
Chapter 7

One-Sample Hypothesis Tests

Chapter Objectives

• Explain the meanings of the terms hypothesis, test statistic, level of significance, p-value, statistical
significance.
• Carry out a one-sample t test for a population mean using the rejection region and p-value approaches.
• Recognize data snooping and state why it can lead to incorrect conclusions in hypothesis testing.
• Use confidence intervals to test hypotheses.
• Distinguish between Type I and II errors.
• State the relationship between the level of significance and the probability of a Type I error.
• Differentiate between statistical significance and practical importance.
• Carry out a one-sample sign test for a population median.
• Decide which test (the t test or the sign test) is more appropriate for a given set of data.
• Carry out a one-sample z test for a population proportion.

Key Takeaways

• Hypothesis tests involve using data to decide between two hypotheses about one or more population
parameters.
• An alternative hypothesis can be one-sided or two-sided. If a one-sided alternative is tested, its

direction should be stated prior to examining the data.
• The level of significance determines how strong the evidence against the null hypothesis needs to

be in order to reject that hypothesis. A result is called statistically significant, at a given level of
significance, if the null is rejected.
• The observed value of a test statistic is compared to the sampling distribution that the statistic would

follow if the null hypothesis was true. If, based on that comparison, the test statistic is unlikely to
have occurred by chance, the null is rejected. A decision rule dictates when the test statistic is
deemed unlikely to have occurred by chance.
• Two approaches to hypothesis testing are the rejection region approach and the p-value approach.

The two approaches always lead to the same conclusion.
• The p-value is the probability that just by chance you’d get a result that’s as incompatible with the

null hypothesis as the result you got.
• The one-sample t test is a parametric test for a population mean that requires either that the sample

is from a normal population or the sample size is large. We can assess normality by graphing the
data. A log transformation can make right skewed data more normal prior to conducting a t test.
• Data snooping means choosing the direction for the alternative hypothesis, after looking at the data,

to fit what you already see in the data. It can lead to incorrect conclusions in hypothesis testing via
artificially small p-values.
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• Confidence intervals can be used to carry out hypothesis tests. If the null-hypothesized value isn’t in
the interval, the null hypothesis is rejected.
• The two types of errors in hypothesis testing are Type I errors (false positives) and Type II errors

(false negatives).
• Statistical significance doesn’t necessarily imply practical importance.
• The one-sample sign test is a nonparametric test for a population median that does not require a

normality assumption or a large sample size.
• The one-sample z test for a population proportion is used when the sample size is large.

7.1 Introduction to Hypothesis Testing

7.1.1 Null and Alternative Hypotheses

A statistical hypothesis test is a procedure for deciding between two competing claims, or hypotheses,
about the values of the parameters of one or more populations, such as their means. A hypothesis test
could be used, for example, to decide if the mean contaminant level µ at a remediation site is below a
regulatory standard, or to decide if there’s any difference between the means at the control and impact
sites in an impact assessment study. In every hypothesis test, one of the two claims, called the alternative
hypothesis, will be of primary interest, and the decision between this claim and the opposing claim, called
the null hypothesis, will be based on whether or not data provide sufficient support for the alternative
hypothesis.

Example 7.1: Null and Alternative Hypotheses

The diameters of trees are often used as a proxy for their ages when designating a forest as
old growth. For example, the U.S. Forest Service will classify a Douglas-fir stand in Oregon’s
Willamette National Forest as old growth only if its mean tree stem diameter µ is 32 inches or larger.

Suppose that a logging company is required to provide convincing evidence that a forest isn’t old
growth before the government will allow the company to log the forest. The company successfully
argues that rather than having to measure every tree in the forest to show that µ is less than 32
inches, it be allowed make its case using the mean diameter X̄ in a random sample of trees.

In this example, the alternative hypothesis is the claim the logging company seeks to validate – that
the true mean diameter µ is less than 32 inches. We’ll see how the hypothesis test is carried out in
later examples.

A hypothesis test must take into account chance variation (sampling variation) in the value of a statistic,
such as X̄. In this chapter, we’ll look at two hypothesis test procedures based on a single sample from a
population:

1. The one-sample t test

2. The one-sample sign test

The first one is a test for a population mean µ, and requires either that the population is normal or the
sample size is large. The second one is a test for a population median µ̃ and doesn’t have the normality or
large sample size requirement.

We denote the null hypothesis by H0 and the alternative by Ha. The null hypothesis often reflects the
status quo and the alternative a departure therefrom. For example, after a remediation project, the null
hypothesis might be that a regulatory standard still isn’t met and the alternative that it is. In an impact
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assessment study, the null hypothesis might be that the impact site still doesn’t differ from the control site
and the alternative that it does.

When deciding which hypothesis should be designated H0 and which Ha, the following may help.

Alternative Hypothesis Ha Null Hypothesis H0

The hypothesis that’s of primary The hypothesis that’s of little or no
interest. interest.

The hypothesis we seek evidence for The hypothesis we seek evidence
in the data. against in the data.

The hypothesis that ”there’s a differ- The hypothesis that ”there’s no differ-
ence” when comparing two or more ence” when comparing two or more
population means. population means.

The hypothesis that ”there’s an effect” The hypothesis that ”there’s no effect”
when conducting an experiment when conducting an experiment
or impact assessment study. or impact assessment study.

Example 7.2: Null and Alternative Hypotheses

In Example 7.1, the logging company is seeking evidence for their claim that the true (unknown)
population mean tree diameter µ is less than 32 inches. This is the alternative hypothesis. The null
hypothesis, therefore, is that µ is 32 inches or greater. These are stated as

H0 : µ ≥ 32 (7.1)

Ha : µ < 32. (7.2)

The null and alternative hypotheses must be contrary to each other, in that it should be impossible
for them to both be true. A ”borderline” value separating the two hypotheses, such as µ = 32 in the last
example, belongs in the null hypothesis.

An alternative hypothesis is called one-sided if it specifies a particular direction (either ”>” or ”<”),
as the one in Example 7.2 does. The direction of a one-sided alternative hypothesis is intended to reflect
what we suspect, going into the study, to be true. If we don’t have a particular direction in mind going
into the study, we use a two-sided alternative hypothesis, which doesn’t specify a direction (only ” 6=”).

7.1.2 Test Statistic and Decision Rule

At the conclusion of any hypothesis test, we’ll either reject or fail to reject the null hypothesis. The deci-
sion will be based on the observed value of a test statistic and whether it provides compelling evidence
against the null. If it does, we reject the null. Otherwise, we fail to reject it. The decision as to whether
the evidence is compelling or not is based on a decision rule that dictates whether the observed value of
the test statistic is among the values that would be unlikely to occur just by chance if the null hypothesis
was true.

Note: ”Failing to reject” the null hypothesis only means there was insufficient evidence to reject it, not
that there was sufficient evidence to accept it. So ”failing to reject” the null isn’t the same as ”accepting”
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it. Hypothesis tests are able to establish (with reasonable certainty) that an alternative hypothesis is true
(by rejecting the null), but they’re not able to establish that a null hypothesis is true.

Example 7.3: Test Statistic and Decision Rule

A test of the hypotheses (7.1) and (7.2) of Example 7.2 would involve taking a random sample of,
say, n = 100 trees and calculating the sample mean diameter X̄. Then, because X̄ is an estimate
of the true mean diameter µ, evidence that µ is less than 32 inches would come in the form of an
X̄ value below 32.

But the value of X̄ is subject to sampling variation, so it could fall below 32 just by chance even if µ
was equal to (or greater than) 32. Thus, even if X̄ ended up below 32, the logging company would
still have to convince the government that it didn’t get that result by chance variation (sampling
variation).

Chance becomes a less plausible explanation the farther X̄ falls below 32, and if it falls far enough
below, chance can be ruled out altogether. A decision rule is used to state how far below 32 X̄ needs
to be before chance is no longer be a viable explanation. If X̄ fell more than about 1.65 standard
errors below 32, chance would be a far-fetched explanation because such an outcome would occur
by chance no more than 5% of the time (according to the Central Limit Theorem, which says the
sampling distribution of X̄ is normal). So, letting σX̄ denote the standard error of X̄, if the test
statistic

Z =
X̄ − 32

σX̄
(7.3)

ended up being less than −1.65, we could reasonably conclude that it wasn’t just the result of
chance variation but rather the result of µ being less than 32.

A sensible decision rule, therefore, would be

Reject H0 if Z < −1.65.
Fail to reject H0 if Z ≥ −1.65.

The hypothesis test procedure just described is called a one-sample z test for µ. Other implemen-
tations of the z test would use the same test statistic, but with a different value in place of 32, depending
on the hypotheses being tested, and a decision rule that might use a different value in place of −1.65.
The z test requires knowing the value of the standard error σX̄ , though, which in turn requires knowing
the population standard deviation σ (since σX̄ = σ/

√
n). In practice, knowing the population standard

deviation would be rare. Instead, in practice, we use the test statistic

t =
X̄ − 32

SX̄
.

where

SX̄ =
S√
n

is the estimated standard error. The test is then called the one-sample t test, the details of which are
covered in Section 7.2.

Note: Often a set of hypotheses such as

H0 : µ ≥ 32 (7.4)

Ha : µ < 32 (7.5)
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in which the alternative is one-sided, is stated as

H0 : µ = 32 (7.6)

Ha : µ < 32 (7.7)

with the implication being that (7.6) really means (7.4). The decision rule for the two sets of hypotheses
will be the same because if the evidence provided by a given test statistic value is strong enough to reject
(7.6) in favor of (7.7), then it’s also strong enough to reject (7.4) in favor of (7.5). In practice, either set
of hypotheses would be legitimate.

7.1.3 Two Approaches to Hypothesis Testing

There are two ways we can form the decision rule for a hypothesis test, the rejection region approach
and the p-value approach. Both are based on an assessment of whether the observed test statistic value
is one that would rarely occur by chance if the null hypothesis was true and, if so, rejecting the null. As
we’ll see, the rarity of the observed test statistic value under the null hypothesis is assessed by comparing
that value to the sampling distribution that the statistic would follow if the null was true.

Rationale of a Hypothesis Test

1. A test statistic is selected for it’s capacity to discern between the null and alternative hypotheses.

2. The sampling distribution that the statistic would follow if the null hypothesis was true is used
to identify values of the statistic that would be unlikely to occur by chance if the null was true.

3. If the observed test statistic value is among those that would be unlikely to occur just by chance,
the null hypothesis is rejected.

The rejection region approach: This approach involves choosing a rejection region, which is the set
of all test statistic values that are considered so contradictory to the null hypothesis (and consistent with
the alternative) that they would rarely occur by chance if the null was true. This is the approach that was
used in Example 7.3. Here’s the decision rule.

