7 One-Sample Hypothesis Tests (Cont'd)

MTH 3240 Environmental Statistics

Spring 2020

イロト イポト イヨト イヨト

3

MTH 3240 Environmental Statistics

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Objectives

Objectives:

- Recognize data snooping and explain why it can lead to incorrect conclusions in hypothesis testing.
- Differentiate between Type I and II errors.
- State the relationship between the level of significance and the probability of a Type I error.
- Differentiate between statistical significance and practical importance.

・ロン・西方・ ・ ヨン・ ヨン・

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Data Snooping

 Choosing a direction for a one-sided H_a is intended to be a prediction of what you think the data will indicate.

イロン イボン イヨン イヨン

3

Data Snooping

- Choosing a direction for a one-sided H_a is intended to be a prediction of what you think the data will indicate.
- Data snooping refers to waiting until after you've looked at the data to choose a direction for H_a , and then testing H_a in the direction that matches what you already see in the data.

ヘロト 人間 ト ヘヨト ヘヨト

Data Snooping

- Choosing a direction for a one-sided H_a is intended to be a prediction of what you think the data will indicate.
- Data snooping refers to waiting until after you've looked at the data to choose a direction for H_a , and then testing H_a in the direction that matches what you already see in the data.
- Data snooping is "cheating" because it results in an artificially small p-value, which can lead to mistakenly declaring a spurious result statistically significant.

ヘロト ヘアト ヘビト ヘビト

A one-sided H_a should only be used if you have a specific direction in mind prior to looking at the data.

イロト イポト イヨト イヨト

= 990

• A **one-sided** *H*_{*a*} should **only** be used if you have a specific direction in mind **prior** to looking at the data.

イロト イポト イヨト イヨト

Otherwise, use a **two-sided** H_a .

• A **one-sided** *H*_{*a*} should **only** be used if you have a specific direction in mind **prior** to looking at the data.

Otherwise, use a **two-sided** H_a .

 The next example shows that data snooping can lead to a p-value that's half as large as it's supposed to be.

イロト イポト イヨト イヨト

э.

Example

A laboratory quality assurance study was carried out to **look** for signs of systematic bias in a lab's measurements of total organic carbon (**TOC**), an indicator of water quality.

イロン イボン イヨン イヨン

э.

Example

A laboratory quality assurance study was carried out to **look for signs of systematic bias** in a lab's measurements of total organic carbon (**TOC**), an indicator of water quality.

Sixteen certified standard solutions having **50** mg/L TOC were randomly inserted into the lab's work stream. Lab analysts were unaware of the presence of these standard solutions.

ヘロト 人間 ト ヘヨト ヘヨト

If there's **bias**, their measurements will tend to systematically **differ from 50** in the **direction of the bias**.

イロン イボン イヨン イヨン

3

If there's **bias**, their measurements will tend to systematically **differ from 50** in the **direction of the bias**.

イロト イポト イヨト イヨト

ъ

But If there's no bias, they should equal 50 on average.

If there's **bias**, their measurements will tend to systematically **differ from 50** in the **direction of the bias**.

But If there's no bias, they should equal 50 on average.

Because there **isn't** a particular direction in mind for the bias, the **appropriate** hypotheses to test are

 $H_0: \mu = 50$ $H_a: \mu \neq 50$

ヘロト ヘアト ヘビト ヘビト

where μ is the lab's true (unknown) population **mean** measurement result for **50** mg/L standard solutions.

イロト 不得 とくほと くほとう

E 900

イロト イポト イヨト イヨト

= 990

We'll use level of significance $\alpha = 0.01$.

We'll use level of significance $\alpha = 0.01$.

Here are the lab's results for n = 16 of the standard solutions:

50.3	51.2	50.5	50.2	49.9	50.2	50.3	50.5
49.3	50.0	50.4	50.1	51.0	49.8	50.7	50.6

イロン イボン イヨン イヨン

3

We'll use level of significance $\alpha = 0.01$.

Here are the lab's results for n = 16 of the standard solutions:

50.3	51.2	50.5	50.2	49.9	50.2	50.3	50.5
49.3	50.0	50.4	50.1	51.0	49.8	50.7	50.6

The sample mean and standard deviation are

$$\bar{X} = 50.31$$
 and $S = 0.46$.

イロン イボン イヨン イヨン

æ

The standard error of \bar{X} is

$$S_{\bar{X}} = \frac{0.46}{\sqrt{16}} = 0.115.$$

so the test statistic is

$$t = \frac{50.31 - 50}{0.115} = 2.70.$$

The **standard error** of \bar{X} is

$$S_{\bar{X}} = \frac{0.46}{\sqrt{16}} = 0.115.$$

so the test statistic is

$$t = \frac{50.31 - 50}{0.115} = 2.70.$$

For the **two-sided** test, the **p-value** is the sum of the **two tail areas** shown below.

