4 Modeling Data as Random Variables and Populations as Probability Distributions (Cont'd)

MTH 3240 Environmental Statistics

Spring 2020

くロト (過) (目) (日)

ъ

MTH 3240 Environmental Statistics

Objectives:

- Recognize normal and lognormal random variables.
- Obtain probabilities from normal distributions.
- Find and interpret percentiles of normal distributions

ヘロト ヘアト ヘビト ヘビト

• Recall that **continuous random variables** can take *any* value over an entire continuum.

イロト イポト イヨト イヨト

- Recall that **continuous random variables** can take *any* value over an entire continuum.
- Their probability distribution is represented by a smooth curve called a *probability density function* (or *curve*).

< ロ > < 同 > < 臣 > < 臣 > -

- Recall that **continuous random variables** can take *any* value over an entire continuum.
- Their probability distribution is represented by a smooth curve called a *probability density function* (or *curve*).

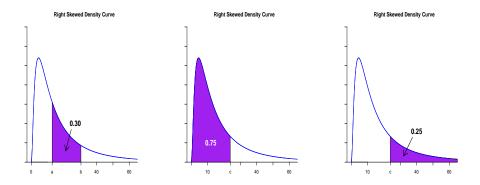
ヘロト 人間 ト ヘヨト ヘヨト

• The **density curve** can be thought of as a smooth histogram of a **population**.

- Recall that **continuous random variables** can take *any* value over an entire continuum.
- Their probability distribution is represented by a smooth curve called a *probability density function* (or *curve*).
- The **density curve** can be thought of as a smooth histogram of a **population**.

In this case, the random variable is a measurement made on an individual **randomly** selected from the population. • The **probability** of the random variable falling in any interval on the *x*-axis is the **area under the curve** over that interval.

イロト イポト イヨト イヨト



Mean of a Continuous Probability Distribution

We measure the center of a probability distribution by its mean, denoted μ.

イロト イポト イヨト イヨト

Mean of a Continuous Probability Distribution

- We measure the center of a probability distribution by its mean, denoted μ.
- If the total area under a density curve was weight, μ would be the point along the *x*-axis at which it would balance.

《曰》《聞》《臣》《臣》

Mean of a Continuous Probability Distribution

- We measure the center of a probability distribution by its mean, denoted μ.
- If the total area under a density curve was weight, μ would be the point along the *x*-axis at which it would balance.

ヘロト ヘ戸ト ヘヨト ヘヨト

• The value of μ represents the value that the random variable takes **on average**.

 μ can be thought of as the population mean if the probability distribution represents a population.

イロト イポト イヨト イヨト

■ のへで

Continuous Probability Distributions

Standard Deviation of a Continuous Probability Distribution

 We measure the spread in a probability distribution by its standard deviation, denoted σ.

イロト イポト イヨト イヨト

э.

Standard Deviation of a Continuous Probability Distribution

 We measure the spread in a probability distribution by its standard deviation, denoted σ.

ヘロト 人間 ト ヘヨト ヘヨト

 A larger value of *σ* corresponds to a more spread-out probability distribution.

Standard Deviation of a Continuous Probability Distribution

- We measure the spread in a probability distribution by its standard deviation, denoted σ.
- A larger value of *σ* corresponds to a more spread-out probability distribution.
- The value of σ represents a **typical deviation** of the random variable away from μ .

ヘロト 人間 ト ヘヨト ヘヨト

 σ can be thought of as the population standard deviation if the probability distribution represents a population.

イロト イポト イヨト イヨト

Percentiles of a Continuous Probability Distribution

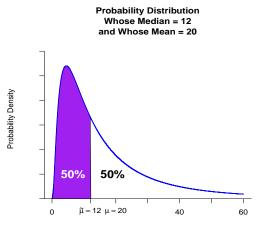
Percentiles of a Continuous Probability Distribution

- Thus the variable X has a 50/50 chance of falling above or below μ̃.

