can be unsafe

0.12(1− 0.1)4−2︸ ︷︷ ︸
Probability of each

of those ways

(4.6)

The first part, 4!/(2!(4 − 2)!), can be shown to be the number of test-outcome sequences for which two
cans out of four are unsafe. For example, one sequence is

(0, 1, 0, 1),

meaning that the second and fourth cans are unsafe. Another is

(1, 0, 0, 1)

meaning that the first and fourth are unsafe. All 4!/(2!(4− 2)!) = 6 sequences are shown in Fig. 4.5.
The second part of the right side of (4.6), 0.12(1−0.1)4−2, is the probability of each of the six sequences

of Fig. 4.5. For example, the sequence
(0, 1, 0, 1)

has probability
(0.9)(0.1)(0.9)(0.1) = 0.12(1− 0.1)4−2,

and the sequence
(1, 0, 0, 1)

has probability
(0.1)(0.9)(0.9)(0.1) = 0.12(1− 0.1)4−2

too. Similarly, each of the other four sequences has this same probability.
The probability that exactly two of the four cans will be unsafe is the probability that one or another

of the six sequences will result, and is obtained by summing the six sequences’ probabilities, as shown on
the bottom right of Fig. 4.5 and used in (4.6).
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Sequences of Tuna Can
Statuses with Two Unsafe Cans
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Can Number Probability of

the Sequence
Sequence
Number
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1 1

0 0

0 0

0 0

0 0

0 0

0 0

(0.1)2(0.9)2
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(0.1)2(0.9)2

(0.1)2(0.9)2

(0.1)2(0.9)2
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Sum  =  
4!

2!(4 − 2)!(0.1)2(1 − 0.1)2

4!

2!(4 − 2)!
Sequences

Figure 4.5: All six ways in which two tuna cans out of four can be unsafe (0 = safe, 1 = unsafe) and their
probabilities.

In general, the number of sequences of n outcomes for which x are successes and the other n−x failures
is called the number of combinations of n outcomes taken x at time, and is given by the following.

Combinations: The number of combinations of n outcomes taken x at a time is

Number of Combinations =
n!

x!(n− x)!
.

4.3.2 The Poisson Distribution

The following are examples of Poisson random variables:

• The number of flash floods during a 100-year period.

• The number of shooting stars in the night sky during a one hour period.

• The number of patients admitted for respiratory problems to a hospital in a given month.

• The number of trees of a certain species on a 100 m2 plot of land.

• The number of beetles in a 1 m2 quadrat.

In general, Poisson random variables are counts of events occurring over a given time period or spatial
area and for which the following conditions are met:

Conditions for a Poisson Random Variable:

1. Events occur at random time points or at random spatial points. The (temporal) rate or
(spatial) density of their occurrence is approximately constant (doesn’t change over time as
they’re being counted or across locations inside the study region).
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2. The events occur independently of each other in time or space, i.e. the likelihood of an event
occurring at a given time or location doesn’t depend on whether others have occurred in that
(temporal or spatial) vicinity.

3. The random variable X is the count of the number of occurrences of the event in a specified
time period or spatial area.

According to the second condition, the Poisson distribution would be appropriate for modeling spatial
counts of plants or animals that disperse independently of each other, but not plants that grow in clumps
or animals that congregate in groups, both common in nature.

Here’s an example in which the Poisson distribution is used to model counts of events in time.

Example 4.10: Poisson Distribution

On average, 1.68 hurricanes make landfall on the continental U.S. per year according to records
dating back to 1850 [7]. In any given year, though, the number of hurricanes is a random variable.
Some researchers use the Poisson distribution, with mean 1.68, to compute probabilities of various
numbers of hurricanes. This distribution is depicted below.
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Figure 4.6: Probability histogram for number of hurricanes making landfall on the continental U.S.
in a year.

Notice that this theoretical distribution is centered on 1.68, the long-run average number of hurri-
canes. According to the distribution, it would be highly unlikely for the U.S. to experience more
than four hurricanes in a given year.

Here’s an example in which the Poisson distribution is used to model counts of events in space.

Example 4.11: Poisson Distribution

In a study of the centipede Lithobius muticus, the number of centipedes in a randomly selected 1 m2

quadrat was modeled by a Poisson distribution with mean 10.5 centipedes [12]. This distribution is
shown below.
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Figure 4.7: Probability histogram for the number of centipedes in a randomly selected quadrat.

Note that this theoretical distribution is centered on 10.5, its mean, and that most of the probability
lies between about 6 and 16.

The Poisson Probability Function

To compute how likely it would be to end up with, say, three hurricanes in a given year (in Example 4.10),
we use the Poisson probability function:

Poisson Probability Function: If X is a random variable that follows a Poisson distribution,
then

p(x) =
µxe−µ

x!
for x = 0, 1, 2, . . . , (4.7)

where µ is a positive constant (the distribution’s mean) and e = 2.7182 . . . is the exponential
constant.

This probability function characterizes the Poisson distribution. We refer to µ, the mean of the distri-
bution, as its parameter. It controls not only the distribution’s center, but its shape and spread too. We
write

X ∼ Poisson(µ)

to mean that X follows a Poisson distribution with mean µ. The figure below shows Poisson distributions
with three different values of µ.
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Figure 4.8: Poisson probability histograms with µ = 1 (top), µ = 2.5 (middle), and µ = 7 (bottom).

Poisson distributions are all (at least slightly) right skewed. The larger µ is, the farther to the right the
distribution’s center will lie and the more spread out and bell-shaped the distribution will be. There’s no
rigid upper limit as to how large a Poisson variable might be, but very large values have negligibly small
probabilities (see Figs. 4.8, 4.6, and 4.7). Example 4.12 shows how to compute probabilities using the
probability function.

Mean and Standard Deviation of a Poisson Distribution

As mentioned, the parameter µ is the mean of the Poisson distribution, and is the distribution’s center
(”balancing point”). As µ increases, the distribution shifts to the right, but it also becomes more spread
out (Fig. 4.8). In fact, µ is also the variance (squared standard deviation) of the distribution, that is, the
mean and variance are equal:

Mean and Standard Deviation of the Poisson Distribution: The mean µpois of a Poisson(µ)
distribution is

µpois = µ

and the standard deviation σpois is
σpois =

√
µ.

For counts of events in time periods of a given length, µ is the average count per time period. Longer
periods have larger µ values and shorter periods smaller ones. For one-unit time periods, µ is the average
number of events per unit of time, that is, it’s the rate at which the events occur. Similarly, for counts of
events over one-unit spatial areas, µ is the average number of events per unit area, that is, it’s the spatial
density of the events.

In practice, the exact value of µ will be unknown, so it will need to be estimated, for example using
historical data. This was the approach used in Example 4.10, where the mean number of hurricanes (µ)
was estimated to be 1.68 per year.

