	Hypothesis Testing
Th-	O CI- 4T4

7 One-Sample Hypothesis Tests

MTH 3240 Environmental Statistics

Spring 2020

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing
The One-Sample t Test

Objectives

Objectives:

- Explain the meanings of the terms hypothesis, test statistic, level of significance, p-value, statistical significance.
- Carry out a one-sample t test for a population mean using the rejection region and p-value approaches.

MTH 3240 Environmental Statistics

The One-Sample t Test

Introduction

- A statistical hypothesis is a claim about the value(s) of one or more population parameters.
- A hypothesis test uses data to decide between two hypotheses.
- The alternative hypothesis, H_a, is the claim that's of primary interest.

The *null hypothesis*, H_0 , is the claim that's not of interest.

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

- The decision will be either reject H₀ or fail to reject H₀, depending on whether the data provide ample evidence to reject it.
- The decision will be based on the value of a test statistic and a decision rule.
- "Failing to reject" H₀ only means there was insufficient evidence to reject it, not that there was sufficient evidence to accept it.

Notes		
Notes		
Notes		



Example

According to the U.S. Forest Service, to be classified as **old growth**, the **mean tree diameter** μ in a Douglas-fir tree stand should be **at least 32** inches.

A logging company claims that μ is less than 32 inches. The government claims it's at least 32.

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

Before the government will allow logging of the forest, it requires **convincing evidence** that μ is **less than 32**.

The company is allowed to take a $random\ sample$ of trees and use the mean diameter \bar{X} to justify its claim ...

... but it must convince the government that \bar{X} didn't fall below 32 just as a result of sampling variation (chance).

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

The logging company, which is conducting the study, is **interested** in the claim that μ is **less than 32** inches.

This is the alternative hypothesis.

The **null hypothesis**, therefore, is that μ is **32 inches or larger**.

These are stated as

 $ar{X}$ value less than 32.

 $H_0: \mu \geq 32$

 $H_a: \mu < 32$

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

Evidence that μ is less than 32 would come in the form of an

If that happens, a **hypothesis test** can be used to decide whether it's just due to **sampling variation**.

Notes		
Notes		
140103		
Notes		
Notes		
. 10100		

Rather than basing the decision on \bar{X} , it will be easier if we first $\it standardize$ it, and use the $\it test$ $\it statistic$

$$t \ = \ \frac{\bar{X} - 32}{S_{\bar{X}}} \, ,$$

where $S_{ar{X}}$ is the (estimated) standard error of $ar{X}$,

$$S_{\bar{X}} \ = \ \frac{S}{\sqrt{n}} \, .$$

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

• Often a set of hypotheses such as

$$H_0: \mu \geq 32$$

$$H_a: \mu < 32$$

is stated as

$$H_0: \mu = 32$$

$$H_a: \mu < 32$$

(the idea being that if the data provide enough evidence to reject $H_0: \mu=32$ in favor of $H_a: \mu<32$, they provide at least enough evidence to reject $H_0: \mu\geq 32$).

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

- There are two methods of forming the decision rule:
 - The rejection region approach
 - The p-value approach

In either case, H_0 is rejected if the observed test statistic value is one that would rarely occur just by sampling variation (chance) if H_0 was true.

Both involve comparing the observed test statistic value to the sampling distribution the test statistic would follow if H_0 was true.

We call this the *null distribution*.

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

• In every hypothesis test, a **level of significance** α must be chosen.

It determines how strong the evidence against H_0 needs to be before we're willing to reject that hypothesis.

Smaller α values require stronger evidence.

The most common choices for α are **0.01**, **0.05**, and **0.10**.

Notes			
Notes			
Notes			
Notes			

Introduction to Hypothesis Testing

Decision Rule for Rejection Region Approach:

Reject H_0 if the observed test statistic value falls in the rejection region.

Fail to reject H_0 if it doesn't fall in the rejection region.