Decision Rule for Rejection Region Approach:

Reject H0 if the observed test statistic value falls in the rejection region.
Fail to reject H0 if it doesn’t fall in the rejection region.

The p-value approach: This approach involves determining the p-value, which is the probability that
the test statistic value would end up being as contradictory to the null hypothesis (and consistent with
the alternative) as the observed value if the null hypothesis was true. A small p-value means the observed
test statistic value would rarely occur by chance if the null hypothesis was true, so small p-values provide
compelling evidence against the null and the smaller the p-value, the more compelling the evidence. Here’s
the decision rule.

Decision Rule for P-Value Approach:

Reject H0 if the p-value is less than a pre-specified level (such as 0.05).
Fail to reject H0 if it’s not less than that level.
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Example 7.4: Rejection Region and P-Value Approaches

The test statistic Z in Example 7.3 will lie below zero whenever the sample mean tree diameter X̄
lies below 32, so negative Z values count as evidence against the null hypothesis and in favor of the
alternative.

Using the rejection region approach, the decision rule given in that example was

Reject H0 if Z < −1.65
Fail to reject H0 if Z ≥ −1.65

which is another way of saying we should reject the null if X̄ falls more than 1.65 standard errors
below 32. As an example, if a random sample of trees resulted in, say, Z = −2.1, we’d reject the
null hypothesis and conclude that µ is smaller than 32 inches.

Using the p-value approach, with pre-specified level 0.05, the decision rule would be

Reject H0 if p-value < 0.05
Fail to reject H0 if p-value ≥ 0.05

If the test statistic ended up being Z = −2.1, the p-value would be 0.018, which is the probability
of getting a Z value as far below zero as −2.1 just by chance (from a standard normal table). Here
again, we’d reject the null and conclude that µ is less than 32.

7.1.4 The Level of Significance α

Regardless of whether the rejection region or p-value approach is used, a level of significance must be
chosen prior to deciding between the two hypotheses. The level of significance, denoted α, is a value
that determines how strong the evidence against the null hypothesis needs to be before we’re willing to
reject that hypothesis. Smaller α values require stronger evidence. The most common choices for α are
0.01, 0.05, and 0.10.

Role of α in the rejection region approach: In the rejection region approach, the boundary value for
the rejection region used in the decision rule will depend on the value chosen for α. Thus α determines
how contradictory to the null hypothesis the test statistic needs to be in order to lie in the rejection region.
We’ll see that a smaller value of α requires a more null-contradictory test statistic value.

Role of α in the p-value approach: In the p-value approach, α is the threshold level to which the
p-value is compared in the decision rule. Thus α determines how strong the evidence needs to be in order
to reject the null hypothesis. A smaller α requires a smaller p-value (stronger evidence).

For a given choice of α, if the null hypothesis is rejected, we say the result is statistically significant
at the α level. For example, using α = 0.05, we’d say the result is statistically significant at the 5% level.
A statistically significant result is one for which chance alone cannot adequately explain the observed
evidence supporting the alternative hypothesis.

7.1.5 Steps in Carrying Out a Hypothesis Test

There are a multitude of specific hypothesis test procedures, each designed to address a particular type of
research question under a specific set of conditions (assumptions). Although the details of the procedures
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differ, every hypothesis test involves the following steps.

Steps in Performing a Hypothesis Test

1. Identify the population parameter(s) of interest.

2. State the null and alternative hypotheses.

3. Determine an appropriate test procedure and verify any assumptions.

4. Choose a level of significance and use it to form the decision rule.

5. Compute the test statistic value.

6. Find the p-value or determine if the test statistic lies in the rejection region.

7. State the conclusion and interpret the result.

7.2 The One-Sample t Test for a Population Mean

7.2.1 The One-Sample t Test Procedure

The one-sample t test is a hypothesis test for the (unknown) value of a population mean µ. Suppose we
have a random sample from the population, and we want to use the data to test the null hypothesis

H0 : µ = µ0

that µ is equal to some hypothesized value µ0 versus one of the three alternative hypotheses

1. Ha : µ > µ0 (upper-tailed test)

2. Ha : µ < µ0 (lower-tailed test)

3. Ha : µ 6= µ0 (two-tailed test)

The null-hypothesized value µ0 should be chosen for its relevance to the study’s research question, and
the alternative hypothesis should reflect what the study is attempting to substantiate. If the direction
specified by the alternative is ”>”, the test is called an upper-tailed test, and if the direction is ”<”, it’s
lower-tailed. If no direction is specified (”6=”), the test is called two-tailed.

The one-sample t test statistic, denoted t, is defined as follows.

One-Sample t Test Statistic:

t =
X̄ − µ0

SX̄
, (7.8)

where

SX̄ =
S√
n
.

Note that because X̄ is an estimator of the true (unknown) population mean µ, if the null hypothesis
was true, and µ equal to the null-hypothesized value µ0, we’d expect X̄ to equal µ0 approximately, in
which case t would be near zero. Any discrepancy between t and zero would be due purely to chance
(sampling variation). On the other hand, if the alternative hypothesis was true, and µ different from µ0 in
the direction specified by that hypothesis, we’d expect X̄ to differ from µ0 in that direction too, in which
case t would differ from zero in that same direction. Moreover, the denominator of t is an estimate of the
standard error of X̄. Therefore, we have the following.



180 CHAPTER 7. ONE-SAMPLE HYPOTHESIS TESTS

Interpretation of the Test Statistic: The value of t measures (approximately) how many stan-
dard errors X̄ is away from µ0.

1. Large positive values of t provide evidence in favor of Ha : µ > µ0.

2. Large negative values of t provide evidence in favor of Ha : µ < µ0.

3. Both large positive and large negative values of t provide evidence in favor of Ha : µ 6= µ0.

To decide whether an observed value of t provides statistically significant evidence to support the
alternative hypothesis, we’ll determine if it’s among the values that would be unlikely to occur just by
chance under the null hypothesis. For this, we’ll need to know the sampling distribution that t would follow
if the null hypothesis was true. We know (Section 6.4 of Chapter 6) that if a sample is from a population
whose mean is µ, and either the population is normal or n is large, then

X̄ − µ
SX̄

∼ t(n− 1) (7.9)

(at least approximately), the t distribution with n− 1 degrees of freedom. Thus, because the test statistic
t is obtained by replacing the (unknown) population mean µ in (7.9) by its null-hypothesized value µ0, we
have the following.

Sampling Distribution of t Under H0: Suppose X1, X2, . . . , Xn is a random sample from a
population whose mean is µ, and either the population is normal or n is large. Then when

H0 : µ = µ0

is true,
t ∼ t(n− 1).

Thus, if the null hypothesis was true, chances are the test statistic t would fall close to zero, the center of its
null distribution. Values of t in the tail of the distribution, in the direction (or directions) specified by the
alternative hypothesis, would be unlikely and would therefore cast doubt on the null hypothesis, instead
supporting the alternative. How far in the tail t would need to be before we’d reject the null altogether
will depend on our choice for the level of significance α. We’ll see in a bit that a smaller value of α will
require t to be farther out in the tail. For now, though, here’s a table summarizing the test procedure for
both the rejection region and p-value approaches.
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One-Sample t Test for µ

Assumptions: The data X1, X2, . . . , Xn are a random sample from a population
and either the population is normal or n is large.

Null hypothesis: H0 : µ = µ0.

Test statistic value: t = X̄−µ0
S/
√
n

.

Decision rule: Reject H0 if p-value < α or t is in rejection region.

P-value = area under
Alternative t distribution Rejection region =
hypothesis with n− 1 d.f.: t values such that:*

Ha : µ > µ0 to the right of t t > tα,n−1

Ha : µ < µ0 to the left of t t < −tα,n−1

Ha : µ 6= µ0 to the left of − |t| and right of |t| t > tα/2,n−1 or t < −tα/2,n−1

* tα,n−1 is the 100(1− α)th percentile of the t distribution with n− 1 d.f.

The rejection region and p-value given in the table above are depicted graphically below for each of the
three alternative hypotheses. The t critical value (or values) used to demarcate the rejection region were
discussed in Chapter 6 (Section 6.5) and are obtained from a t distribution table or statistical software. In
either case, the level of significance α needs to be chosen first. The p-value is also obtained from the table
or using software, and requires observing the test statistic value t first.

1. Ha : µ > µ0 (Upper-Tailed Test)

Rejection Region for Upper−Tailed t Test

Values of t

−4 −2 0 tα, n−1 4

Reject H0Fail to Reject H0

α

t Distribution
with n − 1 df

P−Value for Upper−Tailed t Test

Values of t

−4 −2 0 Observed t 4

P−value

t Distribution
with n − 1 df

Figure 7.1
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2. Ha : µ < µ0 (Lower-Tailed Test)

Rejection Region for Lower−Tailed t Test

Values of t

−4 − tα, n−1 0 2 4

Reject H0 Fail to Reject H0

α

t Distribution
with n − 1 df

P−Value for Lower−Tailed t Test

Values of t

−4 Observed t 0 2 4

P−value

t Distribution
with n − 1 df

Figure 7.2

3. Ha : µ 6= µ0 (Two-Tailed Test)

Rejection Region for Two−Tailed t Test

Values of t

−4 − tα 2, n−1 0 tα 2, n−1 4

Reject 
H0

Reject 
H0

Fail to Reject H0

α
2

α
2

t Distribution
with n − 1 df

P−Value for Two−Tailed t Test

Values of t

−4 − | Observed t | 0 | Observed t | 4

P−value

t Distribution
with n − 1 df

Figure 7.3

Comment: It’s worthwhile at this point to look more closely at the role that the level of significance α
plays in hypothesis testing.

• For the rejection region approach, α determines the critical value tα,n−1 (or tα/2,n−1), which demarcates
the rejection region. The smaller α is, the farther away from zero the critical value will be, and so
the farther away from zero the test statistic t will need to be before we’re willing to reject the null
hypothesis.

• For the p-value approach, the smaller α is, the smaller the p-value will need to be before we’re willing
to reject the null hypothesis. And because smaller p-values result from t being farther away from
zero, a smaller α again means t will have to be farther away from zero before we’re willing to reject
the null.

Thus, in either case, using a smaller α means we require stronger evidence in favor of the alternative
hypothesis before we’re willing to reject the null.
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7.2.2 Carrying Out the One-Sample t Test

We’ll now turn to several examples. Examples 7.5 and 7.6 illustrate the rejection region and p-value
approaches, respectively, for a one-tailed test. Examples 7.7 and 7.8 illustrate the two approaches for a
two-tailed test. In all examples, the seven steps listed in Subsection 7.1.5 are followed.