Whereas the mean μ is the "balancing point" of a distribution, the median μ̃ is the "equal areas point".

イロト イポト イヨト イヨト

∃ <2 <</p>



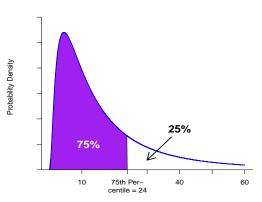
- In general:
 - For a symmetric distribution, mean and median will be the same, i.e. μ = μ̃.
 - For a right skewed distribution, the mean will be greater than the median, i.e. μ > μ̃.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Other percentiles are defined analogously.

For example, the 75 *th percentile* is the value below which 75% of the population lies.

イロト イポト イヨト イヨト



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Probability Distribution Whose 75th Percentile = 24

• **Example**: A river's annual peak height is a random variable, *X*.

• **Example**: A river's annual peak height is a random variable, *X*.

The "100-year flood level" is the height for which there's only a 1 in 100 chance, or 0.01 probability, of being exceeded in any given year.

イロト イポト イヨト イヨト

E DQC

• **Example**: A river's annual peak height is a random variable, *X*.

The **"100-year flood level"** is the height for which there's only a **1 in 100 chance**, or **0.01 probability**, of being exceeded in any given year.

So the **"100-year flood level"** is the **99th percentile** of the distribution of *X*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theoretical Continuous Probability Distributions

 In the absence of accurate information about the shape of a population's histogram, we have to choose from a set of stock theoretical density curves the one that we *think* describes the population.

Theoretical Continuous Probability Distributions

 In the absence of accurate information about the shape of a population's histogram, we have to choose from a set of stock theoretical density curves the one that we *think* describes the population.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

We'll look at two:

- 1. The normal distribution.
- 2. The lognormal distribution.

Continuous Probability Distributions

The Normal Distribution

 Many variables follow the bell-shaped normal distribution.

The Normal Distribution

- Many variables follow the bell-shaped *normal* distribution.
- Its mean μ and standard deviation σ determine, respectively, the center and spread of the distribution.

ヘロト ヘアト ヘビト ヘビト

э.

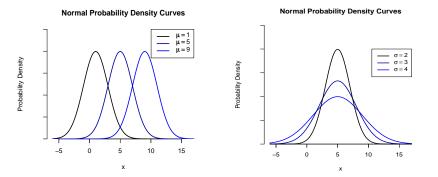
The Normal Distribution

- Many variables follow the bell-shaped normal distribution.
- Its mean μ and standard deviation σ determine, respectively, the center and spread of the distribution.

They're referred to as the *parameters* of the distribution.

ヘロン 人間 とくほ とくほ とう

э.



• We'll use the notation

$$X \sim \mathsf{N}(\mu, \sigma)$$

イロト イポト イヨト イヨト

= 990

to mean that the random variable X follows a normal distribution with mean μ and standard deviation σ .

• We'll use the notation

$$X \sim \mathsf{N}(\mu, \sigma)$$

to mean that the random variable *X* follows a normal distribution with mean μ and standard deviation σ .

Because the distribution is symmetric, the median of the normal distribution is also μ.

ヘロン 人間 とくほ とくほ とう

= 990

 Normal distribution probabilities (areas under the curve) *P*(*a* < *X* < *b*) can be obtained using either of the following:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- A table (the so-called Z table)
- Statistical software

Example

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

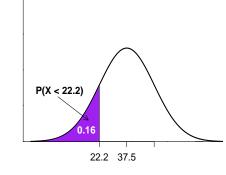
イロト イポト イヨト イヨト

Example

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

The **probability** that the glucose level in a randomly selected fish will be **below 22.2** mg/100 ml is **0.16** (obtained using software and depicted on the next slide).

イロン イボン イヨン イヨン



Probability Density

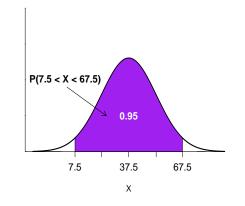
Х

・ロト ・聞ト ・ヨト ・ヨト

The **probability** that the glucose level will be **within 30** of the **mean** is **0.95** (obtained using software and depicted on the next slide).