イロト イポト イヨト イヨト

= 990

From a *t* table, using n - 1 = 15 df, the **p-value** is 2(0.0082) = 0.0164.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

Using $\alpha = 0.01$, we'd fail to reject H_0 .

Now suppose that we had **data snooped**, and decided, **after** noticing that $\bar{X} = 50.31$ is **greater than 50**, to do a one-sided, **upper-tailed** test of

$$H_0: \mu = 50$$
$$H_a: \mu > 50$$

イロト イポト イヨト イヨト

э.

using $\alpha = 0.01$ again.

The test statistic would still be t = 2.70, but now the p-value would be just the upper tail area, which is **0.0082**.

イロト イポト イヨト イヨト

3

The test statistic would still be t = 2.70, but now the p-value would be just the upper tail area, which is **0.0082**.

This p-value is **half** of what it was for the two-tailed test, and using $\alpha = 0.01$, now we'd **reject** H_0 .

ヘロト ヘ戸ト ヘヨト ヘヨト

The test statistic would still be t = 2.70, but now the p-value would be just the upper tail area, which is **0.0082**.

This p-value is **half** of what it was for the two-tailed test, and using $\alpha = 0.01$, now we'd **reject** H_0 .

Here, we'd **mistakenly** conclude there's bias in the positive direction, and might **unnecessarily** recommend corrective actions.

イロン 不得 とくほ とくほとう

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Type I and II Errors

• Any time we carry out a hypothesis test, there's always a possibility that we might reach the **wrong conclusion**.

イロン イボン イヨン イヨン

æ

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Type I and II Errors

• Any time we carry out a hypothesis test, there's always a possibility that we might reach the **wrong conclusion**.

A *Type I error* ("false positive") occurs when we mistakenly reject H_0 even though in fact H_0 is true.

イロト イポト イヨト イヨト

Type I and II Errors

• Any time we carry out a hypothesis test, there's always a possibility that we might reach the **wrong conclusion**.

A *Type I error* ("false positive") occurs when we mistakenly reject H_0 even though in fact H_0 is true.

ヘロン 人間 とくほ とくほ とう

A **Type II error** ("false negative") occurs when we mistakenly *fail* to reject H_0 even though H_a is true.

Type I and II Errors

		True State of Nature			
		H_0	H_a		
<u>Your</u> Decision	Reject H ₀	Type I Error	Correct Decision		
	Fail to Reject H_0	Correct Decision	Type II Error		

Exercise

Let μ denote the true (unknown) population **mean radioactivity level** in a certain lake.

イロト イポト イヨト イヨト

= 990

Exercise

Let μ denote the true (unknown) population **mean radioactivity level** in a certain lake.

The value **5** pCi/L is considered the dividing line between **safe** and **hazardous** water.

イロン 不得 とくほ とくほとう

æ

Exercise

Let μ denote the true (unknown) population **mean radioactivity level** in a certain lake.

The value **5** pCi/L is considered the dividing line between **safe** and **hazardous** water.

To decide whether the lake's water is safe, a random sample of **50** water specimens is selected, and the radioactivity measured in each specimen.

ヘロト ヘ戸ト ヘヨト ヘヨト

a) Suppose we decide to test the hypotheses

 $\begin{array}{rcl} H_0: \mu & \leq & 5 \\ H_a: \mu & > & 5 \end{array}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Which of following is a **Type I error** which is a **Type II** error?

a) Suppose we decide to test the hypotheses

 $\begin{array}{rcl} H_0: \mu & \leq & 5 \\ H_a: \mu & > & 5 \end{array}$

Which of following is a **Type I error** which is a **Type II** error?

A. In reality the **water is safe**, but we **conclude it's hazardous**.

イロト イポト イヨト イヨト

= 990

a) Suppose we decide to test the hypotheses

 $H_0: \mu \leq 5$ $H_a: \mu > 5$

Which of following is a **Type I error** which is a **Type II** error?

A. In reality the **water is safe**, but we **conclude it's hazardous**.

B. In reality the water is hazardous, but we conclude it's safe.

ヘロン 人間 とくほ とくほ とう

э.

b) In Part *a*, which type of error has **more serious consequences**?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで
c) Now suppose instead that the hypotheses are

 $H_0: \mu \geq 5$ $H_a: \mu < 5$

Now which of following is a **Type I error** which is a **Type II** error?