Example 7.5: One-Sample t Test Using the Rejection Region Approach

In previous examples, a logging company was interested in showing that the true mean tree diameter
µ is less than 32 inches. The hypotheses are

H0 : µ ≥ 32 (7.10)

Ha : µ < 32. (7.11)

Equivalently, the hypotheses can be stated as in (7.6) and (7.7).

Suppose that in a random sample of n = 100 trees, the sample mean and standard deviation of the
diameters are

X̄ = 30.3

S = 8.16.

Suppose also that a histogram and a normal probability plot indicate that the data can be assumed
to be from a normally distributed population, so the one-sample t test is appropriate. In practice,
the t test would be appropriate even if the normality assumption wasn’t met because n is large.

The decision whether or not to reject the null hypothesis will be based on the observed value of the
test statistic

t =
X̄ − 32

SX̄
.

Using a level of significance α = 0.05, the decision rule for the rejection region approach is

Reject H0 if t < −t0.05,99

Fail to reject H0 if t ≥ −t0.05,99

From a table of t distribution critical values, using n− 1 = 99 degrees of freedom, t0.05,99 = 1.66, so
the decision rule is

Reject H0 if t < −1.66
Fail to reject H0 if t ≥ −1.66

The figure below shows the rejection region for the test.
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Rejection Region for Lower−Tailed One−Sample t Test

Values of t

−4 − t0.05, 99 = − 1.66 0 2 4

Reject H0 Fail to Reject H0

α = 0.05

t Distribution

with n − 1 = 99 df

Figure 7.4: The rejection region is demarcated by the t critical value −t0.05,99 = −1.66.

The (estimated) standard error of X̄ is

SX̄ =
8.16√
100

= 0.82,

so the observed t value is

t =
30.3− 32

0.82
= −2.08.

Therefore we reject the null hypothesis. This says that the observed difference between the sample
mean (X̄ = 30.3) and the null-hypothesized population mean (µ0 = 32) is statistically significant,
that is, not likely the result of chance variation (sampling variation). It appears that the logging
company’s claim that µ is less than 32 inches is correct.

Now we’ll repeat the hypothesis test of the last example using the p-value approach.

Example 7.6: One-Sample t Test Using the P-Value Approach

For the p-value approach, the hypotheses and test statistic t are the same as before. Again we’ll use
α = 0.05. Because we’re performing a lower-tailed test and the sample size is n = 99, the p-value
is the area to the left of the observed test statistic value, t = −2.08, under the t(99) curve. The
decision rule is

Reject H0 if p-value < 0.05
Fail to reject H0 if p-value ≥ 0.05

The p-value is the probability that we’d get a test statistic value as far below zero as the observed
one, t = −2.08, if the null hypothesis was true. It’s shown in the figure below.
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P−Value for Lower−Tailed One−Sample t Test

Values of t

−4 t = − 2.08 0 2 4

P−value = 0.02

t Distribution

with n − 1 = 99 df

Figure 7.5: The p-value is the area to the left of the observed test statistic value, t = −2.08, under
the t(99) distribution.

From a table of t distribution tail areas, using n − 1 = 99 degrees of freedom, the p-value is found
to be 0.0201. This says that we’d end up with a test statistic value as far below zero as −2.08 by
chance only 2.01% of the time if the null hypothesis was true, that is, if the population mean tree
diameter was 32 inches.

Because the p-value is less than 0.05, we reject the null hypothesis using the p-value approach just
as we did using the rejection region approach. Once again, we find that the evidence supporting the
hypothesis that the true (unknown) mean diameter µ is less than 32 inches is statistically significant.

The next example illustrates a two-tailed test (using the rejection region approach).

Example 7.7: One-Sample t Test Using the Rejection Region Approach

A laboratory quality assurance study was carried out to look for signs of systematic bias in a
lab’s method for measuring total organic carbon (TOC), a measure of water quality [?]. Certified
standard solutions having 50 mg/L TOC were randomly inserted into the lab’s normal work stream.
The lab analysts were unaware of the presence of these standard solutions.

If there was no systematic bias, a 50 mg/L standard solution would, on average, give a 50 mg/L
measurement reading. But if the measurement method was biased, the reading would differ from
50, on average, in the direction of the bias. The relevant hypotheses are

H0 : µ = 50 (7.12)

Ha : µ 6= 50 (7.13)

where µ is the true (unknown) mean measurement reading for a standard solution containing a true
concentration of 50 mg/L. The null hypothesis says there’s no bias. The alternative says there’s
bias, but doesn’t specify a direction for that bias.

Here are the measurement readings for n = 16 of the standard solutions inserted into the lab’s work
stream:



186 CHAPTER 7. ONE-SAMPLE HYPOTHESIS TESTS

50.3 51.2 50.5 50.2 49.9 50.2 50.3 50.5
49.3 50.0 50.4 50.1 51.0 49.8 50.7 50.6

The sample mean and sample standard deviation are

X̄ = 50.31

S = 0.46.

A histogram and normal probability plot of the data are shown below.
Histogram of TOC Measurments
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Figure 7.6: Histogram (left) and normal probability plot (right) of n = 16 measurements of TOC
made on 50 mg/L standard solutions.

The plots indicate that it’s reasonable to assume the data are a random sample from a normal
distribution, so a one-sample t test is appropriate.

For the rejection region approach, using a level of significance α = 0.01, the decision rule is

Reject H0 if t < −t0.005,15 or t > t0.005,15

Fail to reject H0 if −t0.005,15 ≤ t ≤ −t0.005,15

From a table of t distribution critical values, using n− 1 = 15 degrees of freedom), t0.005,15 = 2.95,
so the decision rule is

Reject H0 if t < −2.95 or t > 2.95
Fail to reject H0 if −2.95 ≤ t ≤ 2.95

The figure below shows this rejection region along with the t distribution with n − 1 = 15 degrees
of freedom.
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Rejection Region for Two−Sided One−Sample t Test

Values of t

− t0.005, 15 = − 2.95 0 t0.005, 15 = 2.95

Reject 

H0

Reject 

H0

Fail to Reject H0

α
2

= 0.005
α
2

= 0.005

t Distribution with n − 1 = 15 df

Figure 7.7: The rejection region is demarcated by the t critical values −t0.005,15 = −2.95 and
t0.005,15 = 2.95.

The (estimated) standard error of X̄ is

SX̄ =
0.46√

16
= 0.115,

The observed value of the test statistic is

t =
50.31− 50

0.115
= 2.70.

Because t = 2.70 isn’t in the rejection region, we fail to reject the null hypothesis. The observed
difference between the sample mean X̄ = 50.31 and the certified concentration 50 mg/L can be
explained by chance variation (sampling variation). In other words, there’s no convincing evidence
that the lab’s measurement method is biased.

Now we’ll repeat the hypothesis test of the last example using the p-value approach.

Example 7.8: One-Sample t Test Using the P-Value Approach

For the p-value approach, the hypotheses and test statistic t are the same as before. Again we’ll
use α = 0.01. Because we’re performing a two-tailed test and the sample size is n = 15, the p-value
is the area to the right of the observed test statistic value, t = 2.70, and to the left of its negative,
−t = −2.70, under the t(14) curve. The decision rule is

Reject H0 if p-value < 0.01
Fail to reject H0 if p-value ≥ 0.01

Because we’re conducting a two-tailed test, the p-value is the sum of the two tail areas to the right
of 2.70 and left of -2.70 under the t(15) curve, as shown below.
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P−Value for Two−Tailed One−Sample t Test

Values of t

−4 − t = − 2.7 0 t = 2.7 4

P−value = 2(0.008) = 0.016

t Distribution with n−1=15 df

Figure 7.8: The p-value is the sum of the two tail areas to the right of t = 2.70 and left of its
negative, −2.70, under the t(15) distribution.

From a table of t distribution tail areas, using n − 1 = 15 degrees of freedom, the p-value is found
to be 2(0.0082) = 0.0164. This says that if the null hypothesis was true and there was no bias in
the lab results, we’d get a test statistic value as far away from zero as 2.70 (in either direction) just
by chance about 1.64% of the time.

Because the p-value is greater than 0.01, we fail to reject H0, and conclude, just as we did in Example
7.7, that there’s no convincing evidence for bias. Any bias suggested by the sample isn’t statistically
significant, and can be explained by chance variation (sampling variation).

7.3 Data Snooping and its Consequences

The term data snooping refers to looking at the data before having decided on a direction for the
alternative hypothesis, and then, after looking at the data, choosing the direction for the alternative
hypothesis that best fits what you already see in the data. Data snooping is considered ”cheating” because,
as we’ll see, it results in an artificially small p-value, which can lead to mistakenly declaring a spurious
result to be real.

We avoid data snooping by only using a one-sided alternative hypothesis if we have a specific direction
in mind prior to looking at the data. This way, the direction of the alternative is like a prediction of
what we think the data will show, and if they end up showing it, we can be more sure that we’re making
the correct decision if we reject the null. If we don’t have a specific direction in mind for the alternative
hypothesis prior to looking at the data, we should perform a two-tailed test.

The next example shows how data snooping can lead to an artificially small p-value. In particular, the
p-value ends up being only half as large as it would’ve ended up being if we hadn’t data snooped.

Example 7.9: Data Snooping

In the laboratory quality assurance study of Examples and 7.7 and 7.8, the investigator had no
reason to suspect, in advance, that the bias would be one specific direction or the other, so the
appropriate alternative hypothesis was the two-sided one given by 7.13.
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Suppose, though, that the investigator had data snooped, and decided, after noticing that X̄ = 50.31
is greater than 50, to do a one-sided, upper-tailed test of

H0 : µ = 50

Ha : µ > 50

using α = 0.01 again.

The test statistic would still be t = 2.70, but now the p-value would be just the upper tail area of
the t(15) distribution, to the right of 2.70, which was found to be 0.0082 in Example 7.8. In this
case the p-value would be half of what it was for the two-tailed test, and using α = 0.01, the null
hypothesis of no bias would be rejected. Here, the investigator would (mistakenly) conclude that
the lab’s results are biased in the positive direction, and might unnecessarily recommend corrective
actions.

The warning to avoid data snooping doesn’t say that it’s inappropriate to use data to form hypotheses
about the world. Indeed, much of scientific progress stems from forming hypotheses by looking at data.
What it does say is that we need to be cautious of using the same data set to both form and test a
hypothesis. The scientific method entails using data to form theoretical hypotheses, but then testing those
hypotheses using independent sets of data.