The next example shows how to compute probabilities using the probability function.

Example 4.12: Poisson Mean, Standard Deviation, and Probabilities

Fig. 4.6 is a Poisson distribution with mean µ = 1.68, used to model the number of hurricanes in
a year. Thus the standard deviation is

√
µ =

√
1.68 = 1.30 hurricanes, so a typical year will have

about 1.68 hurricanes, plus or minus 1.30.
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We can calculate the probability of any number of hurricanes using the probability function (4.7)
with µ = 1.68. For example, the probability that there will be three hurricanes is

p(3) =
µ3e−µ

3!

=
1.683e−1.68

3!
= 0.1473,

and the probability that there won’t be any is

p(0) =
1.680e−1.68

0!
= 0.1864.

Letting X denote the number hurricanes, the probability that there will be between two and four
hurricanes, inclusive, is

P (2 ≤ X ≤ 4) = p(2) + p(3) + p(4)

=
1.682e−1.68

2!
+

1.683e−1.68

3!
+

1.684e−1.68

4!
= 0.4722.

The Poisson Distribution When µ is Large

Poisson distributions are all (at least slightly) right skewed, but the larger µ is, the more bell-shaped they
will be (Fig. 4.8). They’ll also be shifted to the right and more spread out. If µ is large enough, the Poisson
distribution will be indistinguishable from a perfect bell-shaped normal distribution, described later in this
chapter.

4.4 Continuous Probability Distributions

4.4.1 Introduction

Continuous random variables, recall, can take any value over an entire continuum. Their probability
distributions are represented by smooth curves called probability density functions (or curves), denoted
f(x). A density curve can be thought of as a smooth histogram of a population from which an elementary
unit is randomly selected. The higher the curve is above the x-axis, the more prevalent the x values below
the curve are in the population and therefore the more likely they are to result from the random selection.

Example 4.13: Continuous Probability Distribution

Consider again exposing a radon detector to 100 pCi/L of radon (Example 1.3 in Chapter 1). Even
if the detector is properly calibrated, random measurement error makes it unlikely that the reading
X will equal 100 exactly. Readings that are subject to measurement error are usually modeled by a
bell-shaped density curve (the so-called normal distribution) like the one below.
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Probability Density for Radon Readings
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Figure 4.9: Probability density curve for radon detector readings, with measurement error, when
exposed to 100 pCi/L of radon.

The curve is centered on 100, and its height indicates that readings close to this value are more
likely than those farther from it. The symmetric shape indicates that X is equally likely to fall a
given distance above or below the true value 100.

Example 4.14: Continuous Probability Distribution

Problems 2.6 and 3.20 in Chapters 2 and 3 described a study of contaminants in eggs of herons and
egrets near Hong Kong.

The authors of the study indicate that the chlordane concentration X (ng/g) in a randomly selected
heron egg from the A Chau egretry can be modeled by the right-skewed distribution density curve
(the so-called lognormal distribution) shown below.

Probability Density Curve
 for Chlordane Concentrations in Heron Eggs
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Figure 4.10: Probability density curve for chlordane concentrations in randomly selected heron eggs.

The sharp peak near zero indicates that chlordane concentrations are likely to be close to zero, but
the long tail extending to the right indicates that they can occasionally be very large. In fact, for
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the eggs sampled in the study, most concentrations were close to zero, but a few were substantially
larger (up to 75 ng/g), which lends credibility to the density curve shown in the graph.

In general, if a probability distribution accurately represents a population and we were to select a
random sample from that population, we’d expect a histogram of the data to approximately resemble the
probability density curve.

For a continuous random variable X, the probability that X will fall in a given interval on the x-axis
is the area under the density curve over that interval.

Probabilities Involving Continuous Random Variables: For a continuous random variable X
and any numbers a and b (with a < b),

P (a < X < b) = Area under the density curve between a and b.

P (X < b) = Area under the density curve to the left of b.

P (X > b) = Area under the density curve to the right of b.

The figure below illustrates.

Right Skewed Density Curve

0 a b 40 60

0.30

Right Skewed Density Curve

0 b 40 60

0.75

Right Skewed Density Curve

0 b 40 60

0.25

Figure 4.11: Probability density curves representing a right skewed population. Thirty percent percent of
the population values are between a and b. Seventy-five percent are less than b. Twenty-five percent are
greater than b.

Example 4.15: Continuous Probability Distribution

The density function from Example 4.13 is shown again below, this time with a shaded area under
the curve corresponding to the probability that a radon reading will fall between 90 and 110 pCi/L.
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Probability Density for Radon Readings
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Figure 4.12: Probability density curve for radon detector readings, with P (90 ≤ X ≤ 110) shown as
the shaded area.

Because probabilities are areas under a density curve, all density curves satisfy the following conditions.

Properties of Probability Density Functions: Every continuous probability density curve f(x) has
the following properties:

1. The density curve lies on or above the x-axis, that is, f(x) ≥ 0 for all x.

2. The total area under the curve is one, which is the probability of the random variable falling some-
where in its range of possible values.

Note: When working with continuous random variables, it makes no difference whether we write prob-
abilities using ”≤” or ”<”. The same is true for ”≥” versus ”>”. Thus, for example, for any number
a,

P (X ≤ a) = P (X < a).

The reason is that if X is a continuous random variable and a is a single number, then P (X = a) = 0.
For example, the chance that the chlordane concentration in a randomly selected heron egg will exactly
equal, say, 45.7941 ng/g is zero. This makes intuitive sense because a single number (like 45.7941) is an
infinitesimally small subset of the range of values that the random variable could take.

4.4.2 The Mean and Standard Deviation of a Continuous Probability Distribution

Recall that we measure the center of a probability distribution by its mean µ. For a continuous variable,
µ is the point along the horizontal axis at which the density curve would balance if the area beneath it
was weight resting on the axis.

The mean µ has the same interpretations as it did for discrete distributions:

1. It’s the mean of the population when the probability distribution represents a population.

2. It’s a typical value of the variable.

Recall also that we measure the spread in a probability distribution (that is, variation in values of the
random variable) by its standard deviation σ, and we call the square of the standard deviation, σ2, the
variance of the distribution. A larger value of σ corresponds to a more spread-out distribution, and this
is true for continuous distributions just as it was for discrete ones.
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The standard deviation of a continuous distribution has the same interpretations as it did for discrete
ones:

1. It’s the standard deviation of the population when the probability distribution represents a population.

2. It’s the size of a typical deviation of the variable away from the mean µ.

4.4.3 Percentiles of a Continuous Probability Distribution

The median, or 50th percentile, of a continuous distribution, denoted by µ̃, is the value below which
50% of the population lies (and above which the other 50% lies). Thus the random variable X has a
fifty-fifty chance of falling above or below µ̃.