イロト イポト イヨト イヨト

= 990

c) Now suppose instead that the hypotheses are

 $H_0: \mu \geq 5$ $H_a: \mu < 5$

Now which of following is a **Type I error** which is a **Type II** error?

A. In reality the **water is safe**, but we **conclude it's hazardous**.

イロト イポト イヨト イヨト

c) Now suppose instead that the hypotheses are

 $H_0: \mu \geq 5$ $H_a: \mu < 5$

Now which of following is a **Type I error** which is a **Type II** error?

A. In reality the **water is safe**, but we **conclude it's hazardous**.

B. In reality the **water is hazardous**, but we **conclude it's safe**.

ヘロン 人間 とくほ とくほ とう

d) In part c, which type of error has more serious consequences?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Level of Significance as the Type I Error Probability

 The level of significance α turns out to be the probability of making a Type I error (when H₀ is true).

イロン イボン イヨン イヨン

æ

Level of Significance as the Type I Error Probability

 The level of significance α turns out to be the probability of making a Type I error (when H₀ is true).

For a hypothesis test using level of significance α , when H_0 is true,

```
P(\text{Type I error}) = \alpha.
```

イロト イポト イヨト イヨト

Level of Significance as the Type I Error Probability

 The level of significance α turns out to be the probability of making a Type I error (when H₀ is true).

For a hypothesis test using level of significance α , when H_0 is true,

```
P(\text{Type I error}) = \alpha.
```

Thus using α = 0.05, if H₀ was true, there'd be a 5% chance we'd mistakenly reject H₀.

• To see why, consider an upper-tailed test using the rejection region approach. In this case:

イロト イポト イヨト イヨト

- To see why, consider an upper-tailed test using the rejection region approach. In this case:
 - The **probability** that the test statistic *t* will fall to the right of the critical value $t_{\alpha,n-1}$ (when H_0 is true) is α . See the next slide.

イロト イポト イヨト イヨト

E DQC

- To see why, consider an upper-tailed test using the rejection region approach. In this case:
 - The **probability** that the test statistic *t* will fall to the right of the critical value $t_{\alpha,n-1}$ (when H_0 is true) is α . See the next slide.

イロト イポト イヨト イヨト

э.

• If this happens, a **Type I error** is committed.

3

The t(n-1) distribution is the sampling distribution of the test statistic t when H_0 is true. イロト 不得 とくほ とくほ とう

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Choosing a Level of Significance

 Because the level of significance is the *probability of* making a Type I error, if a Type I error has very serious consequences, we should use a small value for α (e.g. 0.01).

イロト イポト イヨト イヨト

э.

Suppose again μ is the (unknown) population **mean radioactivity level** in a lake.

ヘロト 人間 とくほとくほとう

■ のへで

Suppose again μ is the (unknown) population **mean radioactivity level** in a lake.

Suppose we want to test the hypotheses

$$H_0: \mu \geq 5$$
$$H_a: \mu < 5$$

イロト イポト イヨト イヨト

= 990

Suppose again μ is the (unknown) population **mean radioactivity level** in a lake.

Suppose we want to test the hypotheses

$$H_0: \mu \geq 5$$
$$H_a: \mu < 5$$

Recall (previous exercise) that a **Type I error** would result if we **conclude** the **water's safe** even though in fact **it's hazardous**.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Suppose again μ is the (unknown) population **mean radioactivity level** in a lake.

Suppose we want to test the hypotheses

$$H_0: \mu \geq 5$$
$$H_a: \mu < 5$$

Recall (previous exercise) that a **Type I error** would result if we **conclude** the **water's safe** even though in fact **it's hazardous**.

Which level of significance, 0.10, 0.05, or 0.01, should we use?

イロン 不得 とくほ とくほとう

・ロン・(理)・ ・ ヨン・

∃ 𝒫𝔅

Using a smaller α requires stronger evidence against H_0 (i.e. *t* farther away from zero) before we're willing to reject H_0 ...

Using a smaller α requires stronger evidence against H_0 (i.e. *t* farther away from zero) before we're willing to reject H_0 ...

... but requiring stronger evidence against H_0 means we're less likely to reject H_0 even when H_a is true.

Using a smaller α requires stronger evidence against H_0 (i.e. *t* farther away from zero) before we're willing to reject H_0 ...

... but requiring stronger evidence against H_0 means we're less likely to reject H_0 even when H_a is true.

ヘロト ヘアト ヘビト ヘビト

In other words, using a smaller α makes it more likely that we'll make a Type II error (when H_a is true).