7.4 Equivalence of the Rejection Region and P-value Approaches

In the tree diameters and laboratory quality assurance examples, the rejection region and p-value ap-
proaches led to the same conclusions. In general, the two approaches always lead to the same conclusion,
regardless of whether a t test or some other type of test is being carried out. This is a consequence of the
following fact.

Fact 7.1 For any hypothesis testing procedure, using level of significance α, the test statistic will
fall in the rejection region if and only if the p-value is less than α.

To see why, in the context of an upper-tailed one-sample t test using α = 0.05, note that the area under
the t(n− 1) curve to the right of the critical value t0.05,n−1 is 0.05. See Fig. 7.1 in Subsection 7.2.1. Thus
if the observed test statistic value is greater than t0.05,n−1, that is, if it’s in the rejection region, the area
to its right, which is the p-value, will be less than 0.05. Similarly, if the test statistic is less than t0.05,n−1,
the area to its right, or p-value, will be greater than 0.05.

In practice the p-value approach is used much more often than the rejection region approach. A reported
p-value indicates how strong the evidence against the null hypothesis is (smaller p-values indicate stronger
evidence), and the end user can compare that p-value to whatever significance level they choose. We’ll see
in Subsection 7.6.3 how to choose a significance level.

7.5 Using Confidence Intervals to Test Hypotheses

In Chapter 6, confidence intervals were presented as a method for estimating an unknown population pa-
rameter such as µ. Hypothesis tests, on the other hand, are a method for deciding (”yes” or ”no”) whether
µ (or some other parameter) is different from a particular value µ0. It turns out that we can use confidence
intervals to make this decision too, by checking whether µ0 is in the interval.
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Using Confidence Intervals to Test Hypotheses: We can use a 100(1− α)% one-sample t (or
z) confidence interval for an unknown population mean µ to test the hypotheses

H0 : µ = µ0

Ha : µ 6= µ0

by invoking the decision rule

Reject H0 if the confidence interval doesn’t contain µ0

Fail to reject H0 if it does contain µ0

The significance level of the test performed in this manner will be α.

The intuition is that if µ0 isn’t contained in the interval, it’s not a plausible value for µ, so the null
hypothesis can be rejected. Notice that the alternative hypothesis is two-sided. A one-sided alternative
hypothesis can be tested in a similar manner using a one-sided confidence interval.

The next fact says that testing hypotheses using a confidence interval, as just described, leads to the
same the conclusion as testing them using a one-sample t (or z) test.

Fact 7.2 In a one-sample t (or z) test of the two-sided hypotheses

H0 : µ = µ0

Ha : µ 6= µ0

using level of significance α, we would reject H0 if and only if µ0 lies outside the 100(1 − α)%
one-sample t (or z) confidence interval.

Example 7.10: Using Confidence Intervals to Test Hypotheses

Using the TOC data from the laboratory quality assurance study of Example 7.7, a 99% one-sample
t confidence interval for µ, the true (unknown) mean result when a 50 mg/L standard solution is
measured at the lab, is

(49.97, 50.65) .

Values inside this interval are plausible for µ. Values outside it are implausible. To use the confidence
interval to decide between the hypotheses

H0 : µ = 50

Ha : µ 6= 50

the decision rule is

Reject H0 if the confidence interval doesn’t contain 50
Fail to reject H0 if it does contain 50

Using this method, we fail to reject the null hypothesis because 50 is within the confidence interval.
We arrived at the same conclusion using the t test in Examples 7.7 and 7.8.

The intuition behind Fact 7.2 is that the distance away from µ0 that X̄ would need to be in order for the
null hypothesis to be rejected is exactly the same as the margin of error in the confidence interval. To



7.6. TYPE I AND II ERRORS AND THEIR PROBABILITIES 191

demonstrate this formally, consider the decision rule in a t test using rejection region approach,

Reject H0 if t < −tα/2,n−1 or t > tα/2,n−1

Fail to reject H0 otherwise

where

t =
X̄ − µ0

SX̄
.

Thus we’d reject the null hypothesis if

X̄ − µ0

SX̄
< −tα/2,n−1 or

X̄ − µ0

SX̄
> tα/2,n−1.

A little algebra shows that this is equivalent to rejecting the null hypothesis if

µ0 > X̄ + tα/2,n−1SX̄ or µ0 < X̄ − tα/2,n−1SX̄ .

But this says we reject the null if µ0 is above the upper endpoint of the 100(1 − α)% confidence interval
or below the lower endpoint.

The use of confidence intervals to test hypotheses can be generalized beyond just the one-sample t
procedures.

Using Confidence Intervals to Test Hypotheses: We can use a 100(1−α)% confidence interval
for any unknown population parameter to test the hypotheses

H0 : Population parameter = Claimed value

Ha : Population parameter 6= Claimed value

by invoking the decision rule

Reject H0 if the confidence interval doesn’t contain the claimed value
Fail to reject H0 if it does contain the claimed value

The significance level of the test performed in this manner will be α.

7.6 Type I and II Errors and Their Probabilities

7.6.1 Introduction

Any time we carry out a hypothesis test, there’s a possibility that we might draw the wrong conclusion.
There are two types of errors in hypothesis testing, analogous to ”false positive” and ”false negative” in
medical testing. A Type I error (”false positive”) occurs when we mistakenly reject the null hypothesis
even though in fact the null is true. A Type II error (”false negative”) occurs when we mistakenly fail
to reject the null hypothesis even though the alternative is in fact true. The table below summarizes the
two error types.
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Type I and II Errors

True State of Nature
H0 Ha

Your Reject H0 Type I Error Correct Decision
Decision

Fail to Reject H0 Correct Decision Type II Error

Example 7.11: Type I and II Errors

To decide whether a lake’s radioactivity level is safe, a random sample of n = 50 radioactivity
measurements (pCi/L) is made in the lake. The value 5 pCi/L is considered the dividing line
between safe and unsafe water.

To decide whether the lake is safe or not, we could test

H0 : µ ≥ 5

Ha : µ < 5

where µ is the lake’s true mean radioactivity level. The null hypothesis says the water is hazardous.
The alternative says it’s safe.

A Type I error would occur if in reality the lake’s water is unsafe, but we conclude that it’s safe. A
Type II error would occur if in reality the water is safe, but we conclude that it’s hazardous.

Notice in this case that a Type I error would have more serious consequences than a Type II error.
We’ll return to this point in Subsections 7.6.3 and 7.6.4.

7.6.2 The Level of Significance as the Probability of a Type I Error

When evidence strong enough to reject the null hypothesis occurs just by chance, a Type I error results.
It turns out that chance of this happening is determined by our choice of the level of significance α.

Fact 7.3 Consider a one-sample t (or z) test, using level of significance α, with null hypothesis

H0 : µ = µ0

When H0 is true,
P (Type I error) = α.

Thus the chance of making a Type I error is the same as the significance level α. To see why, consider
a one-sample t test of

H0 : µ = µ0

using the rejection region approach and significance level, say, α = 0.05. The rejection region would be
comprised of t values in the most extreme 5% of the t(n − 1) distribution in the direction(s) specified by
the alternative hypothesis. See the left-side graphs of Figures 7.1 - 7.3. But the t(n − 1) distribution is
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the distribution that the test statistic t would follow if the null hypothesis was true. In other words, the
rejection region consists of test statistic values that would occur just by chance 5% of the time if the null
hypothesis was true, and each time it occurred, a Type I error would result.

The level of significance α represents the Type I error probability for other tests too, not just the
one-sample t and z tests.

Fact 7.4 Consider a test for an unknown population parameter, using level of significance α, with
null hypothesis of the form

H0 : Population parameter = Claimed value

When H0 is true,
P (Type I error) = α

if the test statistic follows a continuous distribution, and

P (Type I error) ≤ α

if it follows a discrete distribution.

7.6.3 Choosing a Level of Significance

We saw in Subsection 7.2.1 that the level of significance determines how strong the evidence needs to be
before we’re willing to reject the null hypothesis – a smaller α requires stronger evidence because it requires
that the observed t value be farther away from zero.

We now have a more intuitive way of looking at this. If we use α = 0.05, we require that the evidence
against the null hypothesis be strong enough that evidence as strong would occur just by chance only 5%
of the time. Using α = 0.01 requires even stronger evidence. It requires evidence so strong that it would
occur by chance only 1% of the time.

Because using a smaller α requires stronger evidence against the null hypothesis, if we end up rejecting
the null we can be more sure we’re making the correct decision, that is, more sure we’re not committing a
Type I error. It’s customary to choose α to be either 0.01, 0.05, or 0.10. The choice will depend on the
consequences of making a Type I error. If the consequences are very serious, a small value for α should be
used (such as α = 0.01 or even smaller).

Example 7.12: Choosing a Level of Significance

Refer to the study to decide if a lake’s radioactivity level is safe, as described in Example 7.11. We
want to test

H0 : µ ≥ 5

Ha : µ < 5,

where µ is the true mean radioactivity level and the value 5 pCi/L is considered the dividing line
between safe and unsafe water.

A Type I error consists of declaring the water safe even though it’s not (see Example 7.11). This
could have very serious consequences for people’s health, so we’d want to use a small α, say α = 0.01.
With this choice of α, the chance of mistakenly deeming the lake safe if it wasn’t would only be 1%.

Using a small significance level to lessen the chance of mistakenly rejecting a true null hypothesis comes
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at a price, though. We’ll see (Subsection 7.6.5) that using a smaller α raises the chance of making a Type
II error when the alternative hypothesis is true.

7.6.4 Proof of Safety Versus Proof of a Hazard

As mentioned in Subsection 7.1.2, hypothesis tests are able to establish (beyond a reasonable doubt) that
an alternative hypothesis is true, but they can’t establish that a null hypothesis is true. When we ”fail to
reject” the null hypothesis, we’re not necessarily ”accepting” it.

In studies to decide if the contaminant level at a site is safe or hazardous, therefore, we’re faced with
the question of whether to establish that the site is safe or to establish that it’s hazardous. For example,
in the study of a lake’s radioactivity level (Examples 7.11 and 7.12), we’d be faced with a choice between
testing

H0 : µ ≥ 5 H0 : µ ≤ 5
Ha : µ < 5 or Ha : µ > 5

(7.14)

where µ is the mean radioactivity level. In the first set of hypotheses, we could establish that the lake is
safe, but not that it’s hazardous. In the second set, we could establish that the lake is hazardous, but not
that it’s safe.

It’s customary in such situations to set up the hypotheses so that we can establish that the site is safe.
In other words, it’s customary for the alternative hypothesis to say that the site is safe and the null to say
that it’s hazardous. There are two reasons for doing it this way:

1. If we tested the opposite, with the alternative saying the site is hazardous (and the null saying it’s
safe), then even if we failed to reject the null hypothesis, we couldn’t necessarily conclude that the
site is safe – only that there was insufficient evidence to conclude that it’s hazardous.

