7 One-Sample Hypothesis Tests

MTH 3240 Environmental Statistics

Spring 2020

イロト イポト イヨト イヨト

■ のへの

MTH 3240 Environmental Statistics

Objectives:

- Explain the meanings of the terms hypothesis, test statistic, level of significance, p-value, statistical significance.
- Carry out a one-sample *t* test for a population mean using the rejection region and p-value approaches.

ヘロト 人間 ト くほ ト くほ トー

æ

 A statistical *hypothesis* is a claim about the value(s) of one or more population parameters.

イロト イポト イヨト イヨト

- A statistical *hypothesis* is a claim about the value(s) of one or more population parameters.
- A hypothesis test uses data to decide between two hypotheses.

イロト イポト イヨト イヨト

- A statistical *hypothesis* is a claim about the value(s) of one or more population parameters.
- A hypothesis test uses data to decide between two hypotheses.

イロト イポト イヨト イヨト

- A statistical *hypothesis* is a claim about the value(s) of one or more population parameters.
- A hypothesis test uses data to decide between two hypotheses.
- The *alternative hypothesis*, *H*_a, is the claim that's of primary interest.

イロト イポト イヨト イヨト

- A statistical *hypothesis* is a claim about the value(s) of one or more population parameters.
- A hypothesis test uses data to decide between two hypotheses.
- The *alternative hypothesis*, *H*_a, is the claim that's of primary interest.

The *null hypothesis*, H_0 , is the claim that's not of interest.

イロト イポト イヨト イヨト

э.

 The decision will be either reject H₀ or fail to reject H₀, depending on whether the data provide ample evidence to reject it.

イロト イポト イヨト イヨト

- The decision will be either reject H₀ or fail to reject H₀, depending on whether the data provide ample evidence to reject it.
- The decision will be based on the value of a *test statistic* and a *decision rule*.

ヘロト 人間 ト くほ ト くほ トー

э.

- The decision will be either reject H₀ or fail to reject H₀, depending on whether the data provide ample evidence to reject it.
- The decision will be based on the value of a *test statistic* and a *decision rule*.
- "Failing to reject" *H*₀ only means there was insufficient evidence to reject it, *not* that there was sufficient evidence to accept it.

くロト (過) (目) (日)

Example

According to the U.S. Forest Service, to be classified as **old growth**, the **mean tree diameter** μ in a Douglas-fir tree stand should be **at least 32** inches.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Example

According to the U.S. Forest Service, to be classified as **old growth**, the **mean tree diameter** μ in a Douglas-fir tree stand should be **at least 32** inches.

A logging company claims that μ is less than 32 inches. The government claims it's at least 32.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Before the government will allow logging of the forest, it requires **convincing evidence** that μ is **less than 32**.

イロト イポト イヨト イヨト

Before the government will allow logging of the forest, it requires **convincing evidence** that μ is **less than 32**.

The company is allowed to take a **random sample** of trees and use the mean diameter $\bar{\mathbf{X}}$ to justify its claim ...

(日)

- ⊒ →

Before the government will allow logging of the forest, it requires **convincing evidence** that μ is **less than 32**.

The company is allowed to take a **random sample** of trees and use the mean diameter $\bar{\mathbf{X}}$ to justify its claim ...

... but it must convince the government that $\bar{\mathbf{X}}$ didn't fall **below** 32 just as a result of **sampling variation** (chance).

ヘロト ヘアト ヘヨト ヘ

イロト イポト イヨト イヨト

= 990

This is the alternative hypothesis.

イロト イポト イヨト イヨト

= 990

This is the alternative hypothesis.

The null hypothesis, therefore, is that μ is 32 inches or larger.

ヘロト ヘアト ヘビト ヘビト

This is the alternative hypothesis.

The null hypothesis, therefore, is that μ is 32 inches or larger.

These are stated as

$$H_0: \mu \geq 32$$
$$H_a: \mu < 32$$

ヘロト ヘアト ヘビト ヘビト

э.

Evidence that μ is less than 32 would come in the form of an \bar{X} value less than 32.

= 900

イロト イポト イヨト イヨト

Evidence that μ is less than 32 would come in the form of an \bar{X} value less than 32.

ヘロト ヘアト ヘビト ヘビト

3

If that happens, a **hypothesis test** can be used to decide whether it's just due to **sampling variation**.