イロト イポト イヨト イヨト

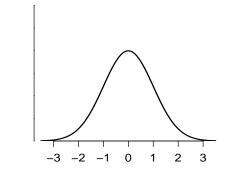
Probability Density



・ロト ・聞ト ・ヨト ・ヨト

• The normal distribution with $\mu = 0$ and $\sigma = 1$ is called the *standard normal distribution* and denoted **N**(0, 1).

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三 のなの



• We can convert **any normal random variable** to a **standard normal** one using the following fact.

イロト イポト イヨト イヨト

= 990

• We can convert **any normal random variable** to a **standard normal** one using the following fact.

Fact: If $X \sim N(\mu, \sigma)$, and we convert X to a variable Z via $Z = \frac{X - \mu}{z},$

then $Z \sim \mathsf{N}(0, 1)$.

• When we convert a value X to a value Z, we say that X has been *standardized*, or converted to a *z-score*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ ○ ○

• When we convert a value X to a value Z, we say that X has been *standardized*, or converted to a *z-score*.

A standardized value, or *z*-score, is measured in *standard deviations away from the mean*, or *standard units*.

ヘロン 人間 とくほ とくほ とう

э.

• When we convert a value X to a value Z, we say that X has been *standardized*, or converted to a *z-score*.

A **standardized value**, or *z***-score**, is measured in *standard deviations away from the mean*, or **standard units**.

It will be **positive** or **negative** depending on whether *X* is **above** or **below** the **mean**.

ヘロト ヘアト ヘビト ヘビト

Example

Recall that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

イロト イポト イヨト イヨト

Example

Recall that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

If one of these fish has a glucose level of X = 60.4, its *z*-score is

$$Z = \frac{60.4 - 37.5}{15.3} = \mathbf{1.5},$$

イロト イポト イヨト イヨト

3

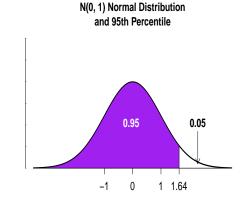
so the fish is a one and a half standard deviations above the mean.

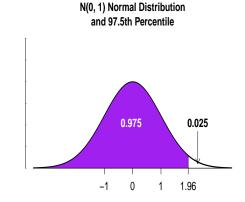
• Some **percentiles** of the **N**(0, 1) distribution are shown below.

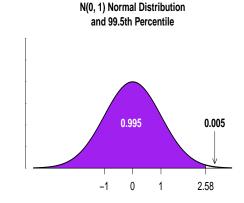
• Some **percentiles** of the **N**(0, 1) distribution are shown below.

N(0, 1) Percentiles

50th	0.00
95th	1.64
97.5th	1.96
99.5th	2.58







₹ 990

• We can use **percentiles** to characterize **middle percentages** of the **N**(0, 1) distribution.

イロト イポト イヨト イヨト

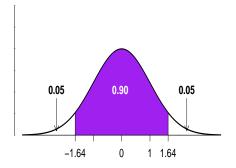
= 990

• We can use **percentiles** to characterize **middle percentages** of the **N**(0, 1) distribution.

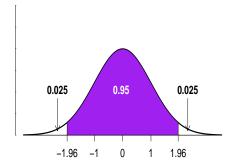
N(0, 1) Percentiles (Cont'd)

Middle 90%	Between ± 1.64
Middle 95%	Between ± 1.96
Middle 99%	Between ± 2.58

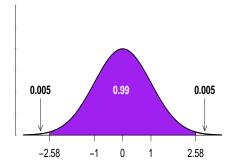
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●



N(0, 1) Normal Distribution and Middle 90%



N(0, 1) Normal Distribution and Middle 95%



N(0, 1) Normal Distribution and Middle 99%

MTH 3240 Environmental Statistics

 A percentile of a N(μ, σ) distribution is obtained by "unstandardizing" the corresponding percentile of the N(0, 1) distribution using the following.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 A percentile of a N(μ, σ) distribution is obtained by "unstandardizing" the corresponding percentile of the N(0, 1) distribution using the following.

