MTH 3240 Environmental Statistics

4 Modeling Data as Random Variables and Populations as Probability Distributions (Cont'd)

MTH 3240 Environmental Statistics

Spring 2020

Objectives

Notes

Objectives:

- Recognize normal and lognormal random variables.
- Obtain probabilities from normal distributions.
- Find and interpret percentiles of normal distributions

MTH 3240 Environmental Statistics Continuous Probability Distributions

Continuous Distributions

- Recall that **continuous random variables** can take *any* value over an entire continuum.
- Their probability distribution is represented by a smooth curve called a *probability density function* (or *curve*).
- The **density curve** can be thought of as a smooth histogram of a **population**.

In this case, the random variable is a measurement made on an individual **randomly** selected from the population.

MTH 3240 Environmental Statistics

Continuous Probability Distributions

MTH 3240 Environmental Statistics

Notes

• The **probability** of the random variable falling in any interval on the *x*-axis is the **area under the curve** over that interval.

Notes

MTH 3240 Environmental Statistics

Continuous Probability Distributions

Mean of a Continuous Probability Distribution

- We measure the center of a probability distribution by its *mean*, denoted μ .
- If the total area under a density curve was weight, μ would be the point along the *x*-axis at which it would balance.
- The value of μ represents the value that the random variable takes on average .

MTH 3240 Environmental Statistics

Continuous Probability Distribution:

• μ can be thought of as the **population mean** if the probability distribution represents a **population**.

MTH 3240 Environmental Statistics

Continuous Probability Distributions

MTH 3240 Environmental Statistics

Standard Deviation of a Continuous Probability Distribution

- Notes
- We measure the **spread** in a probability distribution by its standard deviation, denoted σ .
- A larger value of σ corresponds to a more spread-out probability distribution.
- The value of σ represents a **typical deviation** of the random variable away from μ .

Notes

Notes

Notes

Notes

Notes

• σ can be thought of as the **population standard deviation** if the probability distribution represents a **population**.

MTH 3240 Environmental Statistics

Continuous Probability Distributions

Percentiles of a Continuous Probability Distribution

- The *median*, or *50th percentile*, of a continuous distribution, denoted by $\tilde{\mu}$, is the value below which 50% of the population lies (and above which the other 50% lies).
- Thus the variable X has a 50/50 chance of falling above or below $\tilde{\mu}$.

MTH 3240 Environmental Statistics

Continuous Probability Distributions

• Whereas the mean μ is the "balancing point" of a distribution, the median $\tilde{\mu}$ is the "equal areas point".

Notes

50%

 $\widetilde{\mu}=12\ \mu=20$

50%

Notes

In general:

- For a symmetric distribution, mean and median will be the same, i.e. $\mu = \tilde{\mu}$.
- For a **right skewed** distribution, the mean will be greater than the median, i.e. $\mu > \tilde{\mu}$.

MTH 3240 Environmental Statistics Continuous Probability Distributions

Notes

Notes

• Other percentiles are defined analogously.

For example, the 75th percentile is the value below which 75% of the population lies.

Continuous Probability Distributions

MTH 3240 Environmental Statistics Continuous Probability Distributions

MTH 3240 Environmental Statistics

Notes

• **Example**: A river's annual peak height is a random variable, *X*.

The "100-year flood level" is the height for which there's only a 1 in 100 chance, or 0.01 probability, of being exceeded in any given year.

So the **"100-year flood level"** is the **99th percentile** of the distribution of X.

 In the absence of accurate information about the shape of a population's histogram, we have to choose from a set of stock theoretical density curves the one that we *think* describes the population.

We'll look at two:

- 1. The normal distribution.
- 2. The lognormal distribution.

MTH 3240 Environmental Statistics Continuous Probability Distributions

The Normal Distribution

Notes

- Many variables follow the bell-shaped normal distribution.
- Its mean μ and standard deviation σ determine, respectively, the center and spread of the distribution.

They're referred to as the *parameters* of the distribution.

MTH 3240 Environmental Statistics

Continuous Probability Distributions

MTH 3240 Environmental Statistics

Notes

Notes

• We'll use the notation

 $X \sim \mathsf{N}(\mu, \sigma)$

to mean that the random variable X follows a normal distribution with mean μ and standard deviation σ .

 Because the distribution is symmetric, the median of the normal distribution is also μ.

• Normal distribution probabilities (areas under the curve) P(a < X < b) can be obtained using either of the following:

- A table (the so-called Z table)
- Statistical software

MTH 3240 Environmental Statistics

Continuous Probability Distributions

Example

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

The **probability** that the glucose level in a randomly selected fish will be **below 22.2** mg/100 ml is **0.16** (obtained using software and depicted on the next slide).

MTH 3240 Environmental Statistics

Continuous Probability Distributions

MTH 3240 Environmental Statistics Continuous Probability Distributions

MTH 3240 Environmental Statistics

The **probability** that the glucose level will be **within 30** of the **mean** is **0.95** (obtained using software and depicted on the next slide).

Notes

Notes

Notes

MTH 3240 Environmental Statistics Continuous Probability Distributions

- Notes
- The normal distribution with $\mu = 0$ and $\sigma = 1$ is called the *standard normal distribution* and denoted N(0, 1).

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

• We can convert **any normal random variable** to a **standard normal** one using the following fact.

Fact: If $X \sim N(\mu, \sigma)$, and we convert X to a variable Z via $X - \mu$

$$Z = \frac{X - \mu}{\sigma},$$

then $Z \sim N(0, 1)$.

MTH 3240 Environmental Statistics

Notes

• When we convert a value X to a value Z, we say that X has been *standardized*, or converted to a *z-score*.

A standardized value, or *z*-score, is measured in standard deviations away from the mean, or standard units.