Rather than basing the decision on \bar{X} , it will be easier if we first *standardize* it, and use the *test statistic*

$$t = \frac{\bar{X} - 32}{S_{\bar{X}}},$$

イロト イポト イヨト イヨト

= 990

Rather than basing the decision on \bar{X} , it will be easier if we first **standardize** it, and use the **test statistic**

$$t = \frac{\bar{X} - 32}{S_{\bar{X}}},$$

where $S_{\bar{X}}$ is the (estimated) standard error of \bar{X} ,

$$S_{\bar{X}} = \frac{S}{\sqrt{n}}$$

イロト イポト イヨト イヨト

Often a set of hypotheses such as

$$H_0: \mu \geq 32$$
$$H_a: \mu < 32$$

is stated as

$$H_0: \mu = 32$$
$$H_a: \mu < 32$$

(the idea being that if the data provide enough evidence to reject $H_0: \mu = 32$ in favor of $H_a: \mu < 32$, they provide *at least enough* evidence to reject $H_0: \mu \ge 32$).

イロト イポト イヨト イヨト 一臣

• There are two methods of forming the **decision rule**:

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- The rejection region approach
- The *p-value approach*

- There are two methods of forming the **decision rule**:
 - The *rejection region approach*
 - The *p-value approach*

In either case, H_0 is **rejected** if the observed **test statistic** value is one that would **rarely occur just by sampling variation (chance)** if H_0 was true.

ヘロト 人間 ト ヘヨト ヘヨト

э.

- There are two methods of forming the **decision rule**:
 - The *rejection region approach*
 - The *p-value approach*

In either case, H_0 is **rejected** if the observed **test statistic** value is one that would **rarely occur just by sampling variation (chance)** if H_0 was true.

Both involve comparing the observed test statistic value to the sampling distribution the test statistic would follow if H_0 was true.

ヘロト ヘアト ヘビト ヘビト

э.

- There are two methods of forming the **decision rule**:
 - The *rejection region approach*
 - The *p-value approach*

In either case, H_0 is **rejected** if the observed **test statistic** value is one that would **rarely occur just by sampling variation (chance)** if H_0 was true.

Both involve comparing the observed test statistic value to the sampling distribution the test statistic would follow if H_0 was true.

ヘロン 人間 とくほ とくほ とう

э.

We call this the *null distribution*.

It determines how strong the evidence against H_0 needs to be before we're willing to reject that hypothesis.

イロト イポト イヨト イヨト

It determines how strong the evidence against H_0 needs to be before we're willing to reject that hypothesis.

イロト イポト イヨト イヨト

э.

Smaller α values require stronger evidence.

It determines how strong the evidence against H_0 needs to be before we're willing to reject that hypothesis.

Smaller α values require stronger evidence.

The most common choices for α are **0.01**, **0.05**, and **0.10**.

イロン イボン イヨン イヨン

э.

Using α = 0.05, the *rejection region* consists of values in the extreme 5% of the null distribution, in the direction specified by H_a.

イロト イポト イヨト イヨト

æ

Using α = 0.05, the *rejection region* consists of values in the extreme 5% of the null distribution, in the direction specified by H_a.

(More generally, it's the extreme 100α % of the distribution).

イロン イボン イヨン イヨン

æ

Decision Rule for P-Value Approach:

Reject H_0 if the p-value is less than 0.05 (or more generally, less than α). **Fail to reject** H_0 if the p-value isn't less than 0.05 (α)

• The *p-value* is the **probability** (under *H*₀) of getting a test statistic value **as extreme** (in the direction specified by *H*_a) as the **observed value**.

< ロ > < 同 > < 臣 > < 臣 > -

• Smaller p-values provide more compelling evidence against *H*₀.

₹ 990
• The rejection region and p-value approaches always lead to the same conclusion.

イロト イポト イヨト イヨト

E DQC

• The rejection region and p-value approaches always lead to the same conclusion.

This is because (as we'll see later) the **test statistic** will fall in the **rejection region** if (and only if) the **p-value** is **less than** α .

イロト イポト イヨト イヨト

For a given choice of α, if H₀ is rejected, we say the result is *statistically significant* at the α level.

イロト イポト イヨト イヨト

E DQC

For a given choice of α, if H₀ is rejected, we say the result is *statistically significant* at the α level.

A statistically significant result is one for which sampling variation (chance) can be ruled out as being the sole explanation for the evidence supporting H_a .