Whereas the mean µ would be the ”balancing point” if a distribution was weight resting on the hor-
izontal axis, the median µ̃ is the ”equal areas point” in the sense that half of the area under the density
curve lies to the left of µ̃ and the other half to the right, as seen in the left graph of Fig. 4.13. Notice in the
graph that the mean is to the right of the median, a consequence of the right-skewness of the distribution.
In general:

• For a symmetric distribution, the mean and median will be the same, i.e. µ = µ̃.

• For a right skewed distribution, the mean will be greater than the median, i.e. µ > µ̃.

• For a left skewed distribution, the mean will be less than the median, i.e. µ < µ̃.
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Figure 4.13: Probability distribution whose median is µ̃ = 12 and whose mean is µ = 20 (left); the same
distribution, whose 75th percentile is 24 (right).

The median of a distribution is sometimes called the distribution’s 50th percentile because 50% of the
distribution lies to its left. Other percentiles are defined analogously. For example, the 75th percentile is
the value below which 75% of the distribution lies (and above which the other 25% lies), and is marked on
the horizontal axis in the right plot of Fig. 4.13.

A familiar example of a percentile is the so-called ”100-year flood level” of a river. To see, note that
the river’s annual peak height is a random variable, X. The ”100-year flood level” is the height for which
there’s only a 1 in 100 chance, or 0.01 probability, of being exceeded in any given year. So in 99% of years,
the river’s height remains below the ”100-year flood level”. In other words, the ”100-year flood level” is
the 99th percentile of the distribution of X.
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4.5 Probability Distributions for Continuous Measurements

In the absence of accurate information about a population’s histogram shape, we choose from a set of
stock theoretical distribution the one that we think describes the population. Then probabilities involv-
ing randomly selected elementary units and values of percentiles can be obtained from the theoretical
distribution.

When the random variable is a numerical measurement, for example of a chemical contaminant con-
centration, it’s usually continuous. Two commonly used continuous theoretical distributions are:

1. The normal distribution

2. The lognormal distribution

The first of these is the familiar bell-shaped distribution, and the second is a right skewed distribution
commonly used in environmental science to model contaminant concentrations.

4.5.1 The Normal Distribution

Many populations follow the bell-shaped normal distribution. Fig. 4.9 in Example 4.13 shows an example
of a normal probability density curve. Several others are shown in Fig. 4.14.

The Normal Probability Density Curve

The mean µ and standard deviation σ determine, respectively, the center and spread of the normal
distribution along the horizontal axis. They’re referred to as the parameters of the distribution. To
illustrate, Fig. 4.14 shows several normal density curves with different values of µ and σ.
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Figure 4.14: Normal distributions with different values of µ, but constant σ (left), and with constant µ,
but different values of σ (right).

Note that µ is the balancing point, and a larger σ value corresponds to a more spread-out distribution.
We’ll use the notation

X ∼ N(µ, σ)

to mean that the random variable X follows a normal distribution with mean µ and standard deviation σ.

Mean and Standard Deviation of the Normal Distribution

As mentioned, the parameters µ and σ are the mean and standard deviation of the normal distribution.
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Mean and Standard Deviation of the Normal Distribution: The mean µnorm of a N(µ, σ)
distribution is

µnorm = µ

and the standard deviation σnorm is
σnorm = σ.

Also, because the distribution is symmetric, the mean and median are equal.

Median of the Normal Distribution: The median µ̃norm of a N(µ, σ) distribution is

µ̃norm = µ.

The following fact tells us, among other things, that a normally distributed variable rarely falls more
than about two standard deviations away from the mean, and it would be extremely rare for it to fall more
than three standard deviations away.

The 68-95-99.7 Rule: If X ∼ N(µ, σ), then

1. X will fall within one σ of µ with probability about 0.68.

2. X will fall within two σ’s of µ with probability about 0.95.

3. X will fall within three σ’s of µ with probability about 0.997.

This is depicted graphically below.
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Figure 4.15: A normal random variable will be within one, two, and three standard deviations of
the mean with probabilities (shaded areas) 0.68, 0.95, and 0.997, respectively.

Standardized Values and the Standard Normal Distribution

The normal distribution with mean µ = 0 and standard deviation σ = 1 is called the standard normal
distribution and denoted N(0, 1). We can convert any normal random variable to a standard normal
one using the following fact.

Fact 4.1 If X ∼ N(µ, σ), and we convert X to a variable Z via

Z =
X − µ
σ

, (4.8)
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then Z ∼ N(0, 1).

For insight, the left histogram in the figure below shows a random sample X1, X2, . . . , Xn from a normal
population with mean µ = 8 and standard deviation σ = 2. It’s centered on its mean, eight, and extends
about three standard deviations (six units) away from eight in each direction.

X
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Histogram of  X

X − µ

−5 0 5 10 15

Histogram of  X − µ

(X − µ) σ

−5 0 5 10 15

Histogram of (X − µ) σ

Figure 4.16: Histogram of a random sample from a N(8, 2) distribution (left); histogram after subtracting
eight from each observation (center); histogram after subtracting eight from each observation and dividing
by two (right).

Now suppose we use (4.8) to convert each Xi in the data set to a value Zi, with

Zi =
Xi − 8

2
,

but we do it in two steps. In the first step we subtract eight from each Xi. This would shift the entire
distribution to the left by eight units, centering it on zero, as in the middle histogram of Fig. 4.16. In the
second step we divide each Xi− 8 by two, which would contract both ends of the zero-centered histogram,
leading to the histogram shown on the right. That histogram is centered on zero and extends about three
units in each direction. According to Fact 4.1, these data, Z1, Z2, . . . , Zn, can be treated as a random
sample from a standard normal distribution.

When we convert a value X to a value Z using (4.8), we say that X has been standardized, or
converted to a z-score. A standardized value, or z-score, is measured in standard deviations above or
below the mean, also called standard units. A z-score will be positive or negative depending on whether
X is greater than or less than the mean µ. By the 68-95-99.7 Rule, it would be uncommon for the z-score
of a normal variable X to differ from zero by more than about two, and extremely rare for it to differ from
zero by more than three.

Finding Normal Probabilities

Probabilities involving a standard normal random variable can be obtained from a standard normal
table (or z table), which gives probabilities of the form P (Z ≤ z). For a general normal random variable
X, probabilities can be obtained by converting to standard units via (4.8) and then using the standard
normal table. More specifically, we have the following.

Finding Normal Distribution Probabilities: Suppose X ∼ N(µ, σ). Then for any values a and
b (with a < b),
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• P (X < b) = P (Z < zb).

• P (X > a) = P (Z > za) = 1 − P (Z < za).