2. When the alternative hypothesis says the site is safe (and the null says it’s hazardous), a Type I error
(concluding the site is safe when in fact it’s hazardous) has more serious consequences than a Type
II error (concluding the site is hazardous when it’s actually safe). We can then reduce the chance of
making the more serious (Type I) error by using a small α (Sections 7.6.2 and 7.6.3).

In the study of a lake’s radioactivity level, we’d test the first set of hypotheses in (7.14) and use a small α
value. That way, we’d reduce the chance of making a Type I error, which would be deeming the water to
be safe when in fact it’s hazardous.

7.6.5 Power and the Probability of a Type II Error

Recall that a Type II error occurs when we (mistakenly) fail to reject the null hypothesis even though in
reality the alternative hypothesis is true. A Type II error results when, by happenstance, we end up with
data that provide insufficient evidence to reject the null even though the alternative is true.

We use β to denote the chance of making a Type II error, that is,

β = P (Type II error).

The power of a test is the probability that you (correctly) reject the null hypothesis when in fact the
alternative is true. It’s the chance that you don’t make a Type II error when the alternative is true, and
therefore equals one minus the chance that you do make one.

Power of a Test: For any hypothesis test,

Power = 1− P (Type II error)

= 1− β.
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The power of a test measures the capacity of the test to detect departures from the null hypothesis.
A test with high power is likely to detect a departure from the null. A test with low power is unlikely
to detect it. In an experiment, with the null hypothesis saying that there’s no treatment effect and the
alternative saying there is one, the power measures ability of the hypothesis test to detect an effect if there
is one. If our goal is to disprove the null hypothesis, a more powerful test is better. Some hypothesis test
procedures are more powerful than others. When it’s applicable, the one-sample t test procedure is more
powerful than any other test procedure that might also be applicable, including the one-sample sign test
discussed in Section 7.8. Furthermore, regardless of which test procedure is used, the power will be higher
the larger the sample size n is.

Maximizing the Power: To ensure that when the alternative hypothesis is true, the power for
rejecting the null is as high as possible, first choose from among the applicable test procedures the
one that’s most powerful. Then use the largest feasible sample size n.

For the one-sample t procedure (and other commonly used test procedures), the power of the test can
be determined, for any given sample size n, from tables found in many books on hypothesis testing. In
practice, these tables can also be useful for sample size determination by following the steps below.

1. Decide on a level of significance (for example α = 0.05).

2. Decide on a desired power (for example 1− β = 0.80).

3. Look up in the table how big n would need to be to attain the desired power.

7.6.6 Statistical Significance Versus Practical Importance

There’s an important distinction between a study result that’s statistically significant and one that’s of
practical importance. The former only means that a difference or effect was detected, not that the difference
or effect is large enough to have any consequential impacts. For example, one study found that logging a
forest can raise temperatures of nearby streams (via increased solar radiation), but that further research
was needed to determine the biological implications of those temperature changes, suggesting that the
effects of logging are statistically significant, but may not be of practical importance for stream biology
[?].

While it’s true that a large difference or effect will lead to a low p-value, a small, unimportant difference
or effect can also produce a low p-value if the sample size n is very large. Large sample sizes give very
precise estimates of even small differences and effects, and this precision, reflected in the standard errors
of the estimates, can translate into highly statistically significant results.

When a difference or effect is found to be statistically significant, it’s a good idea, therefore, to report
not only the p-value, which measures how strong the evidence for a difference or effect is, but also a
confidence interval, which measures the size of the difference or effect.

7.6.7 The Trade-Off Between Type I and II Error Probabilities

Using a smaller level of significance requires stronger evidence against null hypothesis before we’re willing
to reject that hypothesis (Subsection 7.6.2), and therefore lessens the chance of making a Type I error.
But unfortunately, it also means we reject the null less often even when the alternative hypothesis is true.
In other words, using a smaller value for α simultaneously reduces the risk of making a Type I error and
increases the risk of making a Type II error.

In practice, we want α to be small enough that the chance of making a Type I error is of little concern,
but not so prohibitively small that detecting a difference or effect (when there is one) becomes nearly
impossible. This line of reasoning has led practitioners to settle on the values 0.01, 0.05, or 0.10 for α,
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with the choice depending on the severity of the consequences of making a Type I error – the more severe,
the smaller the value of α should be (Subsection 7.6.3).

7.7 Dealing With Non-Normal Data: Transformations and Nonpara-
metric Procedures

Many hypothesis testing procedures, including the one-sample t procedure, rest on an assumption that the
sample was drawn from a normal population (or the sample size n is large). If the normality assumption
isn’t met (and n isn’t large), there are two possible remedies.

1. Transform the data to normality: Sometimes it’s possible to transform non-normal data so that
the transformed values are approximately normally distributed, for example by taking their logs or
using another transformation from the Ladder of Powers (Section 6.10.4), and then carry out the test
on the transformed data.

2. Carry out a nonparametric test: Another options is to use a so-called nonparametric test
procedure, meaning a test procedure that doesn’t rely on an assumption that the population is
normal (nor does it require that the population follows any other particular distribution). The sign
test described in the next section is a nonparametric alternative to the one-sample t test.

7.8 The One-Sample Sign Test for a Population Median

7.8.1 Introduction

The one-sample sign test is a nonparametric test for the (unknown) value of a population median µ̃.
Unlike the one-sample t test, it doesn’t require a normality assumption about the population from which
the sample was drawn, so it can be viewed as a nonparametric alternative to the t test (despite the fact
that it tests for the median, not the mean). Example 7.13 presents a study for which the t test wouldn’t
be appropriate, but the sign test would.

Example 7.13: One-Sample Sign Test

Emissions from automobiles contain platinum (Pt) as a byproduct of their catalytic converters.
A study was carried out to investigate Pt contamination in roadside soils in the Manoa basin in
southeast Oahu, Hawaii [?].

Platinum concentrations (ng/g) were measured in soil specimens extracted from a depth of 7.5 - 10
cm at n = 11 roadside locations.

For each location, a measure of the roadside Pt concentration relative to background concentrations
was computed. The observed values of the measure, called the enrichment ratio (ER), are given in
the table below.
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Roadside Pt Enrichment
Ratios at 7.5 - 10 cm Depth

Soil Specimen Enrichment Ratio

1 5.3
2 4.1
3 0.9
4 9.7
5 0.6
6 0.9
7 0.6
8 2.9
9 1.1
10 2.6
11 0.6

Enrichment ratio values greater than one indicate that the roadside Pt concentration is higher than
background concentrations, and support the hypothesis that automobile emissions contribute to soil
Pt concentrations. Formally, the ERs used in the study were defined to be

ER =
X

X̃bg + 2 (MADbg)
,

where X is a roadside Pt concentration, and X̃bg and MADbg are the median and median absolute
deviation of Pt concentrations measured at background locations. They’re interpreted as ratios of
roadside Pt concentrations to a typical (large) background concentration.

We want to decide if these data provide convincing evidence that roadside Pt ERs tend to be
greater than one. A normal probability plot and dotplot (below) indicate that it wouldn’t be
reasonable to assume that the sample is from a normal distribution, and because the sample size
isn’t large, a one-sample t test wouldn’t be appropriate. Instead, in Example 7.14, we’ll carry out a
one-sample sign test.
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Figure 7.9: Normal probability plot (left) and dot plot (right) of the roadside Pt enrichment ratios
for a soil depth of 7.5 - 10 cm.



198 CHAPTER 7. ONE-SAMPLE HYPOTHESIS TESTS

7.8.2 The One-Sample Sign Test Procedure

Suppose we have a random sample from any continuous population (not necessarily normal) whose median
is µ̃. In the population, half of the individuals lie above µ̃ and the other half below it, so each individual
selected for the sample has a 50/50 chance of falling above or below µ̃, and we’d expect about half of the
sample to fall above µ̃ and the other half below it.

We’ll want to test the null hypothesis
H0 : µ̃ = µ̃0, (7.15)

that the true (unknown) population median is equal to some claimed value µ̃0, versus one of the alternative
hypotheses

1. Ha : µ̃ > µ̃0 (upper-tailed test)

2. Ha : µ̃ < µ̃0 (lower-tailed test)

3. Ha : µ̃ 6= µ̃0 (two-tailed test)

The null-hypothesized value µ̃0 should be chosen for its relevance to the study’s research question, and the
alternative hypothesis should reflect what the study is attempting to substantiate.

If the null hypothesis was true, the population median µ̃ would equal the claimed value µ̃0, and each
individual selected for the sample would have a 50/50 chance of falling above or below µ̃0. In this case,
we’d expect about half of the individuals in the sample, or n/2 of them, to fall above µ̃0 (and the other
half below it). The one-sample sign test statistic, denoted S+, is just the number of observations in
the sample that fall above µ̃0.

Sign Test Statistic: For a sample X1, X2, . . . , Xn,

S+ = Number of Xi’s that are greater than µ̃0.

If any of the Xi’s equal µ̃0, they’re discarded prior to computing S+, and the sample size n is reduced
by the number of discarded Xi’s.

It the null hypothesis was true, we’d expect S+ to approximately equal n/2, meaning about half of the
observations in the sample fall above µ̃0. If substantially more than half or substantially less than half of
fall above µ̃0, that is, if S+ differs substantially from n/2, it’s evidence that the true (unknown) population
median µ̃ differs from µ̃0. More specifically, we have the following.

1. Large values of S+ (larger than n/2) provide evidence in favor of Ha : µ̃ > µ̃0.

2. Small values of S+ (smaller than n/2) provide evidence in favor of Ha : µ̃ < µ̃0.

3. Both large and small values of S+ (larger or smaller than n/2) provide evidence in favor of
Ha : µ̃ 6= µ̃0.

To decide whether an observed value of S+ provides statistically significant evidence in support of the
alternative hypothesis, we’ll need to know its sampling distribution under the null hypothesis.

Sampling Distribution of S+ Under H0: Suppose X1, X2, . . . , Xn is a random sample from any
continuous population whose median is µ̃. Then when

H0 : µ̃ = µ̃0

is true,
S+ ∼ binomial(n, 0.5).
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This is easy to see if we think of the n observations in the sample as independent trials, each of which
results in a success if the observation is greater than µ̃0, which happens with probability 0.5 when the null
hypothesis is true, and a failure otherwise. Then the test statistic S+ just counts how many of the trials
were successes, that is, it’s a binomial random variable (Section 4.3).