ヘロト 人間 ト ヘヨト ヘヨト

э.

Steps in Performing a Hypothesis Test

- 1. Identify the population parameter(s) of interest.
- 2. State the null and alternative hypotheses.
- 3. Choose an appropriate test procedure and check any assumptions (e.g. normality of the data).
- 4. Choose a level of significance α .
- 5. Compute the test statistic.
- 6. Find the p-value **or** determine if the test statistic falls in the rejection region.

イロト イポト イヨト イヨト

1

7. State the conclusion ("reject" or "fail to reject" H_0).

The One-Sample t Test

 The one-sample t test is a hypothesis test for an (unknown) population mean μ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The One-Sample t Test

- The one-sample t test is a hypothesis test for an (unknown) population mean μ.
- The null hypothesis is that μ is equal to some *claimed* value μ₀.

Null Hypothesis:

$$H_0: \mu = \mu_0.$$

イロン イボン イヨン イヨン

ъ

• The alternative hypothesis is one of the following.

Alternative Hypothesis:

1. $H_a: \mu > \mu_0$	(upper-tailed test)
2. $H_a: \mu < \mu_0$	(lower-tailed test)

3. $H_a: \mu \neq \mu_0$ (two-tailed test)

depending on what we're trying to verify using the data.

ヘロト 人間 とくほとくほとう

• The alternative hypothesis is one of the following.

Alternative Hypothesis:

1. $H_a: \mu > \mu_0$	(upper-tailed test)
2. $H_a: \mu < \mu_0$	(lower-tailed test)

3. $H_a: \mu \neq \mu_0$ (two-tailed test)

depending on what we're trying to verify using the data.

ヘロト 人間 とくほとくほとう

One-Sample t Test Statistic: $t \ = \ \frac{\bar{X}-\mu_0}{S_{\bar{X}}},$ where $S_{\bar{X}} \ = \ \frac{S}{\sqrt{n}}.$

• *t* indicates how many standard errors \bar{X} is away from μ_0 , and in what direction (positive or negative).

イロト イポト イヨト イヨト

= 990

• \bar{X} is an estimate of μ , so ...

- \bar{X} is an estimate of μ , so ...
 - If H₀ was true, ...

- \bar{X} is an estimate of μ , so ...
 - If H₀ was true, ...

... we'd expect \bar{X} to be close μ_0 .

・ロト ・聞 ト ・ ヨト ・ ヨトー

■ のへで

- \bar{X} is an estimate of μ , so ...
 - If H₀ was true, ...
 - ... we'd expect \bar{X} to be close μ_0 .
 - But if H_a was true, ...

・ロト ・聞 ト ・ ヨト ・ ヨトー

• \bar{X} is an estimate of μ , so ...

• If H₀ was true, ...

... we'd expect \bar{X} to be close μ_0 .

• But if Ha was true, ...

... we'd expect \bar{X} to differ from μ_0 in the direction specified by H_a

・ロン・西方・ ・ ヨン・

= 990

• \bar{X} is an estimate of μ , so ...

• If H₀ was true, ...

... we'd expect \bar{X} to be close μ_0 .

• But if Ha was true, ...

... we'd expect \bar{X} to differ from μ_0 in the direction specified by H_a

<ロト <回 > < 注 > < 注 > 、

■ のへで

• Thus ...

- \bar{X} is an estimate of μ , so ...
 - If H₀ was true, ...

... we'd expect \bar{X} to be close μ_0 .

• But if Ha was true, ...

... we'd expect \bar{X} to differ from μ_0 in the direction specified by H_a

- Thus ...
 - 1. t will be approximately **zero** (most likely) if H_0 is true.

ヘロト 人間 とくほとくほとう

э.

2. It will **differ from zero** (most likely) in the direction specified by H_a if H_a is true.

- Large positive values of t provide evidence in favor of H_a : μ > μ₀.
- 2. Large negative values of t provide evidence in favor of $H_a: \mu < \mu_0$.
- 3. Both large positive and large negative values of t provide evidence in favor of $H_a: \mu \neq \mu_0$.

イロト イポト イヨト イヨト

• Suppose we have a random sample from a population.

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

Suppose we have a random sample from a population.

イロン イボン イヨン イヨン

3

If either

The population is normal, or

2 The sample size n is large,

Suppose we have a random sample from a population.