• P (a < X < b) = P (za < Z < zb) = P (Z < zb)− P (Z < za).

where

za =
a− µ
σ

and zb =
b− µ
σ

.

The following example illustrates.

Example 4.16: Normal Distribution Probabilities

Suppose X ∼ N(8, 2). The probability that X will be less than 4.08 is the shaded tail area in the
left graph below.

X

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y

P(X < 4.08)

2 4.08 6 8 10 12 14

X

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y

P(X > 11.92)P(X > 11.92)

2 4 6 8 10 11.92 14

X
P

ro
b

a
b

il
it
y
 D

e
n

s
it
y

P(4.08 < X < 11.92)

2 4.08 6 8 10 11.92 14

Figure 4.17: Probability density curve for X, with probabilities as shaded areas under the curve.

This probability is

P (X < 4.08) = P (Z < −1.96)

= 0.0250,

where -1.96 is the z-score associated with 4.08, i.e.

z4.08 =
4.08− µ

σ
=

4.08− 8

2
= −1.96,

and the value 0.0250 was obtained from a standard normal table.

Similarly, the probability that X will be greater than 11.92 is the shaded area in the middle graph,
and is given by

P (X > 11.92) = P (Z > 1.96)

= 1− P (Z < 1.96)

= 1− 0.9750

= 0.0250,

where 1.96 is the z-score associated with 11.92, i.e.

z11.92 =
11.92− µ

σ
=

11.92− 8

2
= 1.96,
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and the value 0.9750 was obtained from a standard normal table.

Finally, the probability that X will fall between 4.08 and 11.92 is the shaded area in the right graph,
and is given by

P (4.08 < X < 11.92) = P (−1.96 < Z < 1.96)

= P (Z < 1.96)− P (Z < −1.96)

= 0.9750− 0.0250

= 0.9500.

Finding Normal Percentiles

Recall that a percentile of a distribution is a value below which a specified percentage of the distribution
lies. Some percentiles of the standard normal distribution are shown below.

Some N(0, 1) Percentiles

50th 0.00
95th 1.64
97.5th 1.96
99.5th 2.58

The latter three are depicted below.
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Figure 4.18: Standard normal distribution and its 95th, 97.5th, and 99.5th percentiles (1.64, 1.96, and
2.58, respectively).

To find other standard normal percentiles, scan the main body of the z table for the appropriate probability
(e.g. 0.90 for the 90%th percentile) and determine the z value associated with that probability from the
table margins.

We can use percentiles to characterize middle percentages of the standard normal distribution, as shown
in the following table and the subsequent figures.

N(0, 1) Percentiles (Cont’d)

Middle 90% Between ±1.64
Middle 95% Between ±1.96
Middle 99% Between ±2.58
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N(0, 1) Normal Distribution
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Figure 4.19: Standard normal distribution and percentiles demarcating its middle 90%, 95%, and 99%
(1.64, 1.96, and 2.58, respectively).

Percentiles of other normal distributions are obtained by ”unstandardizing” the corresponding per-
centile of the standard normal distribution using the following.

Percentiles of a Normal Distribution: A percentile x of a N(µ, σ) distribution is

x = µ+ zσ, (4.9)

where z is the corresponding percentile of the N(0, 1) distribution.

The equation for ”unstandardizing” z (4.9) was obtained by solving z = (x − µ)/σ for x. The intuition
behind the right side of the equation is that z is measured in standard units, or standard deviations above
the mean, so x needs to be that many standard deviations above the mean.

Example 4.17: Normal Distribution Percentiles

We’ll find the 5th and 95th percentiles of the N(8, 2) distribution. These are the values marked x
in the two graphs below, and together they characterize the middle 90% of the distribution.
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Figure 4.20: N(8, 2) distribution with the 95th percentile marked x on the horizontal axis (left), and
with the 5th percentile marked x on the horizontal axis (right).
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To find the 95th percentile of the distribution, we ”unstandardize” the 95th percentile of the standard
normal distribution, z = 1.64, using (4.9). This gives

x = 8 + (1.64)(2) = 11.28.

To find the 5th percentile, we ”unstandardize” the 5th percentile of the standard normal distribution,
which is z = −1.64. This gives

x = 8 + (−1.64)(2) = 4.72.

Because 5% of the distribution lies to the left of 4.72 and 5% to the right of 11.28, the middle 90%
lies between these two values.

Linear Transformations of Normal Random Variables

We now turn to some facts that are relevant to converting between measurement scales for the normally
distributed variables. Each fact is preceded by an example illustrating a situation to which the fact may
be applied.

Example 4.18: Linear Transformations of Random Variables

Morphological (shape-related) features of fish are sometimes used as biological indicators of
pollution in streams. Such features are easy to measure, so deformities or other morphological
changes over time can alert us to a pollution problem that might otherwise go undetected.

One bioindicator of pollution is fish fin lengths. The fin length X, in inches, of a randomly selected
fish is a random variable. There are 2.54 centimeters in an inch, so its fin length in centimeters
is 2.54X. If the population mean fin length in inches is µin = 0.25, and the standard deviation is
σin = 0.07, what could be said about the population mean and standard deviation if fin lengths were
measured in centimeters?

The conversion from inches to centimeters just described is an example of a linear transformation
of the random variable X, that is, a conversion of the form aX + b, where a and b are constants. The
following fact gives the mean and standard deviation of the distribution of the variable after a linear trans-
formation.

Fact 4.2 If X is any random variable whose distribution has mean µX and standard deviation σX ,
then for any constants a and b, the new random variable aX + b follows a distribution whose mean
is

µaX+b = aµX + b (4.10)

and whose standard deviation is
σaX+b = |a|σX . (4.11)

Example 4.19: Linear Transformations of Random Variables

Continuing with Example 4.18, randomly selecting a fish from a population whose fin lengths are
measured in inches, then converting it to centimeters, is equivalent to measuring the population of
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fin lengths in centimeters, then randomly selecting a fish.

The conversion of a randomly selected fish’s fin length X from inches to centimeters is the linear
transformation 2.54X. By the previous fact, if the population mean and standard deviation of fin
lengths measured in inches are µin = 0.25 and σin = 0.07, then the population mean and standard
deviation of fin lengths measured in centimeters are

µcm = 2.54µin = 2.54(0.25) = 0.635

and
σcm = |2.54|σin = 2.54(0.06) = 0.178.

Fact 4.2 shows how to determine the mean and standard deviation of the distribution of a linearly
transformed random variable, but doesn’t say anything about its shape.

Example 4.20: Linear Transformations of Random Variables

Continuing from the previous two examples, suppose the fin length X of a randomly selected fish, in
inches, follows a normal distribution. What can be said about distribution of the fin length 2.54X
in centimeters?

The next fact tells us that if the original random variable is normally distributed, any linear transformation
of that random variable will be normally distributed too.

Fact 4.3 Suppose X ∼ N(µX , σX). Then for any constants a and b,

aX + b ∼ N (µaX+b, σaX+b) , (4.12)

where µaX+b and µaX+b are given by (4.10) and (4.11). In other words, any linear transformation
aX + b of a normally distributed random variable X is also normally distributed, with mean and
standard deviation given in Fact 4.2.

Example 4.21: Linear Transformations of Random Variables

If the fin length X of a randomly selected fish, in inches, follows a N(0.25, 0.07) distribution, then
by the previous fact and the results from Example 4.19, the fin length 2.54X in centimeters follows
a N(0.635, 0.178) distribution.

4.5.2 The Lognormal Distribution

Environmental variables such as pollutant concentrations often exhibit right skewed distributions, with
most values being bunched together near zero but a small fraction of values being quite large. A use-
ful theoretical probability distribution for describing random variables that exhibit this behavior is the
lognormal distribution. Lognormal distributions are right skewed and lie entirely to the right of zero.

A few quotes indicate how widespread their use has become for modeling environmental data:

”Concentrations of various measured substances have distributions that are lognormal, or nearly
so. Examples include radionuclides in soil, pollutants in ambient air, indoor air quality, trace
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metals in streams, metals in biological tissue, and calcium in human remains” [13].

”The assumption of lognormality for environmental data is fairly universal” [16].

”The lognormal distribution has become a common choice to represent intrinsically positive
and often highly skewed environmental data in statistical analysis” [2].

”It is commonly the case that environmental data are lognormal or well approximated by a
lognormal distribution” [4].

The Lognormal Probability Density Function

The center, spread, and aspects of the shape of the lognormal distribution are controlled by the values of
the distribution’s two parameters, µ and σ, but these are not its mean and standard deviation. We’ll see
later how they’re interpreted. The graphs in Fig. 4.21 depict lognormal probability density curves for
different values of µ and σ.
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Figure 4.21: Lognormal distributions with different values of µ but constant σ (left), and with constant µ
but different values of σ (right).

As can be seen, lognormal distributions can have slightly different shapes, but they’re all right skewed. In
fact, the density curve describing chlordane concentrations in Fig. 4.10 of Example 4.14 is also a lognormal
distribution.

We write
X ∼ LN(µ, σ)

to mean that the random variable X follows a lognormal distribution with parameters µ and σ.
The following fact explains how the lognormal distribution gets its name, and provides an interpretation

of the parameters µ and σ. It says we can convert a lognormal random variable to a normal random variable
by taking it’s (natural) log. In words, if X is lognormal, then its log is normal.

Fact 4.4 If X ∼ LN(µ, σ), and we make the (natural) log transformation

Y = log(X),
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then Y is a new random variable and
Y ∼ N(µ, σ). (4.13)

Thus µ and σ are the mean and standard deviation of the normal distribution of the log-transformed
variable.

Example 4.22: Lognormal Distribution

To illustrate the effect of the making the log transformation on right skewed, lognormal data, the
following n = 50 observations were obtained from a LN(5, 1) distribution using a computer random
number generator.

202.7 347.2 300.5 812.3 38.6 83.9 157.5 35.3 180.6 152.4
90.4 95.5 234.7 618.9 149.2 169.6 427.6 89.1 204.3 90.9

681.5 55.4 625.5 45.7 68.9 828.4 21.3 561.4 315.8 97.4
95.6 69.5 650.0 77.1 367.1 49.2 478.9 182.3 273.8 33.2

313.9 107.9 86.4 287.3 194.3 203.0 164.9 1307.0 209.4 164.7

A histogram of these observations is shown below on the left along with the LN(5, 1) density curve
representing the population from which the sample was generated.

X

0 500 1000 1500

Histogram of  X

Y

3 4 5 6 7

Histogram of  Y = Log(X)

Figure 4.22: Histogram of a random sample from a LN(5, 1) distribution with the LN(5, 1) density
curve superimposed (left). Histogram of the sample after making the log transformation of each
value, with the N(5, 1) density curve superimposed (right).

After making the (natural) log transformation of each of the 50 observations, the data values (now
on the log scale) are:

5.31 5.85 5.71 6.70 3.65 4.43 5.06 3.57 5.20 5.03
4.50 4.56 5.46 6.43 5.01 5.13 6.06 4.49 5.32 4.51
6.52 4.01 6.44 3.82 4.23 6.72 3.06 6.33 5.76 4.58
4.56 4.24 6.48 4.35 5.91 3.90 6.17 5.21 5.61 3.50
5.75 4.68 4.46 5.66 5.27 5.31 5.11 7.18 5.34 5.10

A histogram of these log-transformed values is shown on the right in Fig. 4.22 along with the N(5, 1)
curve. The log-transformed data can be treated as a random sample from a N(5, 1) distribution.
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Mean and Standard Deviation of the Lognormal Distribution

Although the parameters µ and σ are not themselves the mean and standard deviation of the lognormal
distribution, they do determine the values of the mean and standard deviation, according to the following
relationships.

Mean and Standard Deviation of the Lognormal Distribution: The mean µlnorm of the
LN(µ, σ) distribution is

µlnorm = eµ+σ2

2

and the standard deviation σlnorm is

σlnorm =

√
(eσ2 − 1)e2µ+σ2

where e is the exponential constant 2.718282....

As for other probability distributions, the mean of the lognormal distribution is its ”balancing point”, and
the standard deviation measures its spread and represents a typical deviation of the random variable away
from its mean.

The median of the lognormal distribution is also determined by the parameter µ, and is given by the
following.

Median of the Lognormal Distribution: The median µ̃lnorm of the LN(µ, σ) distribution is

µ̃lnorm = eµ. (4.14)

where once again e is the exponential constant 2.718282....

Comment: The median eµ of the lognormal distribution resembles the geometric mean eȲ of Chapter
3, where Ȳ was the mean of the logs Y1, Y2, . . . , Yn of a right skewed sample X1, X2, . . . , Xn. We now
know that if the right skewed sample is from a LN(µ, σ) distribution, their logs can be treated as a sample
from a N(µ, σ) distribution. In this case, Ȳ is an estimator of µ, and so the geometric mean eȲ is an
estimator of the median eµ of the lognormal distribution. But the sample median (of the right skewed
sample X1, X2, . . . , Xn) is another estimator of the population median eµ. Hence the comment in Chapter
3 that for right skewed data, the geometric mean and sample median are approximately equal.

Finding Lognormal Probabilities

We can find probabilities involving a lognormal random variable X by first making the log transformation
and then using the normal distribution.

For example, suppose X ∼ LN(µ, σ) and we want to find, say, P (X < b) for some value b > 0. Letting
Y = log(X), we know that Y ∼ N(µ, σ), and we have

P (X < b) = P (log(X) < log(b))

= P (Y < log(b))

= P
(
Z < zlog(b)

)
where

zlog(b) =
log(b)− µ

σ
.

The probability on the last line can be obtained from a standard normal table. Probabilities of the form
P (X > b) and P (a < X < b) can be found in a similar manner.
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Finding Lognormal Percentiles

Percentiles of a lognormal distribution can be obtained by taking the antilog of the percentile of the
corresponding normal distribution.

To see, suppose x represents the 95th percentile of a LN(µ, σ) distribution, so 95% of this distribution
lies to the left of x. Then 95% of the N(µ, σ) distribution lies to the left of log(x). But this means, from
(4.9), that

log(x) = µ+ zσ,

where z = 1.64 is the 95th percentile of the standard normal distribution. Taking the antilog of both sides
(recall that the antilog of a number a is ea, and the antilog of log(x) is just x), we get the desired percentile
x. To summarize, we have the following.

Percentiles of a Lognormal Distribution: A percentile x of a LN(µ, σ) distribution is

x = eµ+zσ,

where z is the corresponding percentile of the N(0, 1) distribution.

4.6 Measurement Error and the Limit of Detection

4.6.1 A Model for Measurement Error

As mentioned in Example 4.13, the normal distribution is used to model measurements that are subject to
measurement error, such as a radon detector reading. The model assumes that a measurement X follows
a N(µ, σ) distribution, that is,

X ∼ N(µ, σ),

where µ is the true (unknown) concentration of the substance being measured and σ is determined by
the precision of the instrument used to make the measurement, with smaller σ values reflecting more
precise measurements. The model says that on average, measurements will equal the true value µ, but any
particular measurement is a random variable typically differing from µ by an amount σ.

The measurement error, denoted ε, is defined as the difference between the observed measurement
X and the true value µ:

ε = X − µ. (4.15)

The measurement error will be positive or negative depending on whether the measurement X is larger or
smaller than µ. Using (4.15), we can express X as the true value plus measurement error,

X = µ+ ε ,

where, for consistency with the assumption that X ∼ N(µ, σ), we assume that

ε ∼ N(0, σ),

which specifies that on average, the measurement error ε will equal zero. The next example puts all of this
into context.

Example 4.23: A Model for Measurement Error

In Example 4.13, the normal distribution was used to model a radon detector reading X when
exposed to 100 pCi/L of radon. The density curve in Fig. 4.9 shows a N(100, 8) distribution,



106CHAPTER 4. MODELING DATAAS RANDOMVARIABLES AND POPULATIONS AS PROBABILITY DISTRIBUTIONS

considered to be a reasonable model for X. Thus we write

X ∼ N(100, 8).

This can be expressed as
X = 100 + ε,

where
ε ∼ N(0, 8).

In practice, the value of σ (eight in this example) would either be provided by the manufacturer
of the radon detector or estimated from repeated exposures of the detector to a fixed quantity of
radon.

4.6.2 The Limit of Detection

The presence of measurement error when measuring a chemical concentration means it’s possible to obtain
a non-zero, positive measurement even if in fact the true concentration is zero (that is, even if the chemical
analyte isn’t present). For this reason, measurement values that are very close to zero, yet still positive,
are usually considered to be indistinguishable from zero.

A limit of detection (LOD) is a value below which measurement readings are called nondetects and
are considered to be indistinguishable from zero. Readings above the LOD are considered to be legitimate,
non-zero values. The LOD is based the notion that the number of false positives should be kept in check.
A false positive (or type I error) occurs when a blank specimen (one whose true concentration is zero)
erroneously produces a reading above the LOD. False positives are less likely when a high LOD value is
used. The figure below depicts false positives as values above the LOD and shows the normal distribution
as a model for measurement error.

Distribution of Chemical Measurement
Readings (with Measurement Error)
when the True Concentration is Zero

Measurement Reading

0 LOD

Nondetects False Positives

α = 0.01

Figure 4.23: Normal distribution as a model for measurements (with measurement error) made on a blank
specimen. The limit of detection (LOD) is chosen so that the probability of a false positive (denoted α) is
0.01.

The LOD is established so as to keep the probability of a false positive at some specified small value
α. Usually α is chosen to be 0.01, so that only 1% of all measurements made on a blank specimen will
result in false positives. Using a N(0, σ) distribution to model measurements made on a blank specimen,
where σ is determined by the precision of the measurement instrument, the LOD is the 99th percentile of
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this distribution. Thus, from (4.9),

LOD = 0 + zσ

= 0 + 2.33σ (4.16)

= 2.33σ.

(The value z = 2.33 is the 99th percentile of the standard normal distribution and was obtained from a
standard normal table.)

The LOD will be close to zero when the measurement instrument is precise, that is, when σ is small.
For example, if σ = 0.009 mg/L, then the LOD is 0.021 mg/L, and in this case readings below 0.021 mg/L
would be considered nondetects and would be flagged as such in a data set.

The general formula for the LOD is the following.

Limit of Detection When σ is Known: For a desired false positive probability α, the limit of
detection is

LOD = z1−ασ,

where z1−α is the 100(1−α)th percentile of the N(0, 1) distribution (usually α = 0.01 or α = 0.05)
and σ is the measurement standard deviation as determined by the instrument’s precision.

The presence of measurement error when measuring a chemical concentration can also produce a mea-
surement value that’s zero (or very close to it) even if in fact the true concentration is greater than zero
(that is, even if the chemical analyte is present). A false negative (or type II error) occurs when a
specimen whose true concentration is greater than zero erroneously produces a reading below the LOD. For
example, the figure below depicts false negatives as values below the LOD and shows that when the true
concentration is equal to the LOD, the probability that a measurement will be a false negative, denoted
β, is 50%.

Distribution of Chemical Measurement
Readings (with Measurement Error)

when the True Concentration is at the LOD

Measurement Reading

0 LOD

False Negatives

β = 0.5

Figure 4.24: Normal distribution as a model for measurements (with measurement error) made on a
specimen whose true concentration is at the limit of detection (LOD). The probability of a false negative
(denoted β) is 0.5.

There’s a balancing act that’s performed when a LOD value is determined. On the one hand, the LOD
should be large enough that false positives will be rare (e.g. they occur for only 1% measurements made on
blank specimens). But on the other hand, a large LOD can result in a high rate of false negatives, especially
when the true concentration being measured is close to (but still greater than) zero. It’s generally accepted
that using α = 0.01 or 0.05 gives a reasonable balance between false positive and false negative rates.
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Note: Often in practice, the value of the true standard deviation σ won’t be known and must be estimated
by measuring the concentration in a blank specimen several times and using the sample standard deviation
S as an estimate of σ. When S is used in place of σ, the value z = 2.33 in (4.16) should be replaced by
the 99th percentile of the so-called t distribution. This is discussed in Chapter 6.

