4 Modeling Data as Random Variables and Populations as Probability Distributions

MTH 3240 Environmental Statistics

Spring 2020

MTH 3240 Environmental Statistics Random Variables Discrete Probability Distributions

Objectives

Notes

Objectives:

- Use discrete and continuous probability distributions to obtain probabilities involving random variables.
- Interpret the mean and standard deviation of a probability distribution.
- Recognize binomial and Poisson random variables.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Random Variables

 Any numerical variable whose value is determined by chance is called a *random variable*.

Examples:

- The E. coli level in a **randomly selected** water specimen from a lake is a **random variable**.
- The number of occupants in a **randomly selected** automobile is a **random variable**.
- Random variables can be *discrete* or *continuous* depending on whether the possible values for the variable are isolated numbers (e.g. integers) or a continuum.

MTH 3240 Environmental Statistics

Handom Variables Discrete Probability Distributions

MTH 3240 Environmental Statistics

Notes

Notes

 Random variables are said to be *discrete* if they can only take *integer* values, and *continuous* if they can take values on a *continuum*.

Random Variables Discrete Probability Distributions Introduction to Probability Distributions

- The set of values a random variable might take and their probabilities form the *probability distribution* of the random variable.
- Probability distributions are used to represent **populations** from which individuals are **randomly** selected.

MTH 3240 Environmental Statistics Random Variables

Notes

- We'll use the following notation:
 - Upper case letters such as *X*, *Y*, and *Z* denote **random variables** (whose values *have yet to be determined*).
 - **Probabilities** involving a random variable X will be denoted P(X = 3), $P(X \le 6.5)$, and so on.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Discrete Probability Distributions

Example

Here are vehicle occupancy rates on urban arterials and freeways in Miami-Dade County, Florida.

Number of Occupants	Percentage of Vehicles
1	82 %
2	12 %
3	4 %
4	2 %

We can interpret each percentage as the **probability** that a **randomly selected** vehicle will have 1, 2, 3, and 4 occupants, respectively.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Letting X be the number of occupants in a randomly selected vehicle, X is a discrete random variable with possible values 1, 2, 3, and 4.

The **probability distribution** of X is below.

For example, that the **probability** of a **randomly selected** vehicle having only **one** occupant is

$$P(X = 1) = 0.82.$$

The probability distribution is on the next slide as a *probability histogram*.

Notes

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

Notes

This **probability distribution** represents the **population** of vehicles in Miami-Dade County.

MTH 3240 Environmental Statistics

Random Variables Discrete Probability Distributions

Mean of a Discrete Probability Distribution

- We measure the **center** of a probability distribution by its mean, denoted μ .
- If the bars in a probability histogram were weights, *μ* is the point along the *x*-axis at which they'd balance.
- The value of μ represents the value that the random variable takes **on average** .

MTH 3240 Environmental Statistics

Discrete Probability Distributions

MTH 3240 Environmental Statistics

Notes

• *μ* can be thought of as the **population mean** if the probability distribution represents a **population**.

Standard Deviation of a Discrete Probability Distribution

- We measure the spread in a probability distribution by its standard deviation, denoted σ.
- A larger value of *σ* corresponds to a more spread-out distribution.
- The value of *σ* represents a **typical deviation** of a the randomly variable away from *μ*.
- The square of the standard deviation is called the *variance*, denoted σ^2 .

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

Notes

 σ can be thought of as the population standard deviation if the probability distribution represents a population.

MTH 3240 Environmental Statistics

Handom Variables Discrete Probability Distributions

Theoretical Probability Distributions

- In the vehicle occupancy example, the probability distribution was based on *accurate information* about the population of vehicles.
- In the absence of such accurate information, we have to choose from a set of stock **theoretical distributions** the one that we *think* describes the population.
- The first step is to identify whether the variable is **discrete** or **continuous**.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

When the random variable is a count, it's discrete.

Two commonly used **theoretical distributions** for **counts** are:

- 1. The **binomial** distribution.
- 2. The Poisson distribution.

MTH 3240 Environmental Statistics

Handom Variables Discrete Probability Distributions

Notes

• When the random variable is a **numerical measurement**, it's **continuous**.

Two commonly used continuous theoretical distributions are:

- 1. The normal distribution.
- 2. The lognormal distribution.
- We'll look at these four theoretical probability distributions one at a time.

MTH 3240 Environmental Statistics

Random Variables Discrete Probability Distributions

The Binomial Distribution

Notes

Notes

• Examples of Binomial Random Variables:

- The number of animal traps, among the 10 traps set, that catch animals.
- The number of fish, among eight tested, that test positive for a certain disease.
- The number of sites, among 12 sites visited, at which a certain bird species is present.