Tradeoff Between Type I and II Error Probabilities

<u>Value of α </u>

	Small (e.g. 0.01)	Medium (e.g. 0.05)	Large (e.g. 0.10)	
Probability of Type I Error	Small	Medium	Large	
Probability of Type II Error	Large	Medium	Small	

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Statistical Significance Versus Practical Importance

• The **p-value** of a hypothesis test indicates **how strong** the **evidence** against *H*₀ is:

	Strength
P-value	of Evidence
P-value > 0.10	Weak
0.05 < P-value < 0.10	Moderate
0.01 < P-value < 0.05	Strong
P-value < 0.01	Very Strong

イロト イポト イヨト イヨト

æ

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

Statistical Significance Versus Practical Importance

• The **p-value** of a hypothesis test indicates **how strong** the **evidence** against *H*₀ is:

	Strength
P-value	of Evidence
P-value > 0.10	Weak
0.05 < P-value < 0.10	Moderate
$0.01 < P ext{-value} < 0.05$	Strong
P-value < 0.01	Very Strong

A **small p-value** indicates that a difference or effect was **detected**, but **not necessarily** that it's *large*.

ヘロト ヘ戸ト ヘヨト ヘヨト

More precisely, a small p-value can arise in either of two ways:

₹ 990

- More precisely, a small p-value can arise in either of two ways:
 - The sample size *n* is **small**, but the difference or effect being tested for is **large**.
 - The difference or effect being tested for is **small**, but the sample size *n* is **large**.

イロン イボン イヨン イヨン

æ

Thus a study result that's statistically significant (p-value < α) isn't necessarily one that has practical importance.

イロン イボン イヨン イヨン

Thus a study result that's statistically significant (p-value < α) isn't necessarily one that has practical importance.

The former only means that a difference or effect was **detected**, but doesn't say anything about its **size**.

Thus a study result that's statistically significant (p-value < α) isn't necessarily one that has practical importance.

The former only means that a difference or effect was **detected**, but doesn't say anything about its **size**.

Differences or effects that are so **small** as to **not** to have any impactful consequences can nonetheless be found to be statistically significant when the **sample size** n is **large**.

• **Example**: A study may find statistically significant evidence that clearcutting a forest caused an increase in a nearby stream's temperature (via increased solar radiation).

イロト イポト イヨト イヨト

э.

- **Example**: A study may find statistically significant evidence that clearcutting a forest caused an increase in a nearby stream's temperature (via increased solar radiation).
 - But the increase may be so small that the stream's biology is unaffected.

ヘロト 人間 ト ヘヨト ヘヨト

æ

 In statistical parlance, studies that use very large sample sizes are said to have very high *power* for detecting (even small) differences or effects.

イロン イボン イヨン イヨン

æ

 In statistical parlance, studies that use very large sample sizes are said to have very high *power* for detecting (even small) differences or effects.

The next example illustrates how a **large** *n* can lead to a **small p-value**.

ヘロト ヘ戸ト ヘヨト ヘヨト

Example

Consider a **one-sample** t test of

$$H_0: \mu = 5$$

$$H_a: \mu > 5$$

and suppose

$$\bar{X} = 5.1$$
 and $S = 1.3$

・ロト ・聞ト ・ヨト ・ヨト

= 990

The test statistic is

$$t = \frac{\bar{X} - \mu_0}{S_{\bar{X}}}$$
, where $S_{\bar{X}} = \frac{S}{\sqrt{n}}$,

Data Snooping Type I and II Errors Statistical Significance Versus Practical Importance

The test statistic is

$$t = rac{ar{X} - \mu_0}{S_{ar{X}}}, \quad ext{where} \quad S_{ar{X}} = rac{S}{\sqrt{n}},$$
 $t = rac{\mathbf{5.1} - \mathbf{5}}{S_{ar{X}}}, \quad ext{where} \quad S_{ar{X}} = rac{\mathbf{1.3}}{\sqrt{n}}$

200

i.e.

MTH 3240 Environmental Statistics

The test statistic is

i.e.

$$t = \frac{ar{X} - \mu_0}{S_{ar{X}}}, \quad ext{where} \quad S_{ar{X}} = \frac{S}{\sqrt{n}},$$

 $t = rac{\mathbf{5.1} - \mathbf{5}}{S_{ar{X}}}, \quad ext{where} \quad S_{ar{X}} = rac{\mathbf{1.3}}{\sqrt{n}}$

The **p-value** can differ depending on how big the sample size n was:

If $n = 10$:	If $n = 1,000$:
t = 0.24	t = 2.43
df = 9	df = 999
p-value = 0.4079	p-value = 0.0076