7 One-Sample Hypothesis Tests (Cont'd)

MTH 3240 Environmental Statistics

Spring 2020

Objectives

Objectives:

- State two options for testing hypotheses using non-normal data.
- Carry out a one-sample sign test for a population median.
- Decide which test (the one-sample t test or the sign test) is more appropriate for a given set of data.

 The one-sample t procedures (and many others) require that the sample was drawn from a **normal** population (or that n is large).

 The one-sample t procedures (and many others) require that the sample was drawn from a **normal** population (or that n is large).

If this **normality** assumption isn't met (and n isn't large), there are two possible remedies:

 The one-sample t procedures (and many others) require that the sample was drawn from a **normal** population (or that n is large).

If this **normality** assumption isn't met (and n isn't large), there are two possible remedies:

 Transform the data to normality before carrying out the hypothesis test, or

 The one-sample t procedures (and many others) require that the sample was drawn from a **normal** population (or that n is large).

If this **normality** assumption isn't met (and n isn't large), there are two possible remedies:

- Transform the data to normality before carrying out the hypothesis test, or
- 2. Carry out a *nonparametric* test (i.e. one that doesn't require normality).

 The one-sample t procedures (and many others) require that the sample was drawn from a **normal** population (or that n is large).

If this **normality** assumption isn't met (and n isn't large), there are two possible remedies:

- Transform the data to normality before carrying out the hypothesis test, or
- 2. Carry out a *nonparametric* test (i.e. one that doesn't require normality).

We'll look at these two approaches one at a time.

Transforming Data to Normality

 The first approach to testing hypothesis with non-normal data is to transform the data to normality first.

Transforming Data to Normality

- The first approach to testing hypothesis with non-normal data is to transform the data to normality first.
- The next example illustrates transforming right skewed data (by taking their logs), then carrying out the t test using the transformed data.

Example

Here are **radiocesium** measurements (137 Cs, in pCi/L) in n=10 water specimens from the Cactus Crater disposal site.

Suppose we want to test the hypotheses

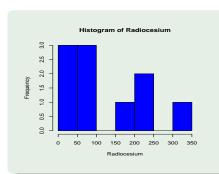
$$H_0: \mu \geq 215$$

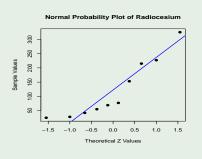
 $H_a: \mu < 215$

where μ is the (unknown) **population mean** ¹³⁷Cs concentration.

Because n isn't large, the *one-sample* t *test* would only be appropriate if the sample was from a **normal** population.

We check the **normality** assumption using a **histogram** and/or **normal probability plot**.





The plots suggest the sample is from a **right skewed** population, so the *t* **test** might **not** be trustworthy.

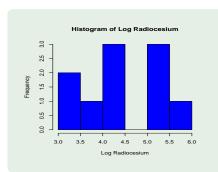
The plots suggest the sample is from a **right skewed** population, so the t **test** might **not** be trustworthy.

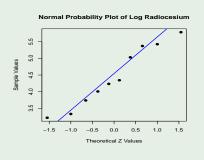
The logs of the data are:

The plots suggest the sample is from a **right skewed** population, so the *t* **test** might **not** be trustworthy.

The logs of the data are:

The **normality** assumption is (approximately) met for the **log** data (see next slide).





So a **one-sample** t **test** is appropriate for the **log** data.

So a **one-sample** t **test** is appropriate for the **log** data.

On the **log** pCi/L scale, the comparison value is no longer 215, but rather

$$\log(215) = 5.4$$
,

So a **one-sample** t **test** is appropriate for the log data.

On the **log** pCi/L scale, the comparison value is no longer 215, but rather

$$\log(215) = 5.4$$
,

so the hypotheses are now

$$H_0: \mu \geq 5.4$$

$$H_a: \mu < 5.4$$

where now μ is the true (unknown) **population mean** *log* ¹³⁷Cs concentration.

Using the \log data, the **test statistic** is t = -3.21 and the **p-value** is 0.005.

Using the **log** data, the **test statistic** is t = -3.21 and the **p-value** is **0.005**.

Thus we reject H_0 and conclude that the **population mean** \log^{137} Cs concentration μ is less than 5.4

Carrying Out a Nonparametric Test

 The second approach to testing hypothesis with non-normal data is to use a nonparametric test, i.e. one that doesn't rely on a normality assumption.

Carrying Out a Nonparametric Test

 The second approach to testing hypothesis with non-normal data is to use a nonparametric test, i.e. one that doesn't rely on a normality assumption.

The *sign test* (described next) is a **nonparametric** alternative to the *one-sample t test*.

One-Sample Sign Test

• The *one-sample sign test* is a **nonparametric** test for a **population** *median* $\tilde{\mu}$.

One-Sample Sign Test

- The *one-sample sign test* is a **nonparametric** test for a **population** *median* $\tilde{\mu}$.
- The **null hypothesis** is that $\tilde{\mu}$ is equal to some **claimed** value $\tilde{\mu}_0$.

Null Hypothesis:

$$H_0: \tilde{\mu} = \tilde{\mu}_0.$$

• The alternative hypothesis is one of the following.

Alternative Hypothesis:

1. $H_a: \tilde{\mu} > \tilde{\mu}_0$ (upper-tailed test)

2. $H_a: \tilde{\mu} < \tilde{\mu}_0$ (lower-tailed test)

3. $H_a: \tilde{\mu} \neq \tilde{\mu}_0$ (two-tailed test)

depending on what we're trying to verify using the data.

Sign Test Statistic:

 S^+ = Number of X_i 's that are greater than $\tilde{\mu}_0$.

(If any X_i 's equal $\tilde{\mu}_0$, they're discarded, and n is diminished by the number of discarded X_i 's.)

Sign Test Statistic:

 $S^+ = \text{Number of } X_i$'s that are greater than $\tilde{\mu}_0$.

(If any X_i 's equal $\tilde{\mu}_0$, they're discarded, and n is diminished by the number of discarded X_i 's.)

To compute S^+ , we just **count** how many data values fall **above** $\tilde{\mu}_0$.

• If H_0 was true, the population median $\tilde{\mu}$ would be equal to $\tilde{\mu}_0, \ldots$

• If H_0 was true, the population median $\tilde{\mu}$ would be equal to $\tilde{\mu}_0, \ldots$

... and because **half** of the population would fall above $\tilde{\mu}_0$...

• If H_0 was true, the population median $\tilde{\mu}$ would be equal to $\tilde{\mu}_0, \ldots$

... and because **half** of the population would fall above $\tilde{\mu}_0$...

... we'd expect about **half** of the sample to fall above $\tilde{\mu}_0$, ...

- If H_0 was true, the population median $\tilde{\mu}$ would be equal to $\tilde{\mu}_0, \dots$
 - ... and because **half** of the population would fall above $\tilde{\mu}_0$...
 - ... we'd expect about **half** of the sample to fall above $\tilde{\mu}_0$, ...
 - ... in which case S^+ would be close to n/2.

• But **if** H_a was true, the population median $\tilde{\mu}$ would differ from $\tilde{\mu}_0$ in the direction specified by H_a , ...

• But if H_a was true, the population median $\tilde{\mu}$ would differ from $\tilde{\mu}_0$ in the direction specified by H_a , ...

... and we'd expect more or less than half of the sample to fall above $\tilde{\mu}_0$, depending on the direction of H_a , ...

- But if H_a was true, the population median $\tilde{\mu}$ would differ from $\tilde{\mu}_0$ in the direction specified by H_a , ...
 - ... and we'd expect more or less than half of the sample to fall above $\tilde{\mu}_0$, depending on the direction of H_a , ...
 - ... in which case S^+ would differ from n/2 in that same direction.

Thus ...

- Thus ...
 - 1. S^+ will be approximately n/2 (most likely) if H_0 is true.
 - 2. It will **differ from** n/2 (most likely) in the direction specified by H_a if H_a is true.

- 1. Large values of S^+ (larger than n/2) provide evidence in favor of $H_a: \tilde{\mu} > \tilde{\mu}_0$.
- 2. Small values of S^+ (smaller than n/2) provide evidence in favor of $H_a: \tilde{\mu} < \tilde{\mu}_0$.
- 3. Both large and small values of S^+ (larger or smaller than n/2) provide evidence in favor of $H_a: \tilde{\mu} \neq \tilde{\mu}_0$.

• Now suppose our sample is from **any** (continuous) population whose median is $\tilde{\mu}$.

• Now suppose our sample is from **any** (continuous) population whose median is $\tilde{\mu}$.

The **null distribution** is as follows.

• Now suppose our sample is from **any** (continuous) population whose median is $\tilde{\mu}$.

The **null distribution** is as follows.

