7 One-Sample Hypothesis Tests (Cont'd)

MTH 3240 Environmental Statistics

Spring 2020

MTH 3240 Environmental Statistics
Dealing With Non-Normal Data
The One-Sample Sign Test
The One-Sample Z Test for p
Objectives

Notes

Notes

Notes

Notes

Objectives:

- State two options for testing hypotheses using non-normal data.
- Carry out a one-sample sign test for a population median.
- Decide which test (the one-sample *t* test or the sign test) is more appropriate for a given set of data.

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Sign Test

Dealing With Non-Normal Data

• The one-sample *t* procedures (and many others) require that the sample was drawn from a **normal** population (or that *n* is **large**).

If this **normality** assumption isn't met (and n isn't large), there are two possible remedies:

- 1. **Transform** the data to normality before carrying out the hypothesis test, or
- Carry out a *nonparametric* test (i.e. one that doesn't require normality).

We'll look at these two approaches one at a time.

MTH 3240 Environmental Statistics

Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p

MTH 3240 Environmental Statistics

Transforming Data to Normality

- The first approach to testing hypothesis with **non-normal** data is to *transform* the data to normality first.
- The next example illustrates **transforming right skewed** data (by taking their **logs**), then carrying out the *t* **test** using the transformed data.

The One-Sample Sign The One-Sample Sign The One-Sample Z Test

Example

Here are **radiocesium** measurements (¹³⁷Cs, in pCi/L) in n = 10 water specimens from the Cactus Crater disposal site.

69, 77, 227, 215, 28, 153, 25, 325, 55, 42

Suppose we want to test the hypotheses

 $\begin{array}{rcl} H_0:\mu &\geq& 215\\ H_a:\mu &<& 215 \end{array}$

where μ is the (unknown) population mean $^{137}\mathrm{Cs}$ concentration.

MTH 3240 Environmental Statistics

Dealing With Non-Normal Dat The One-Sample Sign Te The One-Sample Z Test for

Notes

Notes

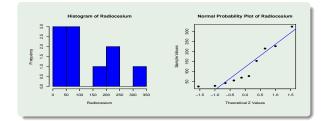
Notes

Because n isn't large, the *one-sample* t *test* would only be appropriate if the sample was from a **normal** population.

We check the **normality** assumption using a **histogram** and/or **normal probability plot**.

MTH 3240 Environmental Statistics Dealing With Non-Normal Data The One-Sample Sign Test

he One-Sample Z Test for g



Dealing With Non-Normal Data The One-Sample Sign Test

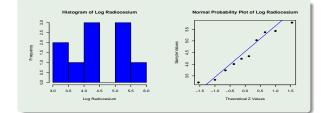
MTH 3240 Environmental Statistics

The plots suggest the sample is from a **right skewed** population, so the t **test** might **not** be trustworthy.

The logs of the data are:

 $4.2, \quad 4.3, \quad 5.4, \quad 5.4, \quad 3.3, \quad 5.0, \quad 3.2, \quad 5.8, \quad 4.0, \quad 3.7$

The **normality** assumption is (approximately) met for the **log** data (see next slide).



Dealing With Non-Normal Data The One-Sample Sign Test

MTH 3240 Environmental Statistics

So a **one-sample** *t* **test** is appropriate for the **log** data.

On the \boldsymbol{log} pCi/L scale, the comparