
Chapter 6

One-Sample Confidence Intervals

Chapter Objectives

• Distinguish the situation for which a t distribution should be used instead of a standard normal
distribution.
• Compute and interpret one-sample z and one-sample t confidence intervals for a mean.
• Determine the sample size needed to keep the margin of error no bigger than a desired value.
• Find and interpret the limit of detection when an instrument’s standard deviation isn’t known.
• Assess normality of data using graphs, and transform non-normal data to normality.
• Compute and interpret a tolerance limit and a confidence interval for a percentile.
• Compute and interpret a nonparametric confidence interval for a median.
• Compute and interpret a one-sample z confidence interval for a proportion.

Key Takeaways

• The t distribution is the distribution of the sample mean standardized using the sample standard
deviation instead of the population standard deviation.
• Confidence intervals are used to estimate unknown population means (or other population parame-

ters) with a chosen level of confidence.
• A confidence interval provides a set of plausible estimates for an unknown population mean (or other

parameter).
• The margin of error of a confidence interval indicates the precision of the estimate of the population

mean (or other parameter).
• Confidence intervals can be one-sided. A one-sided confidence interval gives an upper (or lower)

bound for an unknown population mean (or other parameter).
• One-sample z and t confidence intervals for a mean require either that the sample is from a nor-

mal population or the sample size is large. We can assess normality by graphing the data. A log
transformation can make right skewed data more normal.
• Tolerance limits are used as threshold values for identifying unusually high contaminant levels relative

to the distribution of background levels.
• A nonparametric confidence interval for a population median doesn’t require an assumption of nor-

mality of the data.

6.1 Introduction

In most practical problems, the values of population parameters such as µ and σ won’t be known and
instead are estimated from sample data.
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Estimates comes in two forms:

1. Point estimates (single values)

2. Interval estimates (ranges of values)

A point estimate is a single-valued statistic used to estimate a population parameter. Some examples of
point estimates are:

Sample Estimate Population Parameter

Mean X̄ µ
Std Dev S σ

Median X̃ µ̃

Proportion P̂ p

An interval estimate, or confidence interval, is an entire range of values, all of which are considered
to be reasonable estimates of (that is, plausible values for), an (unknown) population parameter in light
of the data.

The interval’s endpoints are computed from sample data in a way that allows us to state how confident
we are that the parameter value is in the interval. In fact, the first step in constructing the interval will be
to choose a so-called level of confidence, expressed as a percent, that represents how confident we want
to be that the interval will contain the true parameter value.

Example 6.1: Point Estimate and Confidence Interval for µ

Rocky Flats was a nuclear weapons production plant located 16 miles northwest of Denver, Colorado
that was in operation from 1952 until 1989 [5], [6]. Its hazardous waste spills, plutonium fires,
and leaking barrels of radioactive waste contaminated soil in the area. The plant’s operators later
pleaded guilty to criminal violations of environmental law.

Cleanup of the site took 10 years and cost $7 billion. It required establishing so-called soil action
levels, threshold values above which concentrations of radioactive plutonium in soil would trigger an
”action” such as removal, containment, or stabilization. Public concern about the action levels, which
were established by U.S. and Colorado government agencies, prompted an independent assessment
by a private contractor, which completed its work in 2000 [15]. The table below shows background
soil radiation concentrations (the plutonium isotope 239,240Pu, in Bq/kg) obtained by the contractor
from n = 10 uncontaminated sites along the Front Range of the Colorado Rocky Mountains.

Background Soil

Radiation Concentrations

Site 239,240Pu

Z01 1.20
Z02 2.10
Z03 1.46
Z04 2.10
Z05 2.10
Z06 1.14
Z07 3.29
Z08 3.22
Z09 2.07
Z10 2.70
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The point estimate of µ, the true (unknown) mean background concentration along the Front Range,
is the sample mean,

X̄ = 2.14.

A confidence interval for µ, computed using a 95% level of confidence, has endpoints

(1.60, 2.68).

This interval serves as an entire range of estimates for µ, and we can be 95% confident that µ is
contained in this interval somewhere. We’ll see how the interval was computed in Example 6.3.

Confidence intervals for a population mean are computed differently depending on whether value of the
population standard deviation σ is known or unknown, as we’ll see in Sections 6.2 and 6.5. Although the
focus of this chapter is on confidence intervals for a population mean, we’ll also look at confidence intervals
for a population median and for other population percentiles, tolerance limits (threshold values used for
identifying unusually high contaminant levels), and a confidence interval for a population proportion.

6.2 One-Sample Z Confidence Interval for a Population Mean

In this section, we derive the formula for a confidence interval for a population mean µ under the scenario
that the population standard deviation σ is known. Although this situation is rare, it will provide intuition
for the more common situation in which σ is unknown, which is covered in Section 6.5.

Suppose then that we have a random sample from the population, and that either the population is
normal or the sample size n is large. Then from Chapter 5,

X̄ ∼ N (µ, σX̄) where σX̄ =
σ√
n
.

In this case

Z =
X̄ − µ
σX̄

∼ N(0, 1). (6.1)

The 2.5th and 97.5th percentiles of the standard normal distribution are -1.96 and 1.96, so there’s a
95% chance that Z will fall between these two values, that is,

0.95 = P

(
−1.96 <

X̄ − µ
σX̄

< 1.96

)
.

Rearranging terms isolates µ between two numbers:

0.95 = P
(
−1.96σX̄ < X̄ − µ < 1.96σX̄

)
(Multiplied each term by σX̄)

= P
(
−X̄ − 1.96σX̄ < −µ < −X̄ + 1.96σX̄

)
(Subtracted X̄ from each term)

= P
(
X̄ − 1.96σX̄ < µ < X̄ + 1.96σX̄

)
. (Multiplied each term by -1,

which flips inequality directions)

(6.2)

The first line above says that 95% of the time, the sampling error of X̄ will be no larger than 1.96 standard
errors. The last line says we can be 95% confident that µ will be contained in the interval

X̄ ± 1.96σX̄ , (6.3)

which is known as a 95% one-sample z confidence interval for µ.
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Example 6.2: One-Sample z Confidence Interval

In a study of truck emissions and air quality in California [2], the engine idle time (minutes) per day
was recorded for n = 13 trucks, giving a sample mean

X̄ = 29.6.

Suppose that in the population of trucks, the standard deviation of their idle times is σ = 10.0
minutes. Then the standard error of X̄ is

σX̄ =
σ√
n

=
10.0√

13
= 2.8.

The 95% z confidence interval for the true (unknown) population mean idle time µ is

X̄ ± 1.96σX̄ = 29.6 ± 1.96(2.8)

= 29.6 ± 5.5

= (24.1, 35.1).

We can be 95% confident that µ is in this range (somewhere).

The most commonly used level of confidence is 95%, but sometimes other levels are used. For these
other confidence levels, a different value than 1.96 is used in (6.3). To make our confidence interval notation
generic, we’ll write it in terms of the value α for which

Level of Confidence = 100(1− α)%.

For example, α = 0.05 for a 95% level of confidence. This leads to the following general confidence interval
procedure.

One-Sample Z Confidence Interval: Suppose X1, X2, . . . , Xn are a random sample from a
population whose mean is µ and whose standard deviation is σ, where σ is known. A 100(1− α)%
one-sample z confidence interval for µ is

X̄ ± zα/2 σX̄ where σX̄ =
σ√
n
. (6.4)

and the zα/2 value is discussed below.

The confidence interval is valid if either the population is normal or the sample size n is large.

The value zα/2 is called the z critical value associated with the 100(1−α)% level of confidence. It’s the
100(1−α/2)th percentile of the standard normal distribution. For example, for a 95% level of confidence,
α = 0.05 and z0.025 = 1.96 is the 97.5th percentile. As depicted in Fig. 6.1, the middle 100(1− α)% of the
distribution lies between −zα/2 and zα/2.

For the three most commonly used confidence levels, 90%, 95%, and 99%, the z critical values are

z0.05 = 1.64 (for a 90% confidence level)
z0.025 = 1.96 (for a 95% confidence level)
z0.005 = 2.58 (for a 99% confidence level)

The choice of a level of confidence affects the confidence interval width via the z critical value. More
precisely, a higher level of confidence will result in a wider interval. The intuition is that if we want to be
more confident that our interval contains µ, we’ll need a wider interval.
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Figure 6.1: Graphical depiction of the meaning of the z critical value zα/2.

The ”plus or minus” part of a confidence interval is called the margin of error.

Margin of Error: For the one-sample z confidence interval for µ, the margin of error is

Margin of Error = zα/2 σX̄ = zα/2
σ√
n
. (6.5)

The margin of error measures the degree of precision in the estimate X̄ of µ, and is interpreted as the
largest amount by which our estimate might be off its mark. A smaller margin of error means a more
precise estimate. In Example 6.2, the margin of error in the estimate of the truck population mean idle
time was 5.5 minutes.

The margin of error will be small if either:

• The population standard deviation σ is small, or

• The sample size n is large.

Although the value of σ is beyond our control, we can choose the sample size n. Using a larger sample size
results in a more precise estimate of µ.

6.3 Properties and Interpretation of Confidence Intervals

Because the endpoints of a confidence interval depend on the sample data (via the sample mean X̄), they’ll
vary from one random sample to the next. This has implications for interpreting a confidence interval. To
illustrate, the figure below shows twenty 90% confidence intervals (based on computer-generated random
samples), with each X̄ value shown as a green triangle in the center its interval. At the top is the sampling
distribution of X̄, which is centered on the population mean µ. In the long-run, 90% of such intervals will
cover µ.
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µ

90% Z Confidence Intervals for µ

Sampling
 Distribution
 of X

Figure 6.2: 90% one-sample z confidence intervals based on random samples from a population whose
mean is µ (vertical blue line). At the top is the sampling distribution of X̄. For each sample, the green
triangle represents the observed value of X̄.

The intervals shown in the figure are of the form

X̄ ± 1.64σX̄ ,

so the ones that don’t contain µ correspond to samples whose X̄ value lies more than 1.64 standard errors
away from µ.

Properties and Interpretation of Confidence Intervals: We can summarize the important properties
and correct interpretation of confidence intervals as follows.

1. A confidence interval for an unknown population parameter (e.g. its mean µ) gives a set of plausible
values for the parameter.

2. The level of confidence is the long-run percentage of intervals that would contain the parameter value
if random samples of the same size were repeatedly drawn from the population. It therefore measures
how confident we can be that any particular interval contains the parameter value.

3. A higher level of confidence will result in a wider confidence interval.

4. A larger sample size will result in a smaller margin of error and therefore a narrower confidence
interval.

6.4 The t Distribution

In practice, we usually don’t know the value of the population standard deviation σ, so we can’t use the
interval defined by (6.4). Instead, we replace σ by its estimate S, which gives the estimated standard
error of X̄, denoted SX̄ and defined as

SX̄ =
S
√
n
.
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But this uncertainty in the value of σ carries over to uncertainty about how far we think X̄ might fall away
from µ. We incorporate this extra uncertainty into the confidence interval’s width by using a critical value
from a new distribution, the t distribution, in place of the z critical value. The t distribution arises when
we standardize X̄ using the estimate S in place of the true value σ.

Fact 6.1 Suppose X1, X2, . . . , Xn are a random sample from a population whose mean is µ. If the
population is normal, the random variable

T =
X̄ − µ
SX̄

, where SX̄ =
S√
n
, (6.6)

follows a distribution known as the t distribution with n− 1 degrees of freedom.

Furthermore, even if the population is non-normal, the variable T still follows the t distribution
approximately as long the sample size n is large.

We write
X̄ − µ
SX̄

∼ t(n− 1)

to mean that the random variable (X̄ − µ)/SX̄ follows a t distribution with n− 1 degrees of freedom.
Because the denominator SX̄ is an estimate of the true standard error σX̄ , the value of T indicates

approximately how many standard errors X̄ is away from µ. The degrees of freedom is a parameter of the
t distribution that controls its spread. Some t density curves with various degrees of freedom are shown in
Fig. 6.3 along with the standard normal curve (labeled as a t curve with ∞ degrees of freedom for reasons
that will be given later).
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Figure 6.3: t distributions with different degrees of freedom. The t distribution with∞ degrees of freedom
is the standard normal curve.

Note: Usually n ≥ 30 is large enough for the variable T to follow a t distribution (approximately) when
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the sample is from a non-normal population. However, if the population is very skewed, an even larger
sample size may be needed. On the other hand, if the population distribution is fairly symmetric, and
therefore closer to a normal distribution, a sample size of n = 10 or 15 may suffice.

Properties of the t distribution: t distributions have the following properties.

1. The t density curve is centered on zero, and resembles the standard normal curve.

2. The tails of the t curve are more spread out than those of the standard normal curve, reflecting the
sample-to-sample variability in the value of S in (6.6) not present in the value of σ in (6.1).

3. As the degrees of freedom parameter increases, the t curve resembles the standard normal curve
more and more. If the degrees of freedom are greater than about 40, the t curve is practically
indistinguishable from the standard normal curve. A t distribution with ∞ degrees of freedom is
identical to the standard normal distribution.

Comment: The reason why the single parameter of the t distribution is called its ”degrees of freedom”
and is n − 1 has to do with the fact that because the deviations Xi − X̄ used to calculate S (for (6.6))
always sum to zero (Chapter 3), only n− 1 of them are ”free to vary” – the remaining one is determined
by the values of the other n− 1.

6.5 One-Sample t Confidence Interval for a Population Mean

When we don’t know the population standard deviation σ, we can’t use the z confidence interval of Section
6.2. Instead, we replace σ in the confidence interval formula (6.4) by its estimate S. But then, as we’ll see,
we also need to replace the z critical value by a t critical value.

One-Sample t Confidence Interval: Suppose X1, X2, . . . , Xn are a random sample from a pop-
ulation whose mean is µ. A 100(1− α)% one-sample t confidence interval for µ is

X̄ ± tα/2,n−1 SX̄ , where SX̄ =
S√
n

(6.7)

and the t critical value tα/2,n−1 is discussed below.

The confidence interval is valid if either the population is normal or the sample size n is large.

Like all confidence intervals, this one has the properties and interpretations given in Section 6.3.
This interval’s formula is derived (at the end of this section) like the z interval’s was, but using the t

distribution instead of the standard normal. The value tα/2,n−1 is the t critical value associated with
the 100(1 − α)% level of confidence. It’s the 100(1 − α/2)th percentile of the t(n − 1) distribution. Thus
for a 95% level of confidence, α = 0.05 and t0.025,n−1 is the 97.5th percentile, but its value will depend on
the degrees of freedom (n− 1). As depicted in Fig. 6.4, the middle 100(1− α)% of the t distribution lies
between −tα/2,n−1 and tα/2,n−1. The t critical values can be obtained from a t distribution table or using
statistical software.

The margin of error is the ”plus or minus” part of the confidence interval.

Margin of Error: For the one-sample t confidence interval for µ, the margin of error is

Margin of Error = tα/2,n−1 SX̄ = tα/2,n−1

S√
n
. (6.8)
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Figure 6.4: Graphical depiction of the meaning of the t critical value tα/2,n−1.

As for the z interval, a smaller margin of error in the t interval indicates that X̄ is a more precise estimate
of µ. It will be small if either the population standard deviation σ is small (in which case S should be
small too) or n is large.

Example 6.3: One-Sample t Confidence Interval

Below is a histogram of the background soil radiation data given in Example 6.1.

Histogram of Background
Plutonium Concentrations

Plutonium Concentration

Fr
eq

ue
nc

y

1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4

Figure 6.5: Histogram of soil radiation levels along the Front Range of the Rocky Mountains in
Colorado.

Based on the shape of the histogram, there aren’t strong indications that the sample came from
a non-normal population, so it’s appropriate use the data to construct a one-sample t confidence
interval for estimating the population mean background radiation level µ.

The sample mean and standard deviation are

X̄ = 2.14 and S = 0.76,
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so the (estimated) standard error is

SX̄ =
S√
n

=
0.76√

10
= 0.24.

A 95% t confidence interval for µ is

X̄ ± tα/2,n−1 SX̄ = 2.14 ± 2.262 (0.24)

= 2.14 ± 0.54

= (1.60, 2.68),

where the t critical value, tα/2,n−1 = t0.025,9 = 2.262, was obtained from a t distribution table.

We can be 95% confident that µ is in this range somewhere. It’s plausible, for example, that µ is
as high as 2.50 Bq/kg, but not as high as 3.00 Bq/kg.

The margin of error in the estimate 2.14 of µ is 0.54 Bq/kg, and we’re 95% confident that the
estimate isn’t off its mark by more than this amount.

The next example reminds us that the level of confidence used to construct a confidence interval affects
the interval’s width.

Example 6.4: One-Sample t Confidence Interval

Continuing from the last example, if instead we used a 99% level of confidence, the t critical value
would be t0.005,9 = 3.250, and the confidence interval would become

X̄ ± tα/2,n−1 SX̄ = 2.14 ± 3.250 (0.24)

= 2.14 ± 0.78

= (1.36, 2.92).

The higher level of confidence resulted in a larger margin of error (0.78) and a wider interval. Thus
the price we pay to gain confidence that our interval contains µ a is widening of the interval.

Note: Usually n ≥ 30 is large enough to justify the use of the one-sample t confidence interval procedure
when the sample is from a non-normal population. However, if the population is very skewed, an even
larger sample size may be needed. On the other hand, if the population distribution is fairly symmetric,
and therefore closer to a normal distribution, a sample size of n = 10 or 15 may suffice.

To see how the formula (6.7) for the one-sample t confidence interval was derived, from Fact 6.1, we
have

1− α = P

(
−tα/2,n−1 <

X̄ − µ
SX̄

< tα/2,n−1

)
.

After rearranging terms (as was done for the z interval in (6.2)), we get

1− α = P
(
X̄ − tα/2,n−1 SX̄ < µ < X̄ + tα/2,n−1 SX̄

)
,

which leads to the t interval formula (6.7).
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6.6 One-Sided t Confidence Intervals for a Population Mean

Occasionally we’ll want to be able to declare, with, say, 95% confidence, that a population mean is less
than some value (rather than between two values). For example, because low levels of radiation in the
environment are desirable, we may want to affirm, with 95% confidence, that the true mean level lies below
some value. Other times, we may want a value above which µ lies with 95% confidence.

These are called one-sided t confidence intervals for µ.

One-Sided t Confidence Intervals for µ: Suppose X1, X2, . . . , Xn are a random sample from a
population whose mean is µ.

A 100(1− α)% one-sided t confidence interval for µ with an upper bound is(
−∞, X̄ + tα,n−1 SX̄

)
.

A 100(1− α)% one-sided t confidence interval for µ with a lower bound is(
X̄ − tα,n−1 SX̄ , ∞

)
.

The confidence intervals are valid if either the population is normal or the sample size n is large.

For a given study, only one of these intervals would be used, and we could be 100(1− α)% confident that
it would contain the (unknown) population mean µ.

Example 6.5: One-Sided t Confidence Interval

Consider again the n = 10 background soil radiation levels from along the Front Range (Example
6.1). The sample mean and standard deviation (from Example 6.3) are

X̄ = 2.14 and S = 0.76,

and the (estimated) standard error is

SX̄ =
S√
n

=
0.76√

10
= 0.24.

The upper bound for a 95% one-sided t confidence interval for the true (unknown) mean concentra-
tion µ is

X̄ + tα,n−1 SX̄ = 2.14 + 1.833 (0.24)

= 2.581,

so the confidence interval is
(−∞, 2.581).

The critical value, tα,n−1 = t0.05,9 = 1.833, was obtained from a t distribution table.

We can be 95% confident that µ is in the range from −∞ to 2.581 Bq/kg.

To see how the one-sided interval formulas were derived, consider first the upper bound. Letting tα,n−1

be the 100(1− α)th percentile of the t(n− 1) distribution, we have

1− α = P

(
X̄ − µ
SX̄

> −tα,n−1

)
,
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which, after rearranging terms, is equivalent to

1− α = P
(
µ < X̄ + tα,n−1 SX̄

)
.

It follows that we can be 100(1− α)% confident that µ will be less than the upper bound

X̄ + tα,n−1 SX̄ .

Note that the t critical value here uses α, not the α/2 used for the upper endpoint of a two-sided interval
(Section 6.5).

A similar line of reasoning is used to derive the formula for the lower bound.

6.7 Sample Size Determination

Planning a study will often involve deciding how large the sample size should be. We know from Section
6.3 that larger samples tend to produce more precise estimates of population parameters such as µ, as
measured by the margin of error of the estimate. But larger sample sizes usually require more time, and
perhaps money, to collect. In this section, we’ll see how to determine the smallest sample size that’s still
large enough to ensure an acceptably small margin of error.

Suppose we want the margin of error in an estimate of µ to be no bigger than some value, call it B.
In other words, we want n to be large enough so that

Margin of Error ≤ B.

If the population standard deviation σ is known, then from (6.5), for a given level of confidence 100(1−α)%,
we require n to be large enough so that

zα/2 σX̄ ≤ B,

which is to say, large enough so that

zα/2
σ√
n
≤ B.

Solving for n gives the required sample size.

Sample Size Determination: If we want the margin of error in a 100(1−α)% confidence interval
for µ to be no bigger than B, the sample size should satisfy

n ≥ (zα/2 σ)2

B2
, (6.9)

which should be rounded up to the nearest integer.

Using this sample size, we can be sure, with a certain level of confidence, that our estimate X̄ will be
within B of the true value µ. The right side of (6.9) depends on the population standard deviation σ,
which usually won’t be known. In practice, we use in its place a reasonable guess its value, for example
based on a pilot study (small-scale preliminary study) or on the results of preexisting studies. Even when
we replace σ by a guess, we still use the z critical value, not the t critical value, because using the t critical
value would require knowing the degrees of freedom, n− 1, which depends on the still-undetermined n.

Example 6.6: Sample Size Determination

A wildlife management study is being planned for the purpose of estimating the true (unknown)
mean weight µ of salmon caught by an Alaskan fishing company. It’s desired that the estimate be
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within 0.2 lb of the true value. More specifically, the researchers want the margin of error in a 99%
confidence interval for µ to be no bigger than 0.2 lb.

In a pilot study, a random sample of 10 freshly caught salmon is weighed, giving a sample standard
deviation of 1.15 lb. Using this as our guess for σ in (6.9), and the z critical value z0.005 = 2.58, the
sample size should satisfy

n ≥ (2.58 · 1.15)2

0.22

= 220.08

salmon. Thus, rounding up, at least n = 221 fish should be weighed.

6.8 The Limit of Detection when σ is Unknown

In Section 4.6 of Chapter 4, the limit of detection (LOD) was defined so as to make the probability of a
false positive (detection on a blank specimen) small. More specifically, under the N(0, σ) measurement
error model, the LOD was defined, for a desired false positive probability α (such as α = 0.01 or α = 0.05),
to be

LOD = zα σ.

But in practice, the true measurement error standard deviation σ is often unknown. When σ isn’t
known, it’s common practice to estimate it by taking n repeated measurements on a blank specimen and
using the sample standard deviation of these, S. Then the LOD is the following.

Limit of Detection When σ is Unknown: If we make n repeated measurements X1, X2, . . . , Xn

on a blank specimen, then for a desired false positive probability α, the limit of detection is

LOD = tα,n−1 S, (6.10)

where S is the sample standard deviation of the n repeated measurements.

Typically, n = 7 measurements are used to obtain the estimate S of σ. In this case, for α = 0.01,
t0.05,6 = 3.14 (from a t distribution table), and for α = 0.05, t0.05,6 = 1.94.

To see why (6.10) gives the desired false positive probability, we’ll need the following fact.

Fact 6.2 Suppose X ∼ N(µ, σ), and S is the sample standard deviation of a sample X1, X2, . . . , Xn

from that same normal distribution. If X is independent of X1, X2, . . . , Xn, then

X − µ
S

∼ t(n− 1).

Thus if X is an individual measurement made on a blank specimen, for which the true concentration of
the measured substance is µ = 0, then by the above fact

α = P

(
X − 0

S
> tα,n−1

)
= P (X > tα,n−1S) .

In other words, when the LOD is as in (6.10), the probability of a false positive is α, as desired.
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6.9 Checking Normality of Data

6.9.1 Introduction

Because the one-sample t confidence interval procedure and so many other statistical procedures rest on
an assumption that the data are a random sample from a normal distribution, it is useful to have a few
ways to decide whether this assumption is met. Two commonly used tools are:

1. Histograms

2. Normal probability plots

6.9.2 Checking Normality Using a Histogram

The most obvious tool for checking normality is a histogram. If the histogram looks reasonably symmetric
and bell-shaped, then the normality assumption is tenable. If it looks skewed or shows other obvious
departures from the normal bell-shape, then the normality assumption isn’t justified.

But assessing normality from a histogram can be difficult, especially when the sample size is small,
because the data are grouped into class intervals (or bins), which dilutes some of the information the data
contain. Instead, therefore, it’s often preferable to assess normality using a normal probability plot, which
retains all the information the data have to offer.

6.9.3 Checking Normality Using a Normal Probability Plot

A normal probability plot can be thought of as a plot of the observed sample values (y-axis) versus the
values we’d expect to get if the sample came from a normal distribution (x-axis). If the points in the plot
lie near a straight line, it tells us that the observed data values are close to what we’d expect them to be
if in fact the sample came from a normal population. The plots will be defined in more detail later. For
now, we’ll just look at a few to see how they’re used.

Using Normal Probability Plots to Assess Normality: If a set of data is a random sample from
some normal distribution, then the points in a normal probability plot should fall close to a straight line.
Departures from a straight line pattern are indications that the sample came from a non-normal distribu-
tion.

To illustrate, Figs. 6.6 - 6.10 show histograms and normal probability plots for five different data sets,
one of which is normal, one right skewed, one left skewed, one ”heavy tailed”, and the last one ”light
tailed”.
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Figure 6.6: Histogram of symmetric, approximately normal data (left). Normal probability plot of the
same data (right).
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Figure 6.7: Histogram of non-normal, right skewed data (left). Normal probability plot of the same data
(right).
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Figure 6.8: Histogram of non-normal, left skewed data (left). Normal probability plot of the same data
(right).
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Figure 6.9: Histogram of non-normal, ”heavy tailed” data (left). Normal probability plot of the same data
(right).
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Figure 6.10: Histogram of non-normal, ”light tailed” data (left). Normal probability plot of the same data
(right).

Notice that for the normally distributed data in Fig. 6.6, the points in the normal probability plot hug the
line. For the right and left skewed data in Figs. 6.7 and 6.8, the points follow curved patterns that face
in opposite directions. And for the ”heavy” and ”light” tailed data sets of Figs. 6.9 and 6.10, the points
follow backward and forward ”S” shapes. In general, patterns like the ones above in normal probability
plots can be used to deduce distribution shapes in the manner just described.

6.9.4 Details About the Construction of Normal Probability Plots

Recall that the 100pth percentile of a probability distribution is the value below which 100p% of the
distribution lies, where p is a number between zero and one. We can define a sample percentile, in a
similar manner, as a value below which below which 100p% of the sample observations lie. For example,
the sample median X̃ is the 50th sample percentile and the 3rd quartile Q3 is the 75th sample percentile.

If we sort a set of data from smallest to largest, each value in the ordered list can be considered to be
a sample percentile. The next example illustrates.

Example 6.7: Normal Probability Plots

Consider the following n = 10 observations, sorted from smallest to largest.

7 9 13 18 19 22 23 25 33 35

The fraction of observations that lies below the 3rd smallest one, 13, is 2/10. However, this fraction
changes to 2.5/10, or 25%, if we consider 13 to be ”halfway below” itself and ”halfway above” itself.
For this reason we define 13 to be the 25th sample percentile.

Now consider a sample X1, X2, . . . , Xn of size n, sorted from smallest to largest. Thus X1 is the
smallest observation, X2 the second smallest, and so on. If we consider the ith smallest observation, Xi, to
be ”halfway below” itself and ”halfway above” itself, then the fraction of observations that lie below that
one is (i− 0.5)/n. It follows that the ith smallest data value Xi is the 100(i− 0.5)/nth sample percentile.
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Example 6.8: Normal Probability Plots

Consider again the sorted data in Example 6.7. Since n = 10,

7 is the 5th sample percentile
9 is the 15th sample percentile

13 is the 25th sample percentile
...

35 is the 95th sample percentile

In a random sample from a population, we’d expect each sample percentile to be roughly equal to its
corresponding population percentile. For example, if a random sample of size n = 10 was drawn from a
N(0, 1) distribution, after sorting the data, we’d expect the values in the sorted list to be roughly equal to
the 5th, 15th, ..., 95th percentiles of the N(0, 1) distribution. These percentiles (obtained from a standard
normal table) are shown below and on the horizontal axis in Fig. 6.11.

−1.64 is the 5th N(0, 1) percentile
−1.04 is the 15th N(0, 1) percentile
−0.67 is the 25th N(0, 1) percentile

...
1.64 is the 95th N(0, 1) percentile
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Figure 6.11: Standard normal distribution and its 5th, 15th, ..., 95th percentiles.

A normal probability plot is a plot of the sorted observations in a data set, or sample percentiles,
on the y-axis versus their corresponding percentiles of the N(0, 1) distribution on the x-axis. If the sample
came from a N(0, 1) distribution, we’d expect the points in the plot to fall close to the line y = x (that
is, the line through the origin with a slope of one). It can be shown that if the sample came from some
N(µ, σ) distribution (but not necessarily the standard normal one), the points in the plot should come
close to some straight line (specifically, the line y = µ+ σx).

In practice, normal probability plots are easily made using statistical software.
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Example 6.9: Normal Probability Plots

For the data given in Example 6.7, the normal probability plot is a plot of the x, y pairs:

N(0, 1) Sorted Observation
Percentile Percentile x (Sample Percentile) y

5th -1.64 7
15th -1.04 9
25th -0.67 13
35th -0.39 18
45th -0.13 19
55th 0.13 22
65th 0.39 23
75th 0.67 25
85th 1.04 33
95th 1.64 35

The plot is shown below (having been obtained using statistical software).
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Figure 6.12: Normal probability plot of the data from Example 6.7.

Because the points in the plot hug a straight line fairly closely, it’s reasonable to consider the data
to be a sample from a normal distribution.

For more intuition about nonlinear patterns in normal probability plots, and in particular curved ones
like the one in Fig. 6.7 that indicate right skewed distributions, that plot is reproduced below, this time
with the x and y coordinates of the points projected into histograms on their respective axis margins.
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Figure 6.13: Normal probability plot of a right skewed data set. The x and y coordinates of the points in
the plot are shown as histograms in the plot margins.

Notice that the histogram of the observed sample values in the left margin is right skewed and the histogram
of expected values under normality at the bottom is bell-shaped.

Comment: Some software uses a slightly different formula than (i − 0.5)/n to determine which N(0, 1)
percentiles to use in the normal probability plot. This doesn’t dramatically affect the overall appearance
of the plot, though, and its interpretation remains the same.

6.10 Transforming Data to Normality

6.10.1 Introduction

Many of the statistical inference procedures that have been developed for use with normally distributed
data, including the t confidence interval procedure, are fairly robust to mild departures from the normality
assumption, meaning that they’re still approximately valid, even when the sample size n is small, as long
as the population from which the sample was drawn has a fairly symmetric, perhaps even mildly skewed
distribution. However, when the population is moderately or severely skewed and n isn’t large, alternative
procedures should be used (such as so-called nonparametric ones that don’t require normality) or the
data should be transformed first, for example by taking their logs, so that the transformed data are more
normally distributed.

In this section, we’ll focus on transforming data to normality. Nonparametric procedures will be covered
in Section 6.11 and throughout later chapters of this book.

6.10.2 The Log Transformation to Normality

Environmental data sets commonly exhibit right skewed distributions and can often be modeled as a
random sample from a lognormal distribution. We saw in Chapter 4.1 that if a sample is drawn from a
lognormal distribution, their (natural) logs can be treated as a sample from a normal distribution. Thus
we can often apply statistical procedures designed for normally distributed data to the logs of right skewed
data, as in the next example.
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Example 6.10: Log Transformation to Normality

Polychlorinated biphenyls (PCBs) are a collection of compounds no longer produced in the U.S. but
still found in the environment. They cause harmful health effects if consumed, and because they
can accumulate in fish, consumption limits are recommended in areas where fish contain high PCB
levels. In a U.S. Environmental Protection Agency study, PCBs were measured in fish from n = 69
U.S. lakes [1]. There are more than 200 types of PCBs. The data below are measured values of the
total sum of all PCBs (ppb) found in the fish.

20.0 6.1 25.0 37.4 30.2 20.8 41.4 29.5 24.2 26.3
8.6 36.4 66.4 30.6 25.5 68.6 23.1 43.0 39.5 36.5

26.5 22.1 19.2 33.0 9.1 42.0 48.8 55.9 31.8 60.1
97.3 18.4 27.5 79.0 97.8 44.9 58.2 57.4 57.5 33.6

115.7 14.8 91.6 92.2 37.0 87.7 111.4 48.0 38.1 122.8
113.1 79.2 98.3 33.0 64.2 119.4 80.7 171.4 132.9 91.8
32.6 59.5 200.5 65.4 198.5 89.4 210.3 246.7 318.7

We want a 95% confidence interval for the true (unknown) mean fish PCB concentration µ in U.S.
lakes. A histogram and normal probability plot of the data are below.
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Figure 6.14: Histogram (left) and normal probability plot (right) of PCB concentrations in fish in
U.S. lakes.

Based on the plots, it would be unreasonable to assume the data are a sample from a normal
distribution. At this point, we have two options:

1. We could proceed with a one-sample t confidence interval, relying on the fact that n = 69 is
large enough to justify the use of the procedure.

2. We could take logs of the data, rendering them normally distributed, then compute a one-
sample t confidence interval using the log transformed data.

We’ll use the second approach in this example. Here are the logs of the data.
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3.0 1.8 3.2 3.6 3.4 3.0 3.7 3.4 3.2 3.3
2.2 3.6 4.2 3.4 3.2 4.2 3.1 3.8 3.7 3.6
3.3 3.1 3.0 3.5 2.2 3.7 3.9 4.0 3.5 4.1
4.6 2.9 3.3 4.4 4.6 3.8 4.1 4.1 4.1 3.5
4.8 2.7 4.5 4.5 3.6 4.5 4.7 3.9 3.6 4.8
4.7 4.4 4.6 3.5 4.2 4.8 4.4 5.1 4.9 4.5
3.5 4.1 5.3 4.2 5.3 4.5 5.3 5.5 5.8

A histogram and normal probability plot of these values are below.
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Figure 6.15: Histogram (left) and normal probability plot (right) of the natural logs of PCB con-
centrations in fish in U.S. lakes.

It’s clear that the logs of the PCB concentrations follow a bell-shaped distribution, so it seems
reasonable to treat them as a random sample from a normal population. We’ll let µ denote the
mean of this log-scale population.

The sample mean and standard deviation of the log PCB concentrations are

Ȳ = 3.92

S = 0.80,

so the (estimated) standard error is

SȲ =
0.80√

69
.

Thus the point estimate for the (unknown) true mean log PCB concentration µ is Ȳ = 3.92 (in log
ppb), and The 95% one-sample t confidence interval for µ is

Ȳ ± t0.025,68 SȲ = 3.92 ± 1.995

(
0.80√

69

)
= 3.92 ± 0.19

= (3.73, 4.11)

where the t critical value t0.025,68 = 1.995 was obtained from t distribution table. We can be 95%
confident that the true mean log PCB concentration µ is between 3.73 and 4.11 log ppb.
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6.10.3 Back-Transforming to the Original Scale

When we perform a statistical analysis on log transformed data, the results pertain to the transformed
measurement scale for the data. In the last example, the confidence interval was for the population mean
log PCB concentration (in log ppb), not the mean PCB concentration (in ppb). Sometimes it’s possible
back-transform the results to the original scale, as illustrated in the next example.

Example 6.11: Back-Transforming Results to the Original Scale

The sample mean log PCB concentration in fish (from the previous example) is Ȳ = 3.92 (log ppb).
We can convert Ȳ back to the original scale (ppb) by taking its antilog:

eȲ = e3.92

= 50.4

(ppb). This the geometric mean (Chapter 3) of the original, untransformed PCB concentrations.
It’s easier to interpret than Ȳ because it’s measured on the original scale (ppb). It’s an estimate of
eµ and, as pointed out in Chapter 3, can be thought of as an estimate of the median of the original
PCB concentration distribution. The reason for this is that the original PCB distribution can be
modeled by a lognormal distribution, ant the median of a lognormal distribution, as mentioned in
Chapter 4, is eµ.

Now consider the 95% confidence interval

(3.73, 4.11)

for the true mean log PCB concentration µ (from Example 6.10). We can take the antilogs of the
interval endpoints, giving the new interval

(e3.73, e4.11) = (41.7, 60.9).

The values 41.7 and 60.9 are measured in ppb, so they’re easier to interpret than when they were on
the log scale. These values give a 95% confidence interval for eµ, the true median PCB concentration.
This will be revisited in Subsection 6.11.1.

6.10.4 Other Transformations: The Ladder of Powers

Although the log transformation often results in data having a bell-shaped distribution, allowing the
application of statistical procedures designed for normally distributed data, some data sets still exhibit
skewness even after a log transformation has been made.

For such data sets, there are a number of other transformations we can try. The transformations are
often of the form

Y = Xθ,

where X is the original data value, Y is the transformed value, and θ is a power chosen so as to make the
distribution of Y as close to a normal distribution as possible. The following Ladder of Powers can be
used as a guide for determining an appropriate choice for θ:
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The Ladder of Powers

Use θ Transformation Name Comment

Left-skewness 3 Y = X3 Cube

Left-skewness 2 Y = X2 Square

1 Y = X Original Measure- No transformation.
ment Scale

Right-skewness 1/2 Y =
√
X Square Root

Right-skewness 1/3 Y = 3
√
X Cube Root

Right-skewness ”0” Y = log(X) Logarithm Commonly used.

Right-skewness -1/2 Y = −1√
X

Reciprocal Square The minus sign

Root preserves the order
of the observations.

Right-skewness -1 Y = −1
X Reciprocal The minus sign

preserves the order
of the observations.

To use the Ladder of Powers, starting with the original measurement scale (θ = 1), we try transforming
the data using values of θ successively farther and farther away from one in the appropriate direction
(increasing θ if the data are left skewed, decreasing it if they’re right skewed). With each transformation,
we examine a normal probability plot and also perhaps a histogram to decide if the transformation was
successful.

Example 6.12: Transforming Data Using the Ladder of Powers

To illustrate the use of the Ladder of Powers for choosing a transformation, we’ll apply it to the
PCB data of Example 6.10.

We begin by looking again at the normal probability plot of the original, untransformed data (ppb),
shown on the top left below.
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Figure 6.16: Normal probability plots. The original data on PCBs in fish from U.S. lakes (top left);
the data after a square root transformation (top right); after a cube root transformation (bottom
left); after a natural log transformation (bottom right).

Since the original PCB data are right-skewed, we first move ”down the ladder” one step and
try the square root transformation. A normal probability plot of the square roots of the PCB
concentrations is shown on the top right of Fig. 6.16. It’s apparent that the data are still right
skewed, but the skewness is less severe.

Moving ”down the ladder” another step, we next try the cube root transformation. The normal
probability plot after making this transformation is shown on the bottom left of Fig. 6.16. There’s
still a bit of skewness, so we move ”down the ladder” one more step and try the log transformation.
A normal probability plot of the logs of the data is shown in the bottom right of Fig. 6.16 and a
histogram in Fig. 6.15. The plots indicate that the logs of the PCB concentrations can be treated
as a random sample from a normal distribution. This was the transformation we used in Example
6.10 to validate the use of the one-sample t procedure.
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6.11 Confidence Interval for a Population Median

6.11.1 Confidence Interval for a Population Median

Recall that the median of a continuous population, µ̃, is the value below which 50% of the population lies
and above which the other 50% lies. For a normal population, the median and mean are one and the same,
so the sample mean X̄ is a point estimate of both µ̃ and µ and, the one-sample t confidence interval for µ
is also a confidence interval for µ̃.

For a sample from a lognormal population, we can obtain a confidence interval for the population
median as follows. First, we take the logs of the data, so that the resulting values can be treated as a
sample from a normal population. Then we compute a one-sample t confidence interval for the mean µ of
this normal population. Finally, we back-transform the endpoints of the interval by taking their antilogs,
as in Example 6.11. We arrive at a confidence interval for the antilog of µ, that is for eµ, which, recall
(from Chapter 4), is the median of the original lognormal population.

6.11.2 Nonparametric Confidence Interval for a Population Median

For non-normally distributed data or data whose distribution is unknown, a point estimate for the popu-
lation median µ̃ is the sample median X̃, and we can construct a nonparametric confidence interval for µ̃.
The values that make up the confidence interval answer the question: ”What set of values are plausible
for µ̃ in light of the observed data?”

To answer this question, note that in a randomly selected sample of size n from the population, each
observation Xi is equally likely to fall below or above µ̃ (because it’s the 50th percentile), so we’d expect
about half of the sample observations to fall below µ̃ and the other half above it.

The actual number of observations falling below µ̃, though, is a random variable. And because it’s a
count among n observations, each equally likely to fall above or below µ̃, it follows a binomial distribution
with parameters n and p = 0.5. Thus when the value of µ̃ is unknown, we can assess the plausibility
of any candidate value by counting the number of sample observations that are less than that value and
comparing that count to the binomial distribution. If the count is smaller or larger than could be expected
to occur just by chance, then the candidate value for µ̃ is deemed implausible and is excluded from the
confidence interval.

Example 6.13: Nonparametric Confidence Interval for a Median

The following data, sorted from smallest to largest, are measurements of percent total organic carbon
(TOC) in clay from rivers in Spain [10].

0.21 0.22 0.33 0.34 0.35 0.35 0.37 1.28 1.34 1.82 1.88 1.91 2.26 2.57

Looking at the data, we can assess the plausibility of various values for the population median
TOC percent, µ̃. It doesn’t seem plausible, for example, that µ̃ is as large as, say, 2.6 because
that would mean that the entire sample of n = 14 observations would be less than µ̃. From the
binomial(14, 0.5) distribution, the chance of this happening is only 0.00006. Similar reasoning rules
out values of µ̃ below 0.21 at the other end of the data set.

On the other hand, 1.3 is a plausible value for µ̃ because in this case 8 of the n = 14 sample values
would be below µ̃, and the chance of this happening is high, 0.1833 to be exact (from the same
binomial distribution).

The probability histogram of the binomial(14, 0.5) used in the previous example is shown below.
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Figure 6.17: Probability distribution of the number of observations in a random sample of size n = 14
falling below the median µ̃ of the population. This is just the binomial(14, 0.5) distribution.