イロト イポト イヨト イヨト

3

If either

The population is normal, or

2 The sample size n is large,

the null distribution is as follows.

Suppose we have a random sample from a population.

If either

- The population is normal, or
- The sample size n is large, 2

the null distribution is as follows.

Sampling Distribution of the Test Statistic Under H_0 : If t is the one-sample t test statistic, then when

$$H_0: \ \mu \ = \ \mu_0$$

is true,

$$t \sim t(n-1).$$

▲ @ ▶ ▲ ⊇ ▶

• **P-values** and **rejection regions** are obtained from the appropriate tail(s) of the t(n - 1) **distribution**, as shown on the next slides.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

One-Sample *t* Test for μ

Assumptions: The data x_1, x_2, \ldots, x_n are a random sample from a population and either the population is *normal* or *n* is *large*.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三 のなの

Null hypothesis: $H_0: \mu = \mu_0$.

Test statistic value: $t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$.

Decision rule: Reject H_0 if p-value $< \alpha$ or t is in rejection region.

One-Sample t Test for μ	μ
-------------------------------	-------

	P-value = area under		
Alternative	t distribution	Rejection region =	
hypothesis	with $n-1$ d.f.:	t values such that:*	
$H_a: \mu > \mu_0$	to the right of t	$t > t_{\alpha,n-1}$	
$H_a: \mu < \mu_0$	to the left of t	$t < -t_{\alpha,n-1}$	
$H_a: \mu \neq \mu_0$	to the left of $- t $ and right of $ t $	$t>t_{lpha/2,n-1}$ or $t<-t_{lpha/2,n-1}$	-1

* $t_{\alpha,n-1}$ is the $100(1-\alpha)$ th percentile of the t distribution with n-1 d.f.

Exercise

In the previous example, the logging company was interested in testing hypotheses that can be stated as

$$H_0: \mu = 32$$
$$H_a: \mu < 32$$

where μ is the true (unknown) **population mean** tree diameter.

イロト イポト イヨト イヨト

Suppose that in a random sample of n = 100 trees, the sample mean and standard deviation of the diameters are

$$\bar{X} = 30.3$$

 $S = 8.16$

イロト イポト イヨト イヨト

Suppose that in a random sample of n = 100 trees, the sample mean and standard deviation of the diameters are

$$ar{X} = 30.3$$

 $S = 8.16$.

Thus the (estimated) standard error of \bar{X} is

$$S_{\bar{X}} = \frac{S}{\sqrt{n}} = \frac{8.16}{\sqrt{100}} = 0.82.$$

イロン イボン イヨン イヨン

ъ

Suppose also a histogram indicates the data are from a **normal population**, so the **one-sample** *t* **test** is appropriate.

イロト 不得 とくほと くほとう

Suppose also a histogram indicates the data are from a **normal population**, so the **one-sample** *t* **test** is appropriate.

ヘロト ヘアト ヘビト ヘビト

1

(It would be appropriate even if the normality assumption wasn't met because n is large.)

Suppose also a histogram indicates the data are from a **normal population**, so the **one-sample** t **test** is appropriate.

(It would be appropriate even if the normality assumption wasn't met because n is large.)

The observed value of the test statistic is

$$t = \frac{\bar{X} - \mu_0}{S_{\bar{X}}} = \frac{30.3 - 32}{0.82} = -2.07.$$

くロト (過) (目) (日)

æ

a) For the **rejection region approach**, using level of significance $\alpha = 0.05$, the **decision rule** is

Reject H_0 if $t < -t_{0.05,99}$ Fail to reject H_0 if $t \ge -t_{0.05,99}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●
a) For the **rejection region approach**, using level of significance $\alpha = 0.05$, the **decision rule** is

Reject H_0 if $t < -t_{0.05,99}$ Fail to reject H_0 if $t \ge -t_{0.05,99}$

Carry out the test using the rejection region approach.

イロト イポト イヨト イヨト 一臣

b) For the **p-value approach**, using $\alpha = 0.05$ again, the **decision rule** is

Reject H_0 if p-value < 0.05Fail to reject H_0 if p-value ≥ 0.05

イロト イポト イヨト イヨト

3

b) For the **p-value approach**, using $\alpha = 0.05$ again, the **decision rule** is

Reject H_0 if p-value < 0.05Fail to reject H_0 if p-value ≥ 0.05

Carry out the test again using the **p-value approach**.

イロト イポト イヨト イヨト

э.