Sampling Distribution of the Test Statistic Under H_0 : If S^+ is the one-sample sign test statistic, then when

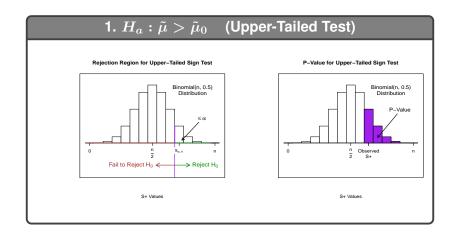
$$H_0: \tilde{\mu} = \tilde{\mu}_0$$

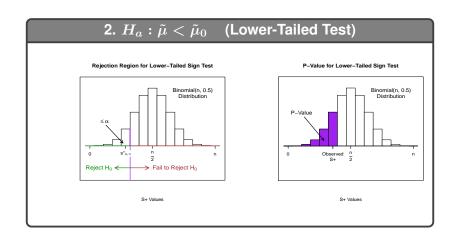
is true,

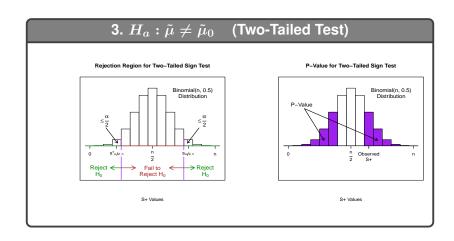
$$S^+ \sim \mathsf{binomial}(n, 0.5).$$

Dealing With Non-Normal Data
The One-Sample Sign Test
The One-Sample Z Test for p

• P-values and rejection regions are obtained from the appropriate tail(s) of the binomial(n, 0.5) distribution, as shown on the next slides.







One-Sample Sign Test for $ilde{\mu}$

Assumptions: x_1, x_2, \ldots, x_n is a random sample from *any* continuous population.

Null hypothesis: $H_0: \tilde{\mu} = \tilde{\mu}_0$.

Test statistic value: $s^+ =$ number of x_i 's greater than $\tilde{\mu}_0$.

Decision rule: Reject H_0 if p-value $< \alpha$ or s^+ is in rejection region.

One-Sample Sign Test for $\tilde{\mu}$

Alternative	P-value = tail probability of the	Rejection region =
hypothesis	binomial $(n, 0.5)$ distribution: *	s^+ values such that: **
$H_a: \tilde{\mu} > \tilde{\mu}_0$	to the right of (and including) s^+	$s^+ \ge s_{\alpha,n}$
$H_a: \tilde{\mu} < \tilde{\mu}_0$	to the left of (and including) s^+	$s^+ \leq s^*_{\alpha,n}$
$H_a: \tilde{\mu} \neq \tilde{\mu}_0$	$2\cdot$ (the smaller of the tail prob-	$s^+ \stackrel{-}{\leq} s^*_{\alpha/2,n} \text{ or } s^+ \geq s_{\alpha/2,n}$
	abilities to the right of (and	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	including) s^+ and to the left	
	of (and including) s^+)	

* For a given sample size (after deleting $\tilde{\mu}_0$ -valued x_i 's) n, the p-value for a one-tailed test is obtained from a binomial (n, 0.5) distribution table by locating the upper or lower tail probability (depending on the direction of H_a) associated with the observed S^+ value. For a two-tailed test, locate both the upper and lower tail probabilities and multiply the smaller of these by two.

One-Sample Sign Test for $\tilde{\mu}$

** For a given sample size (after deleting $\tilde{\mu}_0$ -valued x_i 's) n and level of significance α , $s_{\alpha,n}$ is obtained from a binomial(n,0.5) distribution table by locating the smallest s for which the upper tail probability is less than α . $s_{\alpha,n}^*$ is obtained by locating the largest s for which the lower tail probability is less than α . For the two-tailed test, $s_{\alpha/2,n}$ and $s_{\alpha/2,n}^*$ are defined analogously but with $\alpha/2$ used in place of α . In practice, due to the discreteness of the distribution, it's not always possible obtain a rejection region having exact probability α .

Example

Here again are **radiocesium** measurements (137 Cs, in pCi/L) in n=10 water specimens.

69, 77, 227, 215, 28, 153, 25, 325, 55, 42

Instead of the t test on the log data (as in the earlier example), we could carry out a **sign test** on the **original** data.

In this case, the hypotheses are:

$$H_0: \tilde{\mu} = 215$$

$$H_a: \tilde{\mu} < 215$$

where $\tilde{\mu}$ is the (unknown) population **median** ¹³⁷Cs concentration.

In this case, the hypotheses are:

$$H_0: \tilde{\mu} = 215$$

$$H_a: \tilde{\mu} < 215$$

where $\tilde{\mu}$ is the (unknown) population **median** ¹³⁷Cs concentration.

One of the data values **equals 215**, so before computing S^+ , we **discard** it and diminish the sample size from n=10 to n=9.

This leaves us with **2** observations greater than **215**, out of the n=9 that remain, so the **test statistic** is

$$S^{+} = 2.$$

This leaves us with **2** observations greater than **215**, out of the n=9 that remain, so the **test statistic** is

$$S^+ = 2.$$

From the sign test table, the **p-value** is **0.0898**, and we **fail to** reject H_0 .

Exercise

A study was carried out to determine the accuracy of a new a method developed by the U.S. EPA for measuring sulfur dioxide (SO_2) emissions from coal burning power plants.

Exercise

A study was carried out to determine the accuracy of a new a method developed by the U.S. EPA for measuring sulfur dioxide (SO₂) emissions from coal burning power plants.

Nine lab technicians used the new method to measure SO_2 in an EPA audit cylinder containing a known concentration of **447** ppm.

Exercise

A study was carried out to determine the accuracy of a new a method developed by the U.S. EPA for measuring sulfur dioxide (SO_2) emissions from coal burning power plants.

Nine lab technicians used the new method to measure SO_2 in an EPA audit cylinder containing a known concentration of **447** ppm.

Their results are below.

SO₂ Measurements on EPA Audit Cylinder Containing 447 ppm

Technician	SO ₂ Measurement	
1	688	
2	478	
3	524	
4	447	
5	2135	
6	434	
7	712	
8	464	
9	478	

(The very large SO_2 result may have been due to an equipment malfunction, but we'll leave it in the data set).

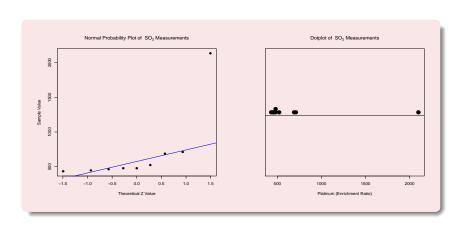
(The very large SO₂ result may have been due to an equipment malfunction, but we'll leave it in the data set).

We want to decide if there's any statistically significant **evidence** for **bias** (in either direction) using the new method.

(The very large SO₂ result may have been due to an equipment malfunction, but we'll leave it in the data set).

We want to decide if there's any statistically significant **evidence** for **bias** (in either direction) using the new method.

A **normal probability** plot and **dotplot** of the data are on the next slide.



Carry out a **sign test** to decide if there's evidence for bias in the new method. Use level of significance $\alpha = 0.05$.

Carry out a **sign test** to decide if there's evidence for bias in the new method. Use level of significance $\alpha=0.05$.

Hints: The hypotheses are

$$H_0: \tilde{\mu} = 447$$

 $H_a: \tilde{\mu} \neq 447$

where $\tilde{\mu}$ is the (unknown) population **median** SO₂ measurement result at the lab.

Carry out a **sign test** to decide if there's evidence for bias in the new method. Use level of significance $\alpha=0.05$.

Hints: The hypotheses are

$$H_0: \tilde{\mu} = 447$$

 $H_a: \tilde{\mu} \neq 447$

where $\tilde{\mu}$ is the (unknown) population **median** SO₂ measurement result at the lab.

(You should get $S^{+} = 7$ and p-value = **0.0704**.)

The One-Sample Z Test

 The one-sample z test for p is a hypothesis test for an (unknown) population proportion p.

The One-Sample Z Test

 The one-sample z test for p is a hypothesis test for an (unknown) population proportion p.

It's used with a **dichotomous** (**success/failure**) random sample of size n from a **population** whose (unknown) **proportion** of **successes** is p.

The One-Sample Z Test

- The one-sample z test for p is a hypothesis test for an (unknown) population proportion p.
 - It's used with a **dichotomous** (success/failure) random sample of size n from a **population** whose (unknown) **proportion** of successes is p.
- The **null hypothesis** is that p is equal to some **claimed** value p_0 .

Null Hypothesis:

$$H_0: p = p_0.$$

• The alternative hypothesis is one of the following.

Alternative Hypothesis:

1. $H_a: p > p_0$ (upper-tailed test)

2. $H_a: p < p_0$ (lower-tailed test)

3. $H_a: p \neq p_0$ (two-tailed test)

depending on what we're trying to verify using the data.

• The alternative hypothesis is one of the following.

Alternative Hypothesis:

1. $H_a: p > p_0$ (upper-tailed test)

2. $H_a: p < p_0$ (lower-tailed test)

3. $H_a: p \neq p_0$ (two-tailed test)

depending on what we're trying to verify using the data.

One-Sample Z Test Statistic (for a Proportion):

$$Z = \frac{\hat{P} - p_0}{\sigma_{\hat{P}}},$$

where

$$\sigma_{\hat{P}} = \sqrt{\frac{p_0(1-p_0)}{n}}.$$

One-Sample Z Test Statistic (for a Proportion):

$$Z = \frac{\hat{P} - p_0}{\sigma_{\hat{P}}},$$

where

$$\sigma_{\hat{P}} = \sqrt{\frac{p_0(1-p_0)}{n}}.$$

• Z indicates how many standard errors \hat{P} is away from p_0 , and in what direction (positive or negative).

Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p

 \hat{P} is an estimate of p, so ...

- $oldsymbol{\hat{P}}$ is an estimate of p, so ...
 - If H_0 was true, ...

- ullet \hat{P} is an estimate of p, so ...
 - If H_0 was true, ...

... we'd expect \hat{P} to be close p_0 .

- $oldsymbol{\hat{P}}$ is an estimate of p, so ...
 - If H_0 was true, ...
 - ... we'd expect \hat{P} to be close p_0 .
 - ullet But **if** H_a was true, ...

- ullet \hat{P} is an estimate of p, so ...
 - If H_0 was true, ...
 - ... we'd expect \hat{P} to be close p_0 .
 - But if H_a was true, ...
 - ... we'd expect \hat{P} to differ from p_0 in the direction specified by $H_a.$

- ullet \hat{P} is an estimate of p, so ...
 - If H_0 was true, ...
 - ... we'd expect \hat{P} to be close p_0 .
 - But if H_a was true, ...
 - ... we'd expect \hat{P} to differ from p_0 in the direction specified by $H_a.$
- Thus ...

- ullet \hat{P} is an estimate of p, so ...
 - If H_0 was true, ...
 - ... we'd expect \hat{P} to be close p_0 .
 - But if H_a was true, ...
 - ... we'd expect \hat{P} to differ from p_0 in the direction specified by $H_a.$
- Thus ...
 - 1. Z will be approximately **zero** (most likely) if H_0 is true.
 - 2. It will **differ from zero** (most likely) in the direction specified by H_a if H_a is true.

- 1. Large positive values of Z provide evidence in favor of $H_a: p > p_0$.
- 2. Large negative values of Z provide evidence in favor of $H_a: p < p_0$.
- 3. Both large positive and large negative values of Z provide evidence in favor of $H_a: p \neq p_0$.

 Suppose we have a random sample from a dichotomous population. Suppose we have a random sample from a dichotomous population.

If sample size n is large, the **null distribution** is as follows.

 Suppose we have a random sample from a dichotomous population.

If sample size n is large, the **null distribution** is as follows.

Sampling Distribution of the Test Statistic Under H_0 :

If Z is the one-sample Z test statistic (for a proportion), then when

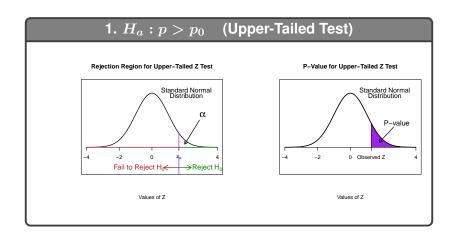
$$H_0: p = p_0$$

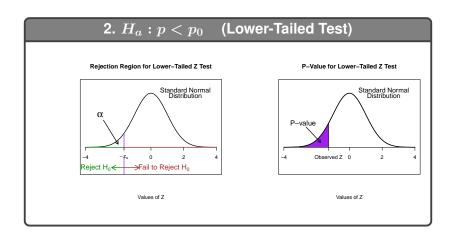
is true,

$$Z \sim N(0, 1).$$

Dealing With Non-Normal Data
The One-Sample Sign Test
The One-Sample Z Test for p

 P-values and rejection regions are obtained from the appropriate tail(s) of the N(0, 1) distribution, as shown on the next slides.





3. $H_a: p \neq p_0$ (Two-Tailed Test) P-Value for Two-Tailed Z Test Rejection Region for Two-Tailed Z Test Standard Normal Distribution Standard Normal Distribution P-value - | Observed Z | Observed Z | Values of Z Values of Z

One-Sample Z Test for p

Assumptions: The data are a random sample of size n from a dichotomous population, and n is large (using the criteria $np_0 \ge 10$ and $n(1-p_0) \ge 10$).

Null hypothesis: $H_0: p = p_0$.

Test statistic value:
$$z=\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}.$$

Decision Rule: Reject H_0 if p-value $< \alpha$ or z is in rejection region.

One-Sample Z Test for p

Alternative	P-value = area under	Rejection region =
hypothesis	standard normal distribution:	z values such that:*
$H_a: p > p_0$	to the right of z	$z>z_{\alpha}$
$H_a: p < p_0$	to the left of z	$z<-z_{\alpha}$
$H_a: p \neq p_0$	to the left of $-\left z\right $ and right of $\left z\right $	$z>z_{lpha/2}$ or $z<-z_{lpha/2}$

^{*} z_{α} is the $100(1-\alpha)$ th percentile of the standard normal distribution.

Example

Farmers use biosolids (sludge) from wastewater treatment plants to fertilize soil.

A study was carried out to assess the risk of farmers' exposure to salmonella through the application of biosolids to farmlands.

In a sample of n=92 biosolids specimens, **22** tested *positive* for salmonella.

```
Here's a portion of the data set.

"Neg", "Neg", "Pos", "Pos", "Neg", "N
```

"Neg", "Pos", "Pos", "Neg" "Neg", "Neg", "Pos",

"Nea"

Dealing With Non-Normal Data
The One-Sample Sign Test
The One-Sample Z Test for p

We'll carry out a **one-sample** z **test** to decide if the true (unknown) **population proportion** of biosolids specimens that are **positive** for salmonella is **less than 0.25**.

We'll carry out a **one-sample** z **test** to decide if the true (unknown) **population proportion** of biosolids specimens that are **positive** for salmonella is **less than 0.25**.

We'll use a level of significance $\alpha = 0.05$.

The **hypotheses** are

$$H_0: p = 0.25$$

$$H_a: p < 0.25$$

where p is the (unknown) **population proportion** of biosolids specimens that are **positive** for salmonella.

$$\hat{P} = \frac{22}{92} = \mathbf{0.24}.$$

$$\hat{P} = \frac{22}{92} = \mathbf{0.24}.$$

So the test statistic is

$$Z = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

$$\hat{P} = \frac{22}{92} = \mathbf{0.24}.$$

So the test statistic is

$$Z = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$
$$= \frac{0.24 - 0.25}{\sqrt{0.25(1 - 0.25)/92}}$$

$$\hat{P} = \frac{22}{92} = \mathbf{0.24}.$$

So the test statistic is

$$Z = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$
$$= \frac{0.24 - 0.25}{\sqrt{0.25(1 - 0.25)/92}}$$
$$= -0.22.$$

$$\hat{P} = \frac{22}{92} = \mathbf{0.24}.$$

So the test statistic is

$$Z = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

$$= \frac{0.24 - 0.25}{\sqrt{0.25(1 - 0.25)/92}}$$

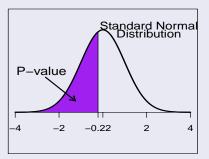
$$= -0.22.$$

Thus the sample proportion, $\hat{P} = 0.24$, is only **0.22 of a standard error below** the hypothesized value **0.25**.

Dealing With Non-Normal Data
The One-Sample Sign Test
The One-Sample Z Test for p

The **p-value** is the area to the **left** of Z = -0.22 under the N(0, 1) curve, as shown on the next slide.

P-Value for Lower-Tailed Z Test



Values of Z

The **p-value** (obtained using statistical software) is **0.4129**.

The **p-value** (obtained using statistical software) is **0.4129**.

Thus, because the **p-value** *isn't* less than 0.05, we fail to reject H_0 .

The **p-value** (obtained using statistical software) is **0.4129**.

Thus, because the **p-value** *isn't* less than **0.05**, we fail to reject H_0 .

There's **not** statistically significant **evidence** that the **population proportion** of biosolids specimens that are **positive** for salmonella is less than 0.25.