It can be shown, using the probability histogram above or the binomial probability function of Chapter 4,
that in 94.3% of all random samples of size n = 14, no fewer than 4 and no more than 10 observations will
fall below population median µ̃. This is the middle 94.3% of the distribution in Fig. 6.17.

This is the same as saying that 94.3% of the time, µ̃ will be no smaller than the 4th smallest observation
in the data set and no larger than the 11th smallest. It follows that for a random sample of size n = 14
from a population, a 94.3% confidence interval for the population median µ̃ has endpoints

(4th smallest observation, 11th smallest observation).

Example 6.14: Nonparametric Confidence Interval for a Median

Continuing from the previous example, if the TOC percents were a sample from a normal popula-
tion, the population median µ̃ and mean µ would be equal, and in this case the sample mean X̄
would estimate both, and a t confidence interval for µ would also be a confidence interval for µ̃.

But a histogram and normal probability plot of the TOC data reveal that the normality assumption
isn’t tenable – the data are right-skewed.

In this case, the appropriate point estimate of the true (unknown) population median TOC percent
µ̃ is the sample median x̃ = 0.825. The 94.3% nonparametric confidence interval for µ̃ is

(0.34, 1.88),

the 4th and 11th smallest observations in the sorted data set. We can be 94.3% confident that µ̃ is
in this interval somewhere.

Note: Due to the discreteness of the binomial distribution, we usually can’t compute a confidence interval
having the exact level of confidence that we desire (such as 95%). Instead we must be satisfied with the
discrete set of available choices for the confidence level. For example, in Example 6.14 the confidence
interval that ranged from the 4th to 11th smallest data values had a confidence level 94.3%. An interval
ranging from the 3rd to 12th would have had a confidence level 98.7%. We couldn’t construct a confidence
interval with a confidence level between these two levels.
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Here’s the general procedure for constructing a nonparametric confidence interval for a population
median.

Nonparametric Confidence Interval for a Population Median: Suppose X1, X2, . . . , Xn are
a random sample from any continuous population (not necessarily normal) whose median is µ̃. Then
for a desired confidence level 100(1− α)%, the nonparametric confidence interval for µ̃ is

((k1 + 1)th smallest observation, k2th smallest observation) , (6.11)

where k1 is the largest value among 0, 1, . . . , n for which

P (X ≤ k1) ≤ α

2
,

with X ∼ binomial(n, 0.5), and k2 is the smallest value among 0, 1, . . . , n for which

P (X ≥ k2) ≤ α

2
.

The values for k1 and k2 can be determined using statistical software or obtained from a table of the
binomial distribution. We an be 100(1− α)% confident that µ̃ will fall in this range.

Note: Using the above procedure, the actual confidence level is guaranteed to be no smaller than 100(1−
α)%. In other words, we can be at least 100(1 − α)% confident that µ̃ will be contained in the interval
(6.11). The actual confidence level is given by the probability that a binomial(n, 0.5) random variable will
fall between k1 + 1 and k2 − 1, inclusive.

6.12 Tolerance Limits and Confidence Interval for a Population Per-
centile

6.12.1 Introduction

Environmental compliance monitoring often involves comparing the concentration of a contaminant at a
cleanup site or in a monitoring well to a threshold value above which the concentration would be deemed
to be in violation of environmental standards.

The determination of an appropriate value for such a threshold must take into account that background
concentrations of the contaminant vary naturally from one day to the next and from one location to the next.
In particular, the threshold value should be high enough that naturally varying background concentrations
would exceed it only very rarely, say, no more than 1% of the time.

Recall that the 100pth percentile of a population is the value below which 100p% of the population
lies, where p is between zero and one. Thus the 99th percentile of the naturally varying background
concentrations is the value that would be exceeded just by chance only 1% of the time.

We’ll denote the 100pth percentile of a population by x1−p. For example, the 99th percentile will be
denoted by x0.01. For a normal population, we know (Chapter 4) that

x1−p = µ + z1−pσ,

where µ and σ are the population mean and standard deviation, and z1−p is the 100pth percentile of the
standard normal distribution. Values of z1−p, for specified p, can be obtained from a standard normal
table.

If background concentrations followed a normal distribution, and µ and σ were known, we could use
the 99th percentile of the distribution, x0.01, as the threshold for environmental compliance monitoring.
This value would be exceeded by only 1% of background concentrations.
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In practice, though, µ and σ won’t be known, so population percentiles such as x0.01 can’t be determined.
If we have a sample of background concentrations, though, we can estimate µ and σ from the data, which
leads to the following point estimator of x1−p, denoted X̂1−p.

Estimator of a Population Percentile: Suppose we have a random sample X1, X2, . . . , Xn from
a normal population. Then an estimator of the 100pth percentile of the population is

X̂1−p = X̄ + z1−pS ,

where X̄ and S are the sample mean and sample standard deviation.

This estimator could be used as the threshold for environmental compliance monitoring, but because it’s
based on statistics (X̄ and S) that vary from one random sample to the next, it’s value is subject to
sampling error and therefore not entirely reliable.

Example 6.15: Point Estimate of a Population Percentile

Consider once again the n = 10 background soil radiation levels from along the Front Range
(Example 6.1), and suppose we want to use them to establish the soil action level for monitoring
the Rocky Flats cleanup.

The sample mean and standard deviation (from Example 6.3) are

X̄ = 2.14

S = 0.76.

Assuming the background radiation level population is a normal distribution, the point estimate of
the 99th percentile of the distribution, x0.01, is

X̂0.01 = 2.14 + 2.33(0.76) = 3.91 Bq/kg,

where the percentile z0.01 = 2.33 was obtained from a standard normal table.

This value 3.91 could be used as the soil action level, but because it’s just based on one random
sample of 10 background measurements, its reliability is in question.

Instead of using the point estimate of x0.01 as the compliance threshold, more often a higher value, called
an upper tolerance limit, that takes sampling error into consideration is used. In the next subsection we’ll
see how to construct tolerance limits, and in Subsection 6.12.3 confidence intervals for percentiles, when
the population is normal. For data from a lognormal population, the procedures can be used after taking
the logs of the data, and the resulting tolerance limit (or confidence interval endpoints) back-transformed
by taking the antilog(s), as in Subsection 6.10.3.

6.12.2 Tolerance Limits

An upper tolerance limit with level of confidence 100(1− α)% and coverage 100p% is a one-sided
upper confidence limit for a population percentile x1−p. In other words, it’s a value below which we can
be 100(1−α)% confident that x1−p, and therefore at least 100p% of the population, lies. A lower tolerance
limit is defined analogously.

The tolerance limits we’ll look at use critical values from a distribution called the noncentral t dis-
tribution, which has two parameters, its degrees of freedom and a noncentrality parameter. Here’s
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how the limits are computed.

Tolerance Limits: Suppose we have a random sample X1, X2, . . . , Xn from a normal population.

Then an upper tolerance limit, with level of confidence 100(1− α)% and coverage 100p%,
is

X̄ + tα,n−1,ncp SX̄ ,

and a lower tolerance limit with the same confidence level and coverage is

X̄ + t1−α,n−1,ncp SX̄ ,

where

SX̄ =
S√
n
,

and the t critical values tα,n−1,ncp and t1−α,n−1,ncp are the 100(1 − α)th and 100αth percentiles, re-
spectively, of the noncentral t distribution with n−1 degrees of freedom and noncentrality parameter
ncp =

√
n z1−p.

The critical values from the noncentral t distribution can be obtained from tables or using statistical
software. We can be 100(1 − α)% confident that the true (unknown) population percentile x1−p will be
below the upper tolerance limit, that is, that at least 100p% of the population will be below that limit. In
practice, this means that for an upper tolerance limit with 95% level of confidence and 99% coverage, we
can be 95% confident that at most 1% of all background contaminant concentrations exceed the tolerance
limit.

The lower tolerance limit has an analogous interpretation. We can be 100(1−α)% confident that x1−p
will be above that limit, that is, that at least 100(1 − p)% of the population will lie above it. Thus for
a lower tolerance limit with 95% level of confidence and 99% coverage, we can be 95% confident that at
most 1% of all background contaminant concentrations are below the tolerance limit.

The derivation of the tolerance limit formulas is given in Subsection 6.12.4.

Example 6.16: Tolerance Limits

Continuing from the last example, the upper tolerance limit for radiation concentrations in the
Rocky Flats cleanup, with 95% confidence level and 99% coverage, is

2.14 + 12.59

(
0.76√

10

)
= 5.17 Bq/kg,

where the critical value t0.05,9,
√

10(2.33) = 12.59 was obtained using statistical software.

We can be 95% confident no more than 1% of all background soil radiation concentrations along
the Front Range are above 5.17 Bq/kg.