• Using $\alpha=0.05$, the *rejection region* consists of values in the **extreme 5%** of the **null distribution**, in the direction specified by H_a .

(More generally, it's the extreme $100\alpha\%$ of the distribution).

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

Decision Rule for P-Value Approach:

Reject H_0 if the p-value is less than 0.05 (or more generally, less than α).

Fail to reject H_0 if the p-value isn't less than 0.05 (α) .

ullet The *p-value* is the **probability** (under H_0) of getting a test statistic value **as extreme** (in the direction specified by H_a) as the **observed value**.

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

• Smaller p-values provide more compelling evidence against H_0 .

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

 The rejection region and p-value approaches always lead to the same conclusion.

This is because (as we'll see later) the **test statistic** will fall in the **rejection region** if (and only if) the **p-value** is **less than** α .

	Notes	
Notes		
	Notes	
Notes	Notes	
Notes		
	Notes	

ullet For a given choice of lpha, if H_0 is rejected, we say the result is *statistically significant* at the lpha level.

A statistically significant result is one for which sampling variation (chance) can be ruled out as being the sole explanation for the evidence supporting H_a .

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

Steps in Performing a Hypothesis Test

- 1. Identify the population parameter(s) of interest.
- 2. State the null and alternative hypotheses.
- 3. Choose an appropriate test procedure and check any assumptions (e.g. normality of the data).
- 4. Choose a level of significance α .
- 5. Compute the test statistic.
- 6. Find the p-value **or** determine if the test statistic falls in the rejection region.
- 7. State the conclusion ("reject" or "fail to reject" H_0).

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing
The One-Sample t Test

The One-Sample t Test

- The *one-sample* t *test* is a hypothesis test for an (unknown) population mean μ .
- The **null hypothesis** is that μ is equal to some **claimed** value μ_0 .

Null Hypothesis:

 $H_0: \mu = \mu_0.$

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing

• The alternative hypothesis is one of the following.

Alternative Hypothesis:

1. $H_a: \mu > \mu_0$ (upper-tailed test)

2. $H_a: \mu < \mu_0$ (lower-tailed test)

3. $H_a: \mu \neq \mu_0$ (two-tailed test)

depending on what we're trying to verify using the data.

Notes			
Notes			
Notes			
Notes			
		-	

One-Sample t Test Statistic:

 $t \ = \ \frac{\bar{X} - \mu_0}{S_{\bar{X}}}, \label{eq:tau}$

where

$$S_{\bar{X}} = \frac{S}{\sqrt{n}}.$$

• t indicates how many **standard errors** \bar{X} is **away from** μ_0 , and in what direction (positive or negative).

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing
The One-Sample t Test

- ullet $ar{X}$ is an estimate of μ , so ...
 - ullet If H_0 was true, ...
 - ... we'd expect \bar{X} to be close μ_0 .
 - $\bullet \ \, {\rm But} \,\, {\rm if} \,\, H_a \,\, {\rm was} \,\, {\rm true}, \ldots$
 - ... we'd expect \bar{X} to differ from μ_0 in the direction specified by H_a
- Thus ...
 - 1. t will be approximately **zero** (most likely) if H_0 is true.
 - 2. It will **differ from zero** (most likely) in the direction specified by H_a if H_a is true.

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing
The One-Sample t Test

- 1. Large positive values of t provide evidence in favor of $H_a: \mu > \mu_0. \label{eq:hamma}$
- 2. Large negative values of t provide evidence in favor of H_a : $\mu<\mu_0.$
- 3. Both large positive and large negative values of t provide evidence in favor of $H_a: \mu \neq \mu_0$.

MTH 3240 Environmental Statistics

ntroduction to Hypothesis Testing

• Suppose we have a random sample from a population.

If either

- The population is normal, or
- ② The sample size n is large,

the null distribution is as follows.