The mean of the binomial(n, 0.5) distribution is n/2, and values of S+ in the extreme tail of the
distribution (in the direction specified by the alternative hypothesis) provide evidence against the null
hypothesis. Thus the rejection region is composed of S+ values in the the extreme 100α% of the distribution,
and the p-value is the tail probability outward from the observed S+ value, as shown in the figures below
for the three choices of the alternative hypothesis.

1. Ha : µ̃ > µ̃0 (Upper-Tailed Test)

S+ Values

0 sα, n nn

2

Rejection Region for Upper−Tailed Sign Test

Binomial(n, 0.5)
Distribution

Reject H0Fail to Reject H0

≤ α

S+ Values

0 Observed nn

2 S+

P−Value for Upper−Tailed Sign Test

Binomial(n, 0.5)
Distribution

P−Value

1. Ha : µ̃ < µ̃0 (Lower-Tailed Test)

S+ Values

0 s*α, n nn

2

Rejection Region for Lower−Tailed Sign Test

Binomial(n, 0.5)
Distribution

Reject H0 Fail to Reject H0

≤ α

S+ Values

0 Observed nn

2S+

P−Value for Lower−Tailed Sign Test

Binomial(n, 0.5)
Distribution

P−Value
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1. Ha : µ̃ 6= µ̃0 (Two-Tailed Test)

S+ Values

0 s*α 2, n sα 2, n nn

2

Rejection Region for Two−Tailed Sign Test

Binomial(n, 0.5)
Distribution

Reject
H0

Reject
H0

Fail to
Reject H0

≤
α
2

≤
α
2

S+ Values

0 Observed nn

2 S+

P−Value for Two−Tailed Sign Test

Binomial(n, 0.5)
Distribution

P−Value

The steps for carrying out a one-sample sign test for µ̃ are summarized below and in the table that
follows.

Steps for carrying out the one-sample sign test:

1. If any of the sample observations X1, X2, . . . , Xn equal µ̃0, remove those Xi’s from the data
set and carry on without them, reducing the sample size by the number of deleted Xi’s.

2. Count the number of remaining observations that are greater than µ̃0. This gives the observed
test statistic value S+.

3. Obtain the p-value by referring the observed value of S+ to a table of tail probabilities for the
binomial(n, 0.5) distribution.
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One-Sample Sign Test for µ̃

Assumptions: x1, x2, . . . , xn is a random sample from any continuous population.

Null hypothesis: H0 : µ̃ = µ̃0.

Test statistic value: s+ = number of xi’s greater than µ̃0.

Decision rule: Reject H0 if p-value < α or s+ is in rejection region.

Alternative P-value = tail probability of the Rejection region =
hypothesis binomial(n, 0.5) distribution: * s+ values such that: **

Ha : µ̃ > µ̃0 to the right of (and including) s+ s+ ≥ sα,n
Ha : µ̃ < µ̃0 to the left of (and including) s+ s+ ≤ s∗α,n
Ha : µ̃ 6= µ̃0 2·(the smaller of the tail prob- s+ ≤ s∗α/2,n or s+ ≥ sα/2,n

abilities to the right of (and
including) s+ and to the left
of (and including) s+)

* For a given sample size (after deleting the µ̃0-valued xi’s) n, the p-value for a one-tailed
test is obtained from a binomial(n, 0.5) distribution table by locating the upper or lower
tail probability (depending on the direction of Ha) associated with the observed S+

value. For a two-tailed test, locate both the upper and lower tail probabilities and
multiply the smaller of these by two.

** For a given sample size (after deleting µ̃0-valued xi’s) n and level of significance α, sα,n
is obtained from a binomial(n, 0.5) distribution table by locating the smallest s for which
the upper tail probability is less than α. s∗α,n is obtained by locating the largest s for

which the lower tail probability is less than α. For the two-tailed test, sα/2,n and s∗α/2,n
are defined analogously but with α/2 used in place of α. In practice, due to the discrete-
ness of the distribution, it’s not always possible obtain a rejection region having exact
probability α.

Here are two examples illustrating the sign test, the first with a one-sided alternative hypothesis and
the second a two-sided alternative.

Example 7.14: One-Sample Sign Test

Returning to the study of platinum (Pt) in roadside soils (Example 7.13), we’ll us a one-sample sign
test to test the hypotheses

H0 : µ̃ = 1

Ha : µ̃ > 1

where µ̃ is the true (unknown) population median Pt enrichment ratio (ER) in roadside soils in the
Manoa basin. The null says median ER is one, meaning Pt concentrations are no greater in roadside
soils than in background soils. The alternative says the median is greater than one, meaning Pt
concentrations are higher in roadside soils.
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From the data in Example 7.13, we see that six of the n = 11 ERs (slightly more than half) are
greater than one, so the observed test statistic value is

S+ = 6.

This provides some evidence in favor of the alternative hypothesis, but it’s very weak.

The p-value is the probability that we’d get as many as six ER values greater than one just by
chance if the null hypothesis was true. If the null was true, S+ would follow a binomial(11, 0.5)
distribution, and for the upper-tailed test, the p-value is the probability that a binomial(11, 0.5)
random variable would be as large as six (or larger), as shown in the probability histogram below.
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Figure 7.10: Sampling distribution of S+ under the null hypothesis, a binomial(11, 0.5) distribution,
and the p-value for an upper-tailed sign test when n = 11 and the observed test statistic value is
S+ = 6.

Although we could obtain the p-value from a table of binomial distribution tail areas, in this exam-
ple, for expository purposes, we’ll use probabilities obtained from the binomial(11, 0.5) probability
function of Chapter 4. The table below shows these probabilities.

s+ 0 1 2 3 4 5 6 7 8 9 10 11
p(s+) 0.0005 0.0054 0.0269 0.0806 0.1611 0.2256 0.2256 0.1611 0.0806 0.0269 0.0054 0.0005

From the binomial probabilities given above, the p-value is

P-value = 0.2256 + 0.1611 + 0.0806 + 0.0269 + 0.0054 + 0.0005 = 0.5000.

Using a level of significance α = 0.05, since the p-value is greater than α, we fail to reject the null
hypothesis. There’s no statistically significant evidence that the true (unknown) median ER for
roadside soil is greater than one.

The next example illustrates the sign test when the alternative hypothesis is two-sided.
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Example 7.15: One-Sample Sign Test

A study was carried out to determine the accuracy of a new a method developed by the U.S.
Environmental Protection Agency for measuring sulfur dioxide (SO2) emissions from coal-burning
power plants [?].

Nine lab technicians were trained in the new method and then asked to use it to measure the
SO2 concentration in an EPA audit cylinder containing a known concentration of 447 ppm. Their
measurement results are shown below.

SO2 Measurements on EPA Audit
Cylinder Containing 447 ppm

Technician SO2 Measurement

1 688
2 478
3 524
4 447
5 2135
6 434
7 712
8 464
9 478

According to the cited paper, the very large SO2 result may have been due to an equipment
malfunction, but in this example we’ll treat it as a legitimate observation.

We want to decide if there’s any statistically significant evidence that the new method produces
biased measurements, either ones that are systematically too large or ones that are systematically
too small.

A normal probability plot and dotplot of the data are below.
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Figure 7.11: Normal probability plot (left) and dot plot (right) of SO2 measurements on an audit
cylinder containing 447 ppm SO2.
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Due to the extreme outlier, it wouldn’t be reasonable to treat the data as a sample from a normal
distribution, and therefore, because n is small, a one-sample t test wouldn’t be appropriate. Instead,
we’ll carry out a sign test.

If there was no systematic bias, we’d expect measurements to be greater than 447 about half of the
time and less than 447 the other half of the time. In other words, the population median would be
µ̃ = 447. To decide whether this is the case, we’ll test

H0 : µ̃ = 447

Ha : µ̃ 6= 447

One of the observations in the sample is equal to 447, so before proceeding we discard this
observation and use a reduced sample size of n = 8.

Because seven of the observations in the (reduced) sample are greater than 447, the test statistic
value is

S+ = 7.

If the method was unbiased, we’d expect about four of the eight (remaining) measurements to be
greater than 447.

The p-value for the two-tailed test is the probability that the number of measurements greater
than 447 would differ from four by as much as the observed number, seven, if the the method was
unbiased. If the method was unbiased, S+ would follow a binomial(8, 0.5) distribution. The p-value
is the sum of the two tail probabilities from this distribution, as shown in the figure below.

0 1 2 3 4 5 6 7 8

s+

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

P−Value for One−Sample Sign Test
when n = 8 and s+ = 7

Figure 7.12: The p-value for the two-tailed, one-sample sign test when n = 8 and the observed test
statistic value is S+ = 7.

From a table of binomial distribution tail areas using n = 8, the upper tail probability associated
with S+ = 7 is 0.0352, and the lower tail probability is 0.9961. The p-value is two times the smaller
of these, which is to say,

P-value = 2(0.0352) = 0.0704.

Thus using α = 0.05, we fail to reject the null hypothesis. The data do not provide statistically
significant evidence at the 5% level that the new method is biased.
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7.8.3 Large Sample Version of the Sign Test

When the sample size n is large, it turns out that the sign test statistic S+ follows (approximately) a
normal distribution. In this case, p-values can be obtained from the normal distribution that S+ would
follow under the null hypothesis rather than from the binomial distribution.

Recall (Chapter 4) that the mean and standard deviation of a binomial(n, p) distribution are

µbin = np and σbin =
√
np(1− p).

Since S+ ∼ binomial(n, 0.5) when the null hypothesis is true, the mean and standard error of its sampling
distribution under the null are given by the following.

Mean and Standard Error of the Sampling Distribution of S+ Under H0: The mean of
the sampling distribution of S+ (when H0 is true) is

µs+ =
n

2
(7.16)

and the standard error is

σs+ =

√
n

4
. (7.17)

These are valid regardless of whether or not n is large. Recall also (Chapter 4) that when n is large, the
binomial distribution is approximately bell-shaped. The graphs below show the sampling distribution of
S+ under the null hypothesis for various sample sizes n.
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Figure 7.13: Sampling distributions of the one-sample sign test statistic S+ under the null hypothesis for
various values of n.

The larger n is, the more closely the binomial distribution is to a perfect normal distribution. This is
stated more formally by the following fact.

Fact 7.5 SupposeX1, X2, . . . , Xn is a random sample from any continuous population whose median
is µ̃. Then if n is large (n ≥ 30 is sufficient) and

H0 : µ̃ = µ̃0

is true,
S+ ∼ N(µs+ , σs+)

(approximately), where µs+ and σs+ are given by (7.16) and (7.17).

As a consequence, if we standardize S+, the resulting random variable Z follows (approximately) a
standard normal distribution, that is,

Z =
S+ − µs+
σs+

∼ N(0, 1).