Percentiles of a Normal Distribution: A percentile x of a N(μ , σ) distribution is

$$x = \mu + z\sigma,$$

where \boldsymbol{z} is the corresponding percentile of the $N(0,\,1)$ distribution.

イロト イポト イヨト イヨト

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

ヘロン 人間 とくほ とくほ とう

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

Solve the following problems by "unstandardizing" appropriate N(0, 1) percentiles.

ヘロン 人間 とくほ とくほ とう

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

Solve the following problems by "unstandardizing" appropriate N(0, 1) percentiles.

a) Find the glucose level below which **97.5%** of glucose levels fall (that is, the **97.5th percentile** of the distribution).

ヘロト 人間 ト ヘヨト ヘヨト

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

Solve the following problems by "unstandardizing" appropriate $\mathsf{N}(0,\,1)$ percentiles.

- a) Find the glucose level below which **97.5%** of glucose levels fall (that is, the **97.5th percentile** of the distribution).
- b) Find the **two** glucose levels **between** which the **middle 95%** of glucose levels fall.

ヘロト ヘアト ヘビト ヘビト

The Lognormal Distribution

 Environmental quantities such as pollutant concentrations often follow right skewed distributions.

イロト イポト イヨト イヨト

The Lognormal Distribution

 Environmental quantities such as pollutant concentrations often follow right skewed distributions.

ヘロン 人間 とくほ とくほ とう

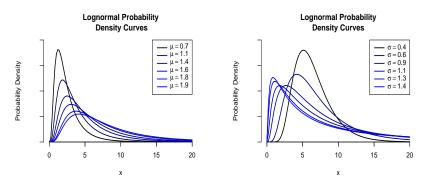
1

• A useful *theoretical density curve* for **right skewed** populations is the *lognormal distribution*.

The Lognormal Distribution

- Environmental quantities such as pollutant concentrations often follow right skewed distributions.
- A useful *theoretical density curve* for **right skewed** populations is the *lognormal distribution*.
- Lognormal distributions are right skewed and lie entirely to the right of zero.

ヘロン 人間 とくほ とくほ とう



ヘロト 人間 とくほとくほとう

æ

We write

$$X \sim \mathsf{LN}(\mu, \sigma)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

to mean that *X* is a random variable that follows a lognormal distribution with *parameters* μ and σ

We write

$$X \sim \mathsf{LN}(\mu, \sigma)$$

to mean that *X* is a random variable that follows a lognormal distribution with *parameters* μ and σ

• The following fact explains how the lognormal distribution gets its name.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

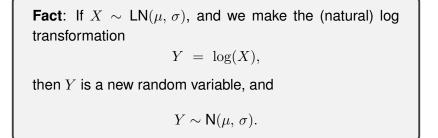
Fact: If $X \sim \text{LN}(\mu, \sigma)$, and we make the (natural) log transformation

 $Y = \log(X),$

then Y is a new random variable, and

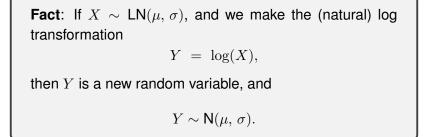
 $Y \sim \mathsf{N}(\mu, \sigma).$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三 のなの



• In words, if X is *lognormal*, then *its log is normal*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの



• In words, if X is *lognormal*, then *its log is normal*.

Thus **we can convert** a *lognormal* variable to a *normal* one by taking it's **log**.

イロト イポト イヨト イヨト

э.

Example

To illustrate the effect of the making the **log transformation** on **right skewed**, **lognormal data**, the following n = 50 observations were obtained from a **LN**(5, 1) distribution using a computer random number generator.