It will be **positive** or **negative** depending on whether *X* is **above** or **below** the **mean**.

MTH 3240 Environmental Statistics

Continuous Probability Distributions

Example

Recall that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

If one of these fish has a glucose level of X=60.4, its

$$Z = \frac{00.4 - 37.3}{15.3} = 1.5,$$

so the fish is a one and a half standard deviations above the mean.

60 4 97 F

MTH 3240 Environmental Statistics

Continuous Probability Distribution

 $\bullet\,$ Some percentiles of the $N(0,\,1)$ distribution are shown below.

 $\mathbf{N}(0,\,1)$ Percentiles

50th	0.00
95th	1.64
97.5th	1.96
99.5th	2.58

MTH 3240 Environmental Statistics

Notes

Notes

Notes

MTH 3240 Environmental Statistics

Continuous Probability Distributions

• We can use **percentiles** to characterize **middle percentages** of the **N**(0, 1) distribution.

N(0, 1) Percentiles (Cont'd)

Middle 90%	Between ±1.64
Middle 95%	Between ± 1.96
Middle 99%	Between ± 2.58

MTH 3240 Environmental Statistics Continuous Probability Distributions

Notes

Notes

Notes

Notes

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics Continuous Probability Distributions

MTH 3240 Environmental Statistics

Continuous Probability Distribution

 A percentile of a N(μ, σ) distribution is obtained by "unstandardizing" the corresponding percentile of the N(0, 1) distribution using the following.

Percentiles of a Normal Distribution: A percentile ${\pmb x}$ of a N($\mu,\,\sigma)$ distribution is

 $x = \mu + z\sigma,$

where \boldsymbol{z} is the corresponding percentile of the $\mathsf{N}(0,\,1)$ distribution.

MTH 3240 Environmental Statistics

Continuous Probability Distributions

Exercise

A study suggests that **blood glucose levels** in *johnny darter* fish follow a **normal** distribution with mean **37.5** mg/100 ml and standard deviation **15.3** mg/100 ml.

Solve the following problems by "unstandardizing" appropriate N(0, 1) percentiles.

- a) Find the glucose level below which **97.5%** of glucose levels fall (that is, the **97.5th percentile** of the distribution).
- b) Find the two glucose levels between which the middle 95% of glucose levels fall.

Notes

Notes

Notes

The Lognormal Distribution

Continuous Probability Distributions

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics Continuous Probability Distributions

- Environmental quantities such as pollutant concentrations often follow **right skewed** distributions.
- A useful *theoretical density curve* for **right skewed** populations is the *lognormal distribution*.
- Lognormal distributions are right skewed and lie entirely to the right of zero.

Continuous Probability Distributions Lognormal Probability Density Curves Lognormal Probability Density Curves $f_{\mu=10}$ $f_{\mu=10}$

• We write

$$X \sim \mathsf{LN}(\mu, \sigma)$$

to mean that X is a random variable that follows a lognormal distribution with $\textit{parameters}\;\mu$ and σ

• The following fact explains how the lognormal distribution gets its name.

MTH 3240 Environmental Statistics Continuous Probability Distributions

Fact: If $X \sim \mathrm{LN}(\mu,\,\sigma),$ and we make the (natural) log transformation

 $Y \;=\; \log(X),$

then Y is a new random variable, and

MTH 3240 Environmental Statistics

 $Y \sim \mathsf{N}(\mu,\,\sigma).$

• In words, if X is *lognormal*, then *its log is normal*.

Thus **we can convert** a *lognormal* variable to a *normal* one by taking it's **log**.

Notes

Notes

Example										
To illustrate the effect of the making the log transformation on										
right skewed, lognormal data, the following $n = 50$										
observations were obtained from a $LN(5, 1)$ distribution using a										
computer random number generator.										
202.7	347.2	300.5	812.3	38.6	83.9	157.5	35.3	180.6	152.4	
90.4	95.5	234.7	618.9	149.2	169.6	427.6	89.1	204.3	90.9	
681.5	55.4	625.5	45.7	68.9	828.4	21.3	561.4	315.8	97.4	
95.6	69.5	650.0	77.1	367.1	49.2	478.9	182.3	273.8	33.2	
313.9	107.9	86.4	287.3	194.3	203.0	164.9	1307.0	209.4	164.7	

A histogram of these observations is shown below on the left along with the $\ensuremath{\mathsf{LN}}(5,1)$ density curve.

MTH 3240 Environmental Statistics Continuous Probability Distribu

MTH 3240 Environmental Statistics

Continuous Probability Distributions

After making the log transformation of each of the 50 observations, the data values (now on the log scale) are:

5.31	5.85	5.71	6.70	3.65	4.43	5.06	3.57	5.20	5.03
4.50	4.56	5.46	6.43	5.01	5.13	6.06	4.49	5.32	4.51
6.52	4.01	6.44	3.82	4.23	6.72	3.06	6.33	5.76	4.58
4.56	4.24	6.48	4.35	5.91	3.90	6.17	5.21	5.61	3.50
5.75	4.68	4.46	5.66	5.27	5.31	5.11	7.18	5.34	5.10

A histogram of these log-transformed values along with the N(5, 1) curve is shown on the right in previous slide.

The log-transformed data can be treated as a random sample from a N(5, 1) distribution.

MTH 3240 Environmental Statistics

Continuous Pr

MTH 3240 Environmental Statistics

Notes

Notes

Notes

Notes

• Note that the **parameters** μ and σ of the **LN**(μ , σ) distribution refer to the mean and standard deviation of the $N(\mu, \sigma)$ distribution that results **after** making the log-transformation.

In other words, μ and σ aren't the mean and standard deviation of the original **LN**(μ , σ) distribution.