Sampling Distribution of the Test Statistic Under H_0 :

If t is the one-sample t test statistic, then when

$$H_0: \mu = \mu_0$$

is true,

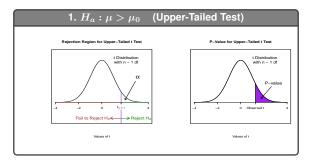
$$t \sim t(n-1)$$
.

Notes
Notes
Notes
NOTES
Notes

ullet P-values and rejection regions are obtained from the appropriate tail(s) of the t(n-1) distribution, as shown on the next slides.

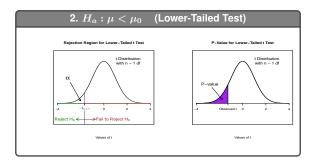
MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing



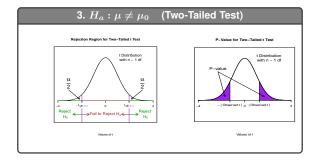
MTH 3240 Environmental Statistics

The One-Sample t Test



MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing



lotes		
lotes		
lotes		
otes		
lotes		
otes		
lotes		
Notes		

One-Sample t Test for $\boldsymbol{\mu}$

Assumptions: The data x_1, x_2, \ldots, x_n are a random sample from a population and either the population is *normal* or n is *large*.

Null hypothesis: $H_0: \mu = \mu_0$.

Test statistic value: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$.

Decision rule: Reject H_0 if p-value $< \alpha$ or t is in rejection region.

One-Sample t Test for μ

Alternative hypothesis	P-value = area under t distribution with $n-1$ d.f.:	Rejection region = t values such that:*
$H_a : \mu > \mu_0$	to the right of t	$t > t_{\alpha,n-1}$
$H_a : \mu < \mu_0$	to the left of t	$t < -t_{\alpha,n-1}$
$H_a : \mu \neq \mu_0$	to the left of $-\left t\right $ and right of $\left t\right $	$t>t_{\alpha/2,n-1}$ or $t<-t_{\alpha/2,n}$

* $t_{\alpha,n-1}$ is the $100(1-\alpha)$ th percentile of the t distribution with n-1 d.f.

Exercise

In the previous example, the logging company was interested in testing hypotheses that can be stated as

$$H_0: \mu = 32$$

$$H_a: \mu < 32$$

where μ is the true (unknown) **population mean** tree diameter.

Suppose that in a random sample of n=100 trees, the sample mean and standard deviation of the diameters are

$$\bar{X} = 30.3$$

$$S = 8.16.$$

Thus the (estimated) standard error of $\bar{\boldsymbol{X}}$ is

$$S_{\bar{X}} = \frac{S}{\sqrt{n}} = \frac{8.16}{\sqrt{100}} = \mathbf{0.82}.$$

Notes			
Notes			
Notes			
Notes			

Introduction to Hypothesis Testing
The One-Sample t Test

Suppose also a histogram indicates the data are from a **normal population**, so the **one-sample** *t* **test** is appropriate.

(It would be appropriate even if the normality assumption wasn't met because n is large.)

The observed value of the test statistic is

$$t = \frac{\bar{X} - \mu_0}{S_{\bar{X}}} = \frac{30.3 - 32}{0.82} = -2.07.$$

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing
The One-Sample t Test

a) For the **rejection region approach**, using level of significance lpha=0.05, the **decision rule** is

Reject
$$H_0$$
 if $t < -t_{0.05,99}$
Fail to reject H_0 if $t \ge -t_{0.05,99}$

Carry out the test using the **rejection region approach**.

MTH 3240 Environmental Statistics

Introduction to Hypothesis Testing
The One-Sample t Test

b) For the **p-value approach**, using lpha=0.05 again, the **decision rule** is

Reject
$$H_0$$
 if p-value < 0.05
Fail to reject H_0 if p-value ≥ 0.05

Carry out the test again using the **p-value approach**.

MTH 3240 Environmental Statistics

Notes			
-			
Notes			
Notes			
Notes			
-			
Nata -			
Notes			
	 	 ·	