Comment: There are several other detection criteria that may be used instead of the LOD for distin-
guishing measured values from zero (e.g. the ”LLD,” ”IDL,” and ”MDL”). These are reviewed in [5].

4.7 Problems

4.1 In each situation below, decide whether it would more appropriate to model X as a binomial or a
Poisson random variable.

a) The wind turbines at a wind power plant kill an average of 150 bats per year, on average. X is the
number of bats killed in a given year.

b) To control otter populations, a state wildlife management department places fifteen live otter traps
at various sites along streams throughout the region. After a day, each trap will be occupied or not.
X is the number of traps that are occupied among the fifteen that were set.

c) During a thunderstorm, X is the number of lightning strikes over specific 20 minute period.

d) In a randomly selected 1 m2 quadrat, X is the number of Armadillidiidae (rolly pollies or pill bugs)
present.

e) Eight water specimens collected randomly from a stream are tested for the presence or absence of E.
Coli. X is the number that test positive among the eight.

4.2 According to the Colorado Springs Gazette (Dec. 1, 2006), 8.6% of all cars tested for emissions in El
Paso, Larimer and Weld counties fail the test. Let X be the number of cars that fail the emissions test
out of the next 10 cars that are tested.

a) What kind of probability distribution does X follow? Give the name of the distribution and the
value(s) of its parameter(s).

b) Find P (X = 3), the probability that exactly three cars fail the test.

c) Find P (X = 1), the probability that exactly car one fails the test.

4.3 One way of assessing the toxicity of water is to rear aquatic organisms in the water and observe their
rates of survival over a specified period of time.

It’s been shown that the probability of a single individual Ceriodaphnia dubia (a freshwater microcrus-
tacean) surviving for seven days in water from streams near the the Oak Ridge National Laboratory in
Tennessee is 0.94 [15].

Suppose that 10 Ceriodaphnia dubia will be reared in the water and kept there for seven days. Let X
denote the number of Ceriodaphnia that survive among the 10.

a) What kind of probability distribution does X follow? Give the name of the distribution and the
value(s) of its parameter(s).

b) Find P (X = 8), the probability that exactly 8 Ceriodaphnia will survive.
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c) Find P (X = 10), the probability that all 10 Ceriodaphnia will survive.

4.4 The cuckoo (Cuculus canorus L.) is a bird species that lays its eggs in the nests of other species of
birds called hosts. The female cuckoo lays one egg per host nest. If the cuckoo egg isn’t rejected by the
host, it usually hatches before the host eggs do, and when it does the newly hatched cuckoo chick balances
the host eggs on its neck one by one and ejects them from the nest.

A host may reject a cuckoo egg if its appearance is different from the host’s own eggs. A study of various
host bird species found that a reed warbler (Acrocephalus scirpaceus Herman) will reject a cuckoo egg with
probability p = 0.62 and a meadow pipit (Anthus pratensis L.) will reject one with probability p = 0.48
[6].

a) If a cuckoo egg is laid in each of 12 reed warblers’ nests, find the probability that exactly 8 of them
will be rejected.

b) If a cuckoo egg is laid in each of 10 meadow pipits’ nests, find the probability that exactly 6 of them
will be rejected.

4.5 A botanist is investigating the germination (sprouting) properties of a new variety of hybrid wheat.
The probability that any given hybrid seed will germinate under standard growing conditions is 0.6.

The botanist randomly selects five of the seeds and plants them under standard growing conditions. Let
X denote the number of seeds that germinate among the five.

a) What kind of distribution does X follow? Give the name of the distribution and the value(s) of its
parameter(s).

b) Calculate P (X = 4), the probability that exactly four seeds germinate.

c) Now calculate the probabilities of 0, 1, 2, 3, 4, and 5 seeds germinating, and use these to draw a
probability histogram showing the distribution of X.

d) Calculate the mean and standard deviation of the probability distribution of X, and mark these on
the horizontal axis of the probability histogram.

4.6 A study suggests suggests that the number of Philonthus fuscipennis beetles X in a 1 m2 area fol-
lows a Poisson distribution with parameter µ = 7.75. Thus, on average, there are 7.75 beetles per 1 m2 area.

Find P (X = 10), the probability that a 1 m2 quadrat will have exactly 10 beetles.

4.7 On average, about 43.2 people are killed by lightning each year in the U.S. (see Problem 3.2 in
Chapter 3). The actual number of deaths X in any given year is a random variable that could be modeled
by a Poisson distribution with parameter µ = 43.2.

a) Find P (X = 41), the probability that there will be exactly 41 lightning deaths in a given year.

b) Find P (41 ≤ X ≤ 45), the probability that between 41 and 45 people will be killed by lightning in a
given year. Hint: Find the probabilities of 41, 42, 43, 44, and 45 people being killed and then add
those probabilities together.

c) Recall that the mean and variance of a Poisson(µ) distribution are both equal to the value of the
parameter µ. What is the value of the mean and standard deviation of the distribution of the number
of people killed X?
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4.8 The Furnas Volcano in the Azores Islands (950 miles off the coast of Portugal) erupts about 3.3 times
every 1,000 years, on average [11]. However, in any given 1,000 year period, the actual number of eruptions
X is a random variable.

One choice of a model for the probability distribution of X is the Poisson distribution with parameter
µ = 3.3. Use this distribution to find the following probabilities.

a) Find P (X = 2), the probability that there will be exactly 2 eruptions in the next 1,000 years.

b) Find P (X = 0), the probability that there will be no eruptions in the next 1,000 years.

c) Find P (X ≥ 1), the probability that there will be at least one eruption in the next 1,000 years.

4.9 Although large meteorite and asteroid impacts on Earth are rare on a human time scale, they’re not
unheard of:

On 30 June 1908, a huge fireball was observed over Europe and Russia, and a large detonation
recorded by seismometers. Eyewitnesses in a remote part of Siberia reported feeling a powerful
shock wave. Later expeditions found a huge area of forest, over 2,000 km2 in extent, flattened
by the force of the blast, now thought to be a small asteroid or comet fragment (only 20 - 30 m
across), exploding in the atmosphere. The object was small, but the energy released was huge,
equivalent to 10 megatons of TNT (similar to a large nuclear explosion) [3].

Assessing the risk of such impact events to human populations requires estimates of the rates at which they
occur. Obtaining such estimates is difficult, though, because the crater record on Earth has been nearly
erased by geologic processes (erosion, volcanism, and plate tectonism). Nonetheless estimates exist, either
from crater observations on the Moon and the other terrestrial planets or from data on meteor activity in
the Earth’s upper atmosphere.