Any measured soil radiation concentration above 5.17 Bq/kg at the Rocky Flats cleanup site would
trigger an ”action” such as removal or containment. Note that this threshold value is higher than
the estimate 3.91 Bq/kg of x0.01 from Example 6.15 because it accounts for sampling error in that
estimate.
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6.12.3 Confidence Interval for a Population Percentile

If our goal is merely to estimate a population percentile x1−p, and we want to include a margin of error
with the estimate, we can compute a two-sided confidence interval for x1−p. Here’s the interval.

Confidence Interval for a Population Percentile: Suppose we have a random sample
X1, X2, . . . , Xn from a normal population. Let x1−p be the 100pth percentile of the distribution,
where p is between zero and one.

Then a 100(1− α)% confidence interval for x1−p is(
X̄ + t1−α/2,n−1,ncp SX̄ , X̄ + tα/2,n−1,ncp SX̄

)
. (6.12)

where

SX̄ =
S√
n
,

and tα/2,n−1,ncp and t1−α/2,n−1,ncp are the 100(1−α/2)th and 100α/2th percentiles, respectively, of the
noncentral t distribution with n−1 degrees of freedom and noncentrality parameter ncp =

√
n z1−p.

We can be 100(1−α)% confident that the true (unknown) population percentile x1−p will be contained in
this interval.

6.12.4 Derivation of the Tolerance Limit and Confidence Interval Formulas

The derivation of the formula (6.12) for the confidence interval for a percentile is based on the random
variable

X̂1−p − x1−p
S

=
(X̄ + z1−p S)− x1−p

S
, (6.13)

which follows a certain probability distribution from which values a and b can be obtained so as to satisfy

1− α = P

(
a <

(X̄ + z1−p S)− x1−p
S

< b

)
(that is, a and b capture the middle 100(1− α)% of the distribution of the random variable (6.13)). After
rearranging terms, we can write this as

1− α = P
(
X̄ + (z1−p − b)S < x1−p < X̄ + (z1−p − a)S

)
. (6.14)

It can be shown that a and b are the values for which

(z1−p − b) =
t1−α/2,n−1,ncp√

n
and (z1−p − a) =

tα/2,n−1,ncp√
n

,

which, together with (6.14), confirms the confidence interval formula (6.12). The tolerance limits are just
one-sided confidence intervals for x1−p, and so their formulas can be derived in a similar manner.

6.12.5 Nonparametric Confidence Interval for a Population Percentile

For non-normally distributed data or data whose distribution is unknown, we can use a sample percentile,
which is just an observation in the sorted data set (Subsection 6.9.4), as a point estimate of the corre-
sponding population percentile.

We can also construct a nonparametric confidence interval for a percentile x1−p of a non-normal pop-
ulation using a method similar to that used to construct the nonparametric interval for the population
median (Subsection 6.11.2). Details can be found in [7].
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6.13 One-Sample Z Confidence Interval for a Population Proportion

Consider now data on a dichotomous categorical variable that takes values success and failure, and suppose
the data are a sample from a population whose proportion of successes is p. The (point) estimate of p is
the sample proportion P̂ . A confidence interval for p is given by the following.

One-Sample Z Confidence Interval (for a Proportion): Suppose we have a random sample
of size n from a dichotomous population. Let p denote the proportion of successes in the population.
A 100(1− α)% one-sample z confidence interval for p is

P̂ ± zα/2 SP̂ , where Sp̂ =

√
P̂ (1− P̂ )

n
.

The confidence interval is valid if the sample size n is large (as defined in Chapter 5).

The margin of error is the ”plus or minus” part of the confidence interval.

Margin of Error: For the one-sample z confidence interval for p, the margin of error is

Margin of Error = zα/2 SP̂ = zα/2

√
P̂ (1− P̂ )

n
.

Example 6.17: Confidence Interval for a Proportion

In a study of bee populations in southeast Asia [9], a honey solution was sprayed on vegetation
along several transects. Bees attracted to the honey were caught with an insect net, and their
species later identified.

The study found that among the 1,631 individual bees caught, 546 were of the species Trigona
(Tetragonula) laeviceps. Thus the sample proportion is

P̂ =
546

1, 631
= 0.33,

and so the (estimated) standard error is

SP̂ =

√
0.33(1− 0.33)

1, 631
= 0.01.

A 95% one-sample z confidence interval for the true (unknown) population proportion that are T.
(T.) laeviceps is

P̂ ± z0.025 SP̂ = 0.33 ± 1.96 (0.01)

= 0.33 ± 0.02

= (0.31, 0.35).

The estimate (0.33) of the true proportion has margin of error 0.02, and we can be 95% confident
that the true proportion is between 0.31 and 0.35.



6.14. PROBLEMS 165

To see how the confidence interval formula was derived, recall (Chapter 5) that if P̂ is the proportion
of successes in a sample for which a dichotomous variable (taking values success and failure) is measured
on each individual, then if n is large,

P̂ ∼ N (µp̂, σp̂)

(approximately), where

µP̂ = p and σP̂ =

√
p(1− p)

n
.

and p is the proportion of successes in the population. Using an argument similar to that used in (6.2) of
Section 6.2, it can be shown that we can be 95% confident that p will be contained in the interval

P̂ ± 1.96σp̂. (6.15)

Unfortunately, the standard error σp̂ depends on the (unknown) population proportion p. To get around

this, we use the estimated standard error, denoted Sp̂, obtained by plugging the estimate P̂ in for p in
σp̂,

Sp̂ =

√
P̂ (1− P̂ )

n
.

Thus the 95% confidence interval is
P̂ ± 1.96Sp̂.

For a generic confidence level, 1.96 is replaced by the z critical value zα/2.

6.14 Problems

6.1 Based on 43 years of hydrological data from 1959-2001, the U.S. Geological Survey estimates that a
stream’s mean yearly discharge is 4,300 million m3 with a margin of error of 300 million m3. Assuming a
95% confidence interval was used, for each of the following, state whether it’s a legitimate interpretation
of the confidence interval. For any that aren’t legitimate, say why.

a) For 95% of all years, the stream’s discharge will be between 4,000 million and 4,600 million m3.

b) Water management officials can be 95% sure that the stream’s average yearly discharge for the 43
years from 1959-2001 was between 4,000 million and 4,600 million m3.

c) Water management officials can be 95% sure that the stream’s average yearly discharge for all years
is between 4,000 million and 4,600 million m3.

6.2 The pesticide DDT was measured (ng/g) in the blood of each of a random sample of northern fur seals
on St. George Island, Alaska [3]. The confidence intervals below, for the true mean DDT concentration µ,
were both computed from the same set of data:

(4.28, 11.72) (5.21, 10.79)

a) One of them is a 95% confidence interval and the other a 99% confidence interval. Which is which?
Explain how you know.

b) What’s the value of the sample mean DDT concentration X̄?
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6.3 Studies of the accumulation of PCBs (polychlorinated biphenyls) in dolphins have found that for
males, accumulation continues throughout the animal’s lifetime, but for females, concentrations tend to
decline with reproductive activity through transfer across the placenta and via lactation.

In one capture-and-release study, PCB concentrations (ppm) were measured in the blubber of 25 female
dolphins near Sarasota Bay, Florida [17]. Eight of the dolphins were nulliparous (had never given birth)
and 17 were parous (had given birth at least once). Here are the summary statistics.

Dolphin Sample Mean PCB Standard
Group size in blubber deviation

Nulliparous 8 27.7 10.67
Parous 17 6.8 5.45

a) Compute a 95% confidence interval for the true mean PCB concentration in nulliparous Sarasota
Bay dolphins.

b) Compute a 95% confidence interval for the true mean PCB concentration in parous Sarasota Bay
dolphins.

c) If the distributions of PCB concentrations in the two dolphin populations were right skewed, would
the confidence intervals in parts a and b be valid? Explain your answer. Hint: A t confidence interval
will only be valid if either 1) the sample is from a normal population, or 2) the sample size is large.

6.4 Perchlorate is a chemical used in rocket and missile fuels, fireworks, road flares, blasting agents and
automobile airbags. Due to improper past disposal practices, it’s been detected as a contaminant in wa-
ter supplies throughout the U.S., and also in lettuce, tomatoes, cucumbers, cantaloupe, and dairy milk.
Human exposure to perchlorate inhibits iodide uptake by the thyroid. Iodide is a key component in cer-
tain hormones used to regulate cell respiration, energy production, growth, and maturation of body tissues.

A toxicity study was carried out to investigate the perchlorate-induced reduction of thyroidal iodide uptake
[16], [8]. Volunteer human subjects were assigned to treatment groups given different doses of perchlorate
through drinking water, and the percent change in thyroidal uptake after 24 hours was measured. Summary
statistics are given below for two of the dose groups, one given 0.007 mg/kg/day in drinking water (Low
Dose) and the other 0.020 mg/kg/day (High Dose).

Number of Mean change (%) in
Perchlorate subjects in thyroid iodide uptake Standard
dose group the dose group after 24 hr of dosing deviation

Low Dose 7 -1.8 22.0
High Dose 10 -16.4 12.8

a) Compute a 99% confidence interval for the true mean percent change in thyroidal uptake at the low
dose.

b) Does the confidence interval of part a provide convincing evidence that exposure at the low dose
results in a decrease in thyroidal uptake? Explain your answer. Hint: Does the entire confidence
interval lie below zero?

c) Compute a 99% confidence interval for the true mean percent change in thyroidal uptake at the high
dose.

d) Does the confidence interval of part c provide convincing evidence that exposure at the high dose
results in a decrease in thyroidal uptake? Explain your answer. Hint: See the hint for part b.
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e) If percent changes followed right skewed distributions, would the confidence intervals in parts a and
c be valid? Explain your answer.

6.5 Problem 3.4 in Chapter 3 described a study investigating the use of a capillary column gas chro-
matography method for measuring organic compounds in water. Each of 15 laboratories used the method
to measure chlorobenzene (µg/L) in a reference water specimen certified as having a true concentration
1.10 µg/L of chlorobenzene.

The sample mean and sample standard deviation of the 15 measurements are 1.17 and 0.22, respectively.
A histogram and normal probability plot of the data are shown below.
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a) Based on the plots, is it reasonable to assume that the data are a random sample from a normal
distribution?

b) If the chromatography method is systematically inaccurate, the true mean reading µ will differ from
1.10 µg/L. Compute a 95% confidence interval for the true mean reading µ.

c) Based on the confidence interval of part b, is there any convincing evidence that the method is
systematically inaccurate? Explain your answer. Hint: Does 1.10 lie outside the confidence interval?

6.6 A pilot study of concentrations of the pesticide DDT (ng/g) in crocodile eggs found that a reasonable
guess for the population standard deviation σ is 6.95 ng/g [12]. If you were to carry out a follow-up study,
and you wanted the margin of error in a 90% confidence interval for the true mean DDT concentration µ
to be no greater than 2.0 ng/g, how many crocodile eggs should you sample?

6.7 A study is to be carried out to estimate the population mean phosphorus concentration µ along a
creek. A reasonable guess for the population standard deviation σ in this creek is 0.102 mg/L. If it’s desired
that the margin of error in a 95% confidence interval for µ be no greater than 0.03 mg/L, in how many
water specimens should be sampled?

6.8 A study is to be carried out to estimate the true mean pH µ of rainfalls in an area that suffers from
heavy pollution due to the discharge of smoke from a power plant. Assume that the true standard deviation
σ is in the neighborhood of 0.5 pH and that we want the margin of error in a 95% confidence interval for
µ be no greater than 0.1.

a) How many rainfalls should be included in the sample (one pH reading per rainfall)?
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b) Would it be valid to select all of the water specimens from a single rainfall? Explain. Hint: The
z and t confidence interval procedures are only valid if the pH readings in the sample are true
replicates (that is, independent of each other). Readings made too close together (in space or time)
are pseudoreplicates (Chapter 2).

6.9 The table below shows groundwater monitoring data for benzene measured quarterly from 1996
through 1999 under the regulatory oversight of the Los Angeles Regional Water Quality Control Board in
California [14].

Groundwater Benzene
Sampling Date Benzene (µg/L)

Mar 1996 810
Jun 1996 1200
Sep 1996 200
Dec 1996 980
Feb 1997 340
May 1997 320
Jul 1997 3.8
Oct 1997 480
Mar 1998 180
Jun 1998 38
Aug 1998 55
Dec 1998 110
Mar 1999 35
May 1999 230
Aug 1999 130
Dec 1999 120

a) Make a histogram and a normal probability plot of the benzene concentrations.

b) Based on the plots of part a, which distribution, the normal or the lognormal, would be a better
model for describing benzine concentrations in this stream?

c) Base on your answer to part b, does it appear that the normality assumption required for the one-
sample t confidence interval procedure is met?

d) Take the natural log of each benzene concentration and make a histogram and a normal probability
plot of the log concentrations.

e) Does the normality assumption appear to met by the log concentrations?

f) Using the log concentrations, compute a 95% confidence interval for the true (unknown) mean log
benzene concentration.

g) Back-transform the endpoints of the confidence interval of part f to the original measurement scale
(µg/L) by taking their antilogs.

6.10 The following measurements of chromium (Cr), zinc (Zn), and manganese (Mn) were made in
sediments in the Guanabara Bay, Rio de Janeiro, Brazil [13].
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Metals in Guanabara
Bay Sediments

Cr Zn Mn

9.1 57.2 89.6
16.0 79.3 364.2
15.8 89.9 318.1
17.2 60.2 272.3
16.9 68.4 177.7
19.9 90.6 276.5
22.4 100.9 441.7
27.2 203.2 339.2
32.9 336.8 381.4
18.7 97.7 167.9
1.0 94.3 19.7

18.7 193.4 133.0
22.0 106.3 258.9
2.7 8.2 61.9

25.1 199.5 166.1

a) Compute a 96.48% nonparametric confidence interval for the true (unknown) median chromium
concentration µ̃Cr in the bay’s sediments.

b) Compute a 99.26% nonparametric confidence interval for the true (unknown) median zinc concen-
tration µ̃Zn in the bay’s sediments.

c) Compute an 88.16% nonparametric confidence interval for the true (unknown) median manganese
concentration µ̃Mn in the bay’s sediments.

6.11 The background radiation concentrations made along the Colorado Front Range and reported in
Example 6.1 were measured at soil depths up to 3 cm. The private contractor also measured the radiation
at soil depths shallower than 0.3 cm. The table below shows these concentrations for the plutonium isotope
239,240Pu (Bq/kg).

Background Soil

Radiation Concentrations
Site 239,240Pu

Z01 0.86
Z02 1.52
Z03 1.62
Z04 1.29
Z05 2.33
Z06 0.96
Z08 1.51
Z09 1.43
Z10 2.47

For one of the original ten sites, no measurement was made at this shallower depth, so the sample size here
is only n = 9. The sample mean and standard deviation of the data are

X̄ = 1.55 and S = 0.54 .
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a) We want to determine a value below which the true (unknown) mean background radiation level µ
lies with 95% confidence. Compute a lower 95% one-sided t confidence interval for µ.

b) Give the value of the estimate X̂0.01 of the 99th percentile, x0.01, of the population of background
radiation concentrations (assuming the population is normal). Interpret the value of the estimate –
what does it tell us about the population of background radiation concentrations?

c) The background radiation measurements were made for use in establishing soil action levels, or thresh-
old values above which a measured soil radioactivity concentration would trigger a cleanup. One way
to determine such a threshold value is to use the data to construct an upper tolerance limit.

Here are the critical values tα,n−1,
√
n z1−p for constructing several upper tolerance limits, all with 95%

confidence levels but different coverage percentages.

t0.05,8,
√

9×2.33 = 12.447 (confidence level 95% and coverage 99%)

t0.05,8,
√

9×1.64 = 9.070 (confidence level 95% and coverage 95%)

t0.05,8,
√

9×1.28 = 7.354 (confidence level 95% and coverage 90%)

These were obtained using statistical software from the noncentral t distribution with n− 1 degrees
of freedom and noncentrality parameter

√
n z1−p.

Use the critical values to compute and interpret the three associated upper tolerance limits.

6.12 Public involvement in government environmental management decisions is frequently difficult to
obtain.

A survey was carried out to determine the reasons for public nonparticipation in decision making processes
involving an environmental assessment of a proposed hog slaughtering facility and associated wastewater
treatment plant in Brandon, Manitoba, Canada [4]. The proposed facility would slaughter up to 54,000
hogs per week and its effluent treated at the wastewater treatment facility and then discharged into the
Assiniboine River.

A sample of n = 79 people who did not participate were presented with several possible reasons for not
participating, and asked whether each was important (Yes or No). One of the reasons presented was that
”The ultimate decisions were foregone,” meaning that their involvement would have little impact on final
decisions. Of the 79 people surveyed, 51 said this was an important reason for their nonparticipation.

Compute and interpret a 95% one-sample z confidence interval for the true (unknown) population propor-
tion p for whom ”The ultimate decisions were foregone” is important in their decision not to participate.

6.13 Farmers use biosolids (sludge) from wastewater treatment plants to fertilize soil. A study was carried
out to assess the risk of farmers’ exposure to salmonella through the application of biosolids to farmlands
in Ohio [11]. In a sample of n = 92 biosolids specimens, 22 tested positive for salmonella.

Compute and interpret a 95% z confidence interval for the (unknown) population proportion p of biosolids
specimens that would test positive for salmonella.
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