ヘロン 人間 とくほ とくほ とう

3

Example

To illustrate the effect of the making the **log transformation** on **right skewed**, **lognormal data**, the following n = 50 observations were obtained from a **LN**(5, 1) distribution using a computer random number generator.

202.7	347.2	300.5	812.3	38.6	83.9	157.5	35.3	180.6	152.4
90.4	95.5	234.7	618.9	149.2	169.6	427.6	89.1	204.3	90.9
681.5	55.4	625.5	45.7	68.9	828.4	21.3	561.4	315.8	97.4
95.6	69.5	650.0	77.1	367.1	49.2	478.9	182.3	273.8	33.2
313.9	107.9	86.4	287.3	194.3	203.0	164.9	1307.0	209.4	164.7

ヘロト ヘアト ヘビト ヘビト

3

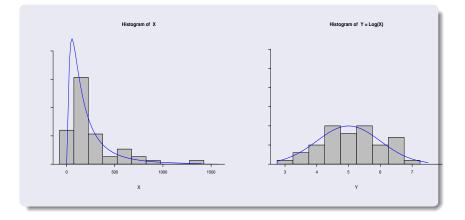
Example

To illustrate the effect of the making the **log transformation** on **right skewed**, **lognormal data**, the following n = 50 observations were obtained from a **LN**(5, 1) distribution using a computer random number generator.

202.7	347.2	300.5	812.3	38.6	83.9	157.5	35.3	180.6	152.4
90.4	95.5	234.7	618.9	149.2	169.6	427.6	89.1	204.3	90.9
681.5	55.4	625.5	45.7	68.9	828.4	21.3	561.4	315.8	97.4
95.6	69.5	650.0	77.1	367.1	49.2	478.9	182.3	273.8	33.2
313.9	107.9	86.4	287.3	194.3	203.0	164.9	1307.0	209.4	164.7

A histogram of these observations is shown below on the left along with the LN(5, 1) density curve.

ヘロト 人間 ト ヘヨト ヘヨト



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

MTH 3240 Environmental Statistics

イロト イポト イヨト イヨト

= 990

5.31	5.85	5.71	6.70	3.65	4.43	5.06	3.57	5.20	5.03
4.50	4.56	5.46	6.43	5.01	5.13	6.06	4.49	5.32	4.51
6.52	4.01	6.44	3.82	4.23	6.72	3.06	6.33	5.76	4.58
4.56	4.24	6.48	4.35	5.91	3.90	6.17	5.21	5.61	3.50
5.75	4.68	4.46	5.66	5.27	5.31	5.11	7.18	5.34	5.10

イロト イポト イヨト イヨト

3

) 5.03
2 4.51
6 4.58
3.50
5.10

A histogram of these log-transformed values along with the N(5, 1) curve is shown on the right in previous slide.

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

5.3	1 5.85	5.71	6.70	3.65	4.43	5.06	3.57	5.20	5.03
4.5	0 4.56	5.46	6.43	5.01	5.13	6.06	4.49	5.32	4.51
6.5	2 4.01	6.44	3.82	4.23	6.72	3.06	6.33	5.76	4.58
4.5	6 4.24	6.48	4.35	5.91	3.90	6.17	5.21	5.61	3.50
5.7	5 4.68	4.46	5.66	5.27	5.31	5.11	7.18	5.34	5.10

A histogram of these log-transformed values along with the N(5, 1) curve is shown on the right in previous slide.

The **log-transformed data** can be treated as a random sample from a N(5, 1) distribution.

< □ > < 同 > < 三 > <

Note that the parameters μ and σ of the LN(μ, σ) distribution refer to the mean and standard deviation of the N(μ, σ) distribution that results after making the log-transformation.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

- Note that the parameters μ and σ of the LN(μ, σ) distribution refer to the mean and standard deviation of the N(μ, σ) distribution that results after making the log-transformation.
 - In other words, μ and σ aren't the mean and standard deviation of the original **LN**(μ , σ) distribution.

ヘロン 人間 とくほ とくほ とう

э.