The table below shows estimates of the impact rates for intermediate sized objects (103 − 1011 kg), as
reported in [3].

Size Mean Number of Im- Equivalent Years
of Object pacts Per 100 Years Per Impact

105 kg 1 100
107 kg 0.0185 5,400
109 kg 0.0025 40,000

An object whose mass is 2× 109 kg would have a diameter of about 80 m if composed of iron, and about
100 m if composed of stone. Objects as small as 105 kg can form craters, and are capable of widespread
devastation if their impact is near a populated area.

The number of impacts by objects of a given size in a 100 year period is a Poisson random variable with
parameter µ, where µ is the mean number of impacts of that size per 100 years.

a) Let X be the number of impacts by 105 kg objects in the next 100 years. Find P (X = 0), the
probability that no 105 kg objects will impact Earth in the next 100 years.

b) Find P (X ≥ 1), the probability that at least one 105 kg object will impact Earth in the next 100
years. Hint: The probability that at least one is one minus the probability of none.

c) Now let X be the number of impacts by 107 kg objects in the next 100 years. Find P (X = 1), the
probability that exactly one 107 kg object will impact Earth in the next 100 years.
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d) Now let X be the number of impacts by 109 kg objects in the next 100 years. Find P (X ≥ 1), the
probability that at least one 109 kg object will impact Earth in the next 100 years. Hint: See the
hint for b.

4.10 In each situation below, decide whether it would more appropriate to model X as a normal or a
lognormal random variable.

a) The pH in a stream varies from day to day above and below its mean pH level, which is 7.3. The
fraction of days on which the pH is above it’s mean is about the same as the fraction on which it’s
below average. X is the pH on a randomly selected day.

b) Concentrations of copper (Cu) in surface waters vary from one lake to the next. Most lakes have
concentrations near zero, but a small fraction of them that are close to industrialized areas have
concentrations that are substantially higher. X is the Cu concentration in a randomly selected lake.

4.11 According to the U.S. Environmental Protection Agency, chloroform, which in its gaseous form is
suspected to be a cancer-causing agent, is present in small quantities in all of the country’s 240,000 public
water sources. If the mean and standard deviation of the amounts of chloroform present in water sources
are 34 and 53 µg/L, respectively, explain why chloroform amounts do not follow a normal distribution.
Hint: Recall that a normal distribution extends three standard deviations above and below it’s mean.

4.12 A radon detector is exposed to 100 pCi/L of radon, but the actual detector reading is subject to
measurement error. Suppose that the reading X follows a N(100, 8) distribution.

a) Find P (X ≤ 80), the probability that the reading will be 80 or less.

b) Find P (X > 115), the probability that the reading will be greater than 115.

c) Find P (80 < X < 115), the probability that the reading will be between 80 and 115.

d) Find the 95th percentile of the distribution of X.

e) Find the 10th percentile of the distribution of X.

4.13 Biological measurements on fish are sometimes used as indicators of environmental pollution. A
study investigating the use of blood glucose levels in fish as an indicator of the insecticide dieldrin suggests
that glucose levels in the small freshwater fish johnny darter (Etheostoma nigrum Rafinesque) in White
Clay Creek, Chester County, Pennsylvania follow a normal distribution with mean 37.5 mg/100 ml and
standard deviation 15.3 mg/100 ml [14].

Let X denote the blood glucose level (mg/100 ml) in a randomly selected johnny darter.

a) Find P (X > 35), the probability that the glucose level will be greater than 35.

b) Find P (X < 20), the probability that the glucose level will be 20 or less.

c) Find P (20 < X < 35), the probability that the glucose level will be between 20 and 35.

d) Find the glucose below which 97.5% of johnny darter glucose levels fall (that is, the 97.5th percentile
of the distribution of glucose levels).

e) Find the two glucose levels between which the middle 95% of johnny darter glucose levels fall (that
is, the 2.5th and 97.5th percentiles of the distribution of glucose levels).

4.14 An instrument for measuring chromium in floodwater produces readings that follow a N(0, 0.008)
distribution when exposed to a blank water specimen, that is, one containing no chromium.
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a) Find the value of the limit of detection for which the probability of a false positive is α = 0.05.

b) Find the value of the limit of detection for which the probability of a false positive is α = 0.01.

4.15 The Cave of Crystals is a deep underground cave, discovered in the year 2000 in Naica, Mexico,
whose walls are lined with spectacular giant crystals of the mineral gypsum, some as long as 36 ft. The
crystals were deposited by hot mineral-rich water over the course of millions of years.

A study was carried out to estimate the temperature of the water during crystal growth [9]. Small crys-
tal fragments containing fluid inclusions trapped during crystal growth were collected from the cave and
heated to the homogenization temperature, the temperature at which gas bubbles within the fluid inclusion
disappear leaving only liquid. This homogenization temperature is taken to be the estimated temperature
of the fluid during crystal formation.

The cited study suggests that the homogenization temperature X in a randomly selected crystal specimen,
in degrees Celsius, is a random variable that follows a normal distribution with mean µ = 52.5 C◦ and
standard deviation σ = 4.6 C◦.

a) The homogenization temperature in degrees Fahrenheit, 9
5X + 32, is a new random variable. What

kind of distribution does it follow? Give the name of the distribution and the values of its mean and
standard deviation.

b) Find the probability that a homogenization temperature (in degrees Fahrenheit) will be greater than
140 F◦.

4.16 In a U.S. Environmental Protection Agency report, the lognormal distribution is suggested for
modeling nickel concentrations (ppb) in groundwater [1]. Suppose that in certain region, they follow a
LN(µ = 3.9, σ = 1.8) distribution.

a) Recall that µ and σ determine the mean and standard deviation of the lognormal distribution, but
they themselves aren’t the mean and standard deviation of that distribution. Compute the mean and
standard deviation of the distribution of nickel concentrations.

b) Compute the median of the distribution of nickel concentrations.

c) What characteristic of the shape of the lognormal distribution explains why its mean is greater than
its median?

d) Let X denote the nickel concentration in a randomly selected groundwater specimen. Compute
P (X > 25.0), the probability that the concentration will be greater than 25.0 ppb.

e) Compute P (10.0 ≤ X ≤ 25.0), the probability that the concentration will be between 10.0 and 25.0
ppb.

f) Compute the 25th and 75th percentiles of the lognormal distribution of nickel concentrations. Hint:

First find the 25th and 75th of the N(3.9, 1.8) distribution using µ + zσ as in (4.9), then convert

these to the 25th and 75th percentiles of the LN(3.9, 1.8) distribution by taking their antilogs eµ+zσ.
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