When n is large, the appropriate test statistic for the sign test is the large-sample sign test statistic,
denoted Z+, given by the following.
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Large Sample Sign Test Statistic:

Z+ =
S+ − µs+
σs+

where µs+ and σs+ are given by (7.16) and (7.17).

P-values (and critical values for the rejection region approach) are obtained from the tails of the standard
normal distribution in the direction(s) specified by the alternative hypothesis.

Comment: Most statistical software programs actually use a slightly more accurate continuity corrected
version of Z+ when computing p-values for the large-sample version of the sign test. The continuity
correction adjusts for the fact that a continuous distribution (the standard normal) is used to approximate
a discrete one (the true distribution of Z+). Details about the continuity correction can be found in many
statistics textbooks, including [?].

7.9 Which Test Should Be Used, the t Test or the Sign Test?

If the sample is from a non-normal population, and we don’t want to transform the data, then unless the
sample size n is large, the one-sample t test shouldn’t be used. In this case we have little choice but to use
a nonparametric test such as the sign test.

But if the normality assumption is met, we have a choice between the t test and the sign test. It can be
shown that when the normality assumption is met, the t test is more powerful than the sign test (or other
nonparametric test). In other words, when the alternative hypothesis is true, the t test is less likely to lead
to a Type II error and thus more likely to find a statistically significant difference or effect. Therefore,
whenever we have a choice, the t test is preferred.

The intuition behind why the t test is more powerful is that it’s based on the actual numerical values of
the data (via X̄) as opposed to just whether or not each value is greater than µ̃0 (yes/no). Therefore the
t test makes use of the complete information that’s contained in the data, whereas the sign test doesn’t.
As a result, there’s some loss of power in the sign test.

The lack of power in the sign test can be particularly annoying when the sample size n is small. Problem
7.9 gives an example in which n is small enough that the sign test is unable to reject the null hypothesis
at all , regardless of which values make up the sample!

7.10 One-Sample Z Test for a Population Proportion

Consider now data on a dichotomous categorical variable that takes values success and failure, and suppose
the data are a sample from a population whose proportion of successes is p. We saw how to compute a
confidence interval for p in Chapter 6. We’ll now see how to test the null hypothesis

H0 : p = p0

that the true (unknown) population proportion p is equal to some hypothesized value p0 versus one of the
alternative hypotheses

1. Ha : p > p0 (upper-tailed test)

2. Ha : p < p0 (lower-tailed test)

3. Ha : p 6= p0 (two-tailed test)
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The null-hypothesized value p0 should be chosen for its relevance to the research question, and the alter-
native hypothesis should reflect what the study is attempting to substantiate.

The one-sample z test statistic, denoted Z, is defined as follows.

One-Sample Z Test Statistic (for a Proportion):

Z =
P̂ − p0

σP̂
, (7.18)

where

σP̂ =

√
p0(1− p0)

n
.

Because the sample proportion P̂ is an estimate of the (unknown) population proportion, if H0 was true,
and p equal to p0, we’d expect the sample proportion to be approximately equal to p0 too, in which case
Z would be close to zero. Any discrepancy between Z and zero would be due purely to chance (sampling
variation). On the other hand, if the alternative hypothesis was true, and p different from p0 in the direc-
tion specified by that hypothesis, we’d expect P̂ to differ from p0 in that direction too, in which case Z
would differ from zero in that same direction. Moreover, the denominator of Z is the standard error of P̂
(under the null hypothesis). Therefore, we have the following.

Interpretation of the Test Statistic: The value of Z measures how many standard errors P̂ is
away from p0.

1. Large positive values of Z provide evidence in favor of Ha : p > p0.

2. Large negative values of Z provide evidence in favor of Ha : p < p0.

3. Both large positive and large negative values of Z provide evidence in favor of Ha : p 6= p0.

To decide whether an observed value of Z provides statistically significant evidence to support the
alternative hypothesis, we’ll determine if it’s among the values that would be unlikely to occur just by
chance under the null hypothesis. For this, we’ll need to know the sampling distribution that Z would
follow if the null hypothesis was true.

We know (Section 5.4 of Chapter 5) that if n is large, then

P̂ − p
σP̂

∼ N(0, 1) (7.19)

(approximately). Thus, because the test statistic Z is obtained by replacing the (unknown) population
proportion p in (7.19) by its null-hypothesized value p0, we have the following.

Sampling Distribution of Z Under H0: Suppose we have a random sample of size n from a
dichotomous population. Let p denote the proportion of successes in the population. Then if n is
large and

H0 : p = p0

is true,
Z ∼ N(0, 1)

(approximately).
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The sample size n can be considered large enough for Z to follow (approximately) a standard normal
distribution if both

np0 ≥ 10 and n(1− p0) ≥ 10 .

Because values of Z that differ from zero in the direction(s) specified by the alternative hypothesis count
as evidence in favor of that hypothesis, p-values (and critical values for the rejection region approach) are
obtained from the corresponding tail (or tails) of the standard normal distribution, as summarized below.

One-Sample Z Test for p

Assumptions: The data are a random sample of size n from a dichotomous population,
and n is large (using the criteria np0 ≥ 10 and n(1− p0) ≥ 10).

Null hypothesis: H0 : p = p0.

Test statistic value: z = p̂−p0√
p0(1−p0)

n

.

Decision Rule: Reject H0 if p-value < α or z is in rejection region.

Alternative P-value = area under Rejection region =
hypothesis standard normal distribution: z values such that:*

Ha : p > p0 to the right of z z > zα
Ha : p < p0 to the left of z z < −zα
Ha : p 6= p0 to the left of − |z| and right of |z| z > zα/2 or z < −zα/2

* zα is the 100(1− α)th percentile of the standard normal distribution.

Here’s an example illustrating an upper-tailed one-sample z test for p.

Example 7.16: One-Sample Z Test for p

Example 5.11 described a program for monitoring water quality in the Annapolis River, Nova Scotia,
Canada. Of the 106 water specimens sampled in 2008, 29 had unsafe E. Coli levels and the other
77 had safe levels. The sample proportion that were unsafe was

P̂ =
29

106
= 0.27.

One criterion that’s sometimes used to decide if a river’s E. Coli levels are too high is if there’s
convincing evidence that more than 10 percent are unsafe. We’ll decide whether the evidence is
convincing by testing

H0 : p = 0.10

Ha : p > 0.10

where p is the true (unknown) population proportion of the river’s E. Coli levels that are unsafe.

The standard error of P̂ (under the null hypothesis) is

σp̂ =

√
0.10(1− 0.10)

106
= 0.029 ,
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and thus the test statistic is

Z =
0.27− 0.10

0.029
= 5.86 ,

indicating that the observed sample proportion is 5.86 standard errors above 0.10.

The p-value is the area to the right of Z = 5.86 under the standard normal curve.

P−Value for Upper−Tailed One−Sample Z Test

Values of Z

−4 −2 0 2 4 Z = 5.86

P−value = 0.00

Standard Normal
Distribution

Figure 7.14: The p-value is the area to the right of the observed test statistic value, Z = 5.86, under
the N(0, 1) distribution.

From the standard normal table, the p-value is 0.0000. Using a level of significance α = 0.05, we
reject the null hypothesis and conclude that there’s convincing (statistically significant) evidence
that more than 10 percent of the river’s E. Coli levels are unsafe.

To justify the hypothesis test result, we need to check that the sample size n is large enough. We
need np0 ≥ 10 and n(1 − p0) ≥ 10, where p0 = 0.10. We have n = 106, so 106(0.10) = 10.6 and
106(1− 0.10) = 95.4. Therefore n is large enough.

7.11 Problems

7.1 For each of the following, state whether it’s a legitimate set of statistical hypotheses. For any that
aren’t legitimate, say why.

a) H0 : µ ≤ 50 versus Ha : µ ≥ 50

b) H0 : X̄ ≤ 50 versus Ha : X̄ > 50

c) H0 : µ ≤ 50 versus Ha : µ > 50

d) H0 : µ < 50 versus Ha : µ ≥ 50 (Note the equality in Ha.)

7.2 Each of the following statements violates one of the ideas presented in this chapter. Explain what’s
wrong with each statement.

a) ”We tested the null hypothesis that there’s a difference between the mean contaminant levels at two
sites versus the alternative that there’s no difference. We rejected the null hypothesis and concluded
that there’s no difference.”
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b) ”We tested the null hypothesis that there’s no difference between the mean contaminant levels at
two sites versus the alternative that there’s a difference. We rejected the alternative hypothesis and
concluded that there’s no difference.”

7.3 A one-sample t test of the null hypothesis H0 : µ = µ0 using a sample size n = 25 gives a test statistic
t = 1.2.

a) What’s the p-value if the alternative hypothesis is Ha : µ > µ0?

b) What’s the p-value if the alternative hypothesis is Ha : µ < µ0?

c) What’s the p-value if the alternative hypothesis is Ha : µ 6= µ0?

7.4 Quality assurance tests were carried out to validate a new method of measuring metal concentrations
in canned fish [?]. They measured metals in reference fish tissues having known, certified metal concentra-
tions using their new method, called inductively coupled plasma-optical emission spectrometry (ICP-OES).

The table below shows the means and standard deviations (mg/kg dry weight) of the ICP-OES measure-
ments for two metals, chromium and copper, as well as the certified values. For both metals, the ICP-OES
sample size was n = 10.

Metal Measurements on Certified Fish Tissues
Chromium Copper

Certified Value 34.7 2.34
ICP-OES Sample Mean 32.5 2.35
ICP-OES Sample Standard Deviation 5.5 0.01

a) Carry out a one-sample t test using the rejection region approach to decide if the true (unknown)
population mean chromium measurement using ICP-OES differs from the certified value 34.7 mg/kg.
Use a level of significance α = 0.05.

b) Now carry out the test of part a using the p-value approach.

c) Carry out a one-sample t test using the rejection region approach to decide if the true (unknown)
population mean copper measurement using ICP-OES differs from the certified value 2.34 mg/kg.
Use a level of significance α = 0.05.

d) Now carry out the test of part c using the p-value approach.