MTH 3240 Environmental Statistics

Handom Variables Discrete Probability Distributions

The Binomial Distribution

Conditions for a Binomial Random Variable:

- 1. There are a certain number of **trials** *n*.
- 2. Each trial has **two possible outcomes**, *success* and *failure*, say.
- 3. The trials all have the same **probability** p of resulting in a **success**. Thus the **probability** of a **failure** is 1 p.
- 4. The trials are **independent**, meaning their outcomes don't affect each other.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

- Under these conditions, the random variable
 - X = The **number of successes** among the *n* trials

is a *binomial* random variable.

MTH 3240 Environmental Statistics

• We refer to *n* and *p* as the *parameters* of the binomial distribution.

Notes

• The two *parameters* of the **binomial** distribution, *n* and *p*, control the distribution's shape, center, *and* spread.

Figure: Probability histograms for two binomial distributions.

MTH 3240 Environmental Statistics Random Variables Discrete Probability Distributions

Example

The World Health Organization suggests that fish with mercury (Hg) concentrations greater than 0.5 mg/kg are unsafe for human consumption.

In the U.S., much of the fish consumed comes in the form of canned tuna, which is sometimes sold in packages of **four cans** (*trials*).

Each can is either unsafe or safe (success or failure).

If **four** randomly selected cans are tested, the **number of cans** that are **unsafe** is a **binomial** random variable.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

- Binomial distribution probabilities P(X = x) can be obtained using any of the following:
 - A table
 - Statistical software

MTH 3240 Environmental Statistics

• A formula (the *binomial probability function*).

Notes

- The *Poisson* distribution is used to model **counts** that are are either:
 - Counts of events occurring in a certain period of time, where the events occur at random in time points, or
 - **Counts of events** occurring in a given **spatial area**, where the events occur at random spatial points.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

Notes

Notes

Examples:

- The number of flash floods during a 100-year period.
- The number of beetles in a 1 m² quadrat.
- The number of shooting stars in the night sky during a one hour period.
- $\bullet\,$ The number of trees of a certain species on a 100 m^2 plot of land.
- The number of patients admitted for respiratory problems at a hospital during a month.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Conditions for a Poisson Random Variable:

- Events occur at random time points or at random spatial points. The (temporal) rate or (spatial) density of their occurrence is approximately constant (doesn't change over time or across space).
- 2. The events occur independently of each other in time or space, e.g. they don't occur in "clusters" ("clumps") in time or space.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

- Under these conditions, the random variable
 - X = The **number of events that occur** in a specified period of time (or spatial area)

is a Poisson random variable.

MTH 3240 Environmental Statistics

Notes

Notes

• The shape, center, and spread are controlled by the (one) *parameter* of the distribution, μ (which is the mean of the distribution).

Discrete Probability Distribution

MTH 3240 Environmental Statistics

Example

In any given year, hurricanes that make landfall on the continental U.S. is a random variable that could be modeled by a **Poisson** distribution with parameter $\mu = 1.68$ (based on historical records).

This distribution is depicted below.

MTH 3240 Environmental Statistics

Discrete Probability Distributions

Notes

Notes

Example

In a study of the spatial dispersion of the centipede *Lithobius muticus*, the number of centipedes in a randomly selected 1 m^2 quadrat could be modeled by a **Poisson** distribution with parameter $\mu = 10.5$ (based on prior studies).

This distribution is shown below.

MTH 3240 Environmental Statistics Random Variables Discrete Probability Distributions

Discrete Probability Distributions

- Poisson distribution probabilities P(X = x) can be obtained using any of the following:
 - A table
 - Statistical software
 - A formula (the *Poisson probability function*).

MTH 3240 Environmental Statistic

Discrete Probability Distributions

Exercise

Each random variable below is a **count**. Identify whether it would follow a **binomial** or a **Poisson probability distribution**.

- a) At a certain vehicle emissions testing center, let X be the number of cars that **pass** the test out of the next **10** cars that are tested.
- b) Let X be the number of meteorites larger than one ft in diameter that strike the Earth in a given month.

Notes

Notes

Notes

- c) Let X be the number of *Philonthus fuscipennis* beetles X in a **1** m² area.
- d) The **six** public drinking fountains in a town are tested for a hazardous contaminant. Let *X* be the number of fountains that are found to be **safe**.

MTH 3240 Environmental Statistics

Notes

Notes