7.5 Problem 3.8 in Chapter 3 described a study of heavy metal contamination in soil due to industrializa-
tion around the Manali area in Chennai, Southern India [?]. Heavy metals were measured in soil specimens
from a depth of 10 cm at 32 sites in the region. The table below shows the concentrations (mg/kg) for
three of the metals, cobalt (Co), chromium (Cr), and copper (Cu).
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Metals in Soil
Site Co Cr Cu
M-1 32.9 207.4 44.9
M-2 30.8 150.2 55.9
M-3 32.1 156.1 44.1
M-4 15.9 150.7 24.4
M-5 17.1 158.3 22.4
M-6 23.1 191.0 36.1
M-7 9.2 230.0 25.1
M-8 11.1 150.0 26.4
M-9 13.4 240.0 37.1
M-10 11.5 197.0 24.6
M-11 58.5 149.8 181.0
M-12 10.5 218.0 193.0
M-13 7.96 151.0 178.0
M-14 3.4 215.0 160.0
M-15 6.7 306.0 175.0
M-16 12.3 172.0 186.0
M-17 15.4 157.0 190.0
M-18 12.9 385.0 237.0
M-19 14.5 395.0 251.0
M-20 12.4 255.0 211.0
M-21 15.3 201.0 326.0
M-22 12.6 183.0 335.0
M-23 15.2 204.0 277.0
M-24 9.8 158.0 372.0
M-25 14.8 247.0 300.0
M-26 20.4 246.0 225.0
M-27 11.3 309.0 198.0
M-28 16.7 418.0 150.0
M-29 19.2 328.0 171.0
M-30 11.1 251.0 87.5
M-31 22.3 154.0 94.6
M-32 20.8 161.0 102.0

The cited paper also lists concentrations of these metals in Earth’s crust, which serve as reference values
to which the Manali area concentrations can be compared. The reference values are shown in the table
below along with sample means and standard deviations computed from the Manali data above.

Co Cr Cu

Reference Value 10.0 35.0 25.0
Manali Sample Mean 16.9 221.7 154.4
Manali Sample Standard Deviation 10.3 76.6 103.9

a) Is there statistically significant evidence that the true (unknown) population mean cobalt (Co) con-
centration in the Manali area is higher than the reference value 10.0 mg/kg? Carry out a one-sample
t test using α = 0.05.

b) Is there statistically significant evidence that the true (unknown) population mean chromium (Cr)
concentration in the Manali area is higher than the reference value 35.0 mg/kg? Carry out a one-
sample t test using α = 0.05.

c) Is there statistically significant evidence that the true (unknown) population mean copper (Cu)
concentration in the Manali area is higher than the reference value 25.0 mg/kg? Carry out a one-
sample t test using α = 0.05.

7.6 Problem 6.4 in Chapter 6 described a toxicity study to investigate the reduction of thyroidal iodide
uptake in humans due to perchlorate. Volunteer human subjects were given different doses of perchlorate
through drinking water, and the percent change in thyroidal uptake after 24 hours was measured. Results
for two dose groups, Low (given 0.007 mg/kg/day) and High (given 0.020 mg/kg/day), are below.
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Low dose High dose

Number of subjects in group 7 10
Sample mean percent change in thyroidal uptake -1.8 -16.4
Sample standard deviation 22.0 12.8

We want to decide if either of these two perchlorate dose levels reduces thyroidal iodide uptake.

a) Carry out a one-sample t test to decide if the population mean percent change is less than zero for
the Low dose. Use a level of significance α = 0.05.

b) Carry out a one-sample t test to decide if the population mean percent change is less than zero for
the High dose. Use a level of significance α = 0.05.

7.7 A 95% confidence interval for a population mean is (47, 65).

a) How does the value 67 compare to the upper endpoint of the confidence interval? Could you reject
the null hypothesis in a test of H0 : µ = 67 versus Ha : µ 6= 67 at the 5% significance level? Explain.

b) How does the value 62 compare to the two endpoints of the confidence interval? Could you reject
the null hypothesis in a test of H0 : µ = 62 versus Ha : µ 6= 62 at the 5% significance level? Explain.

7.8 For a test of H0 : µ = 20 versus Ha : µ 6= 20, the p-value is 0.04. Thus the null hypothesis would be
rejected at both the 0.05 and 0.10 significance levels.

a) Would a 95% confidence interval for µ contain the value 20? Explain.

b) Would a 90% confidence interval for µ contain the value 20? Explain.

7.9 The Colorado Human Health Standard for nitrate and nitrite concentrations in groundwater is 10
mg/L [?]. Concentrations below this value are considered safe and concentrations above it are considered
hazardous.

Nitrate and nitrite concentrations are to be measured in a sample of wells and a one-sample t test carried
out to verify either that the water is safe or that it’s hazardous.

a) If the hypotheses are

H0 : µ ≤ 10

Ha : µ > 10

describe the Type I and II errors in terms of the safety of the groundwater.

b) In part a, which type of error has more serious consequences?

c) Now suppose instead that the hypotheses are

H0 : µ ≥ 10

Ha : µ < 10

Describe the Type I and II errors in terms of the safety of the groundwater.

d) In part c, which type of error has more serious consequences?
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e) The set of hypotheses in part a would be used if we wished to establish that the water is hazardous.
The set in part c would be used if we wanted to establish that it’s safe. If the hypothesis test results
are to be used to make a recommendation as to whether people should use the water or not, which
set of hypotheses should be tested? Why?

7.10 Suppose we have a random sample of size n = 25 from a population whose mean is µ, and we want
to carry out a one-sample t test of

H0 : µ = 40

Ha : µ > 40

a) If the decision rule (using the rejection region approach) is

Reject H0 if t > 2.49
Fail to reject H0 if t ≤ 2.49

what’s the level of significance for the test? Hint: The value 2.49 is the t critical value tα,n−1. What
must be the value of α?

b) What’s the probability that we’d make a Type I error if the null hypothesis was true? Hint: What’s
the probability that t would fall above 2.49 just by chance?

7.11 The Metrogro Farm is a 70 mi2 property 75 miles east of Denver, Colorado owned by Metro Wastew-
ater Reclamation District (MWRD). In 1993 the MWRD began applying biosolids from Denver’s municipal
sewage treatment as fertilizer to farmland on the Metrogro Farm. Biosolids can improve soil nutrient qual-
ity, but can also contaminate groundwater by contributing to its nitrification.

Because of concerns about contamination, the U.S. Geological Survey implemented a program for mon-
itoring groundwater on the Metrogro Farm and surrounding areas [?]. Dissolved nitrate and nitrite (as
nitrogen in mg/L) was measured in several wells in the region. The n = 4 observed values for one of the
wells are

11.7 13.1 14.4 14.6

The Colorado Human Health Standard for nitrogen is 10 mg/L. Concentrations below this value are con-
sidered safe and concentrations above it are considered hazardous.

The purpose of this problem is to illustrate the lack of power of the sign test when the sample size is small.

a) Carry out a one-sample sign test to decide if the true (unknown) population median nitrogen con-
centration for this well is greater than the health standard, 10 mg/L. Does the test find statistically
significant evidence that the water is hazardous? Use level of significance α = 0.05.

b) If a one-sample t test is used instead, is there statistically significant evidence that the true (unknown)
mean nitrogen concentration is greater than 10 mg/L? Does this test find statistically significant
evidence that the water is hazardous? Use level of significance α = 0.05.

7.12 In the study of platinum (Pt) in roadside soils in Oahu, Hawaii (Examples 7.13 - 7.14), Pt was also
measured in soil from a depth of 0 - 2.5 cm at n = 13 roadside locations. The enrichment ratios (ERs), as
described in Example 7.13, are below.



7.11. PROBLEMS 215

Roadside Pt Enrichment
Ratios at 0 - 2.5 cm Depth

Soil Specimen Enrichment Ratio
1 7.0
2 0.6
3 20.0
4 4.0
5 10.0
6 0.8
7 8.3
8 45.6
9 4.0
10 3.2
11 2.8
12 2.1
13 1.8

Recall that enrichment ratios greater than one indicate that the roadside Pt concentration is higher than
background concentrations.

A normal probability plot and dotplot (below) indicate that the sample is from a very right skewed
population, so because the sample size is small, a one-sample t test isn’t appropriate.
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Carry out a one-sample sign test to decide if there’s statistically significant evidence that the true (unknown)
population median ER is greater than one.

7.13 In the study of platinum (Pt) in roadside soils in Oahu, Hawaii (Examples 7.13 - 7.14), Pt was
also measured in road-deposited sediment at n = 10 sites. The enrichment ratios (ERs), as described in
Example 7.13, are below.

Pt Enrichment Ratios
in Road-Deposited Sediment

Sediment Specimen Enrichment Ratio
1 21.0
2 14.0
3 5.2
4 45.6
5 4.3
6 10.9
7 4.3
8 4.9
9 8.4
10 10.4

Recall that enrichment ratios greater than one indicate that the roadside Pt concentration is higher than
background concentrations.
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A normal probability plot and dotplot (below) indicate that the sample is from a very right skewed
population, so because the sample size is small, a one-sample t test isn’t appropriate.
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Carry out a one-sample sign test to decide if there’s statistically significant evidence that the true (unknown)
population median ER is greater than one.

7.14 In the study of the accuracy of a new method for measuring sulfur dioxide in coal plant emissions
(Example 7.15), the method’s accuracy for measuring carbon dioxide (CO2) was also investigated.

Nine lab technicians were trained in the new method, then they used it to measure the CO2 concentration
in an EPA audit cylinder containing a known concentration 6.04%. Their measurement results (%) are
shown below.

CO2 Measurements on EPA Audit
Cylinder Containing 6.04% CO2

Technician CO2 Measurement
1 6.96
2 5.97
3 6.07
4 5.94
5 5.79
6 7.08
7 10.40
8 5.69
9 5.13

A normal probability plot and dotplot indicate that the sample is from a right skewed population, so
because the sample size is small, a one-sample t test isn’t appropriate.

Carry out a one-sample sign test to decide if the true (unknown) population median measurement result
using the new method differs from the certified value 6.04%. Use a level of significance α = 0.05.

7.15 Problem 6.12 (Chapter 6) discussed a sample survey of n = 79 people who did not participate in
decision making processes involving an environmental assessment of a proposed hog slaughtering facility
and associated wastewater treatment plant in Brandon, Manitoba, Canada.

Of the 79 people surveyed, 51 said that ”The ultimate decisions were foregone” was an important reason
for their decision not to participate.

Carry out a one-sample z test (for a proportion) to decide if the true (unknown) population proportion for
whom ”The ultimate decisions were foregone” was an important reason for their decision not to participate
is greater than 0.5. Use a level of significance α = 0.05.
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7.16 Problem 6.13 (Chapter 6) discussed a study to assess the risk of farmers’ exposure to salmonella
through the application of biosolids to farmlands in Ohio.

In a sample of n = 92 biosolids specimens, 22 tested positive for salmonella.

Carry out a one-sample z test (for a proportion) to decide if the true (unknown) population proportion
of biosolids specimens that would test positive for salmonella is less than 0.25. Use a level of significance
α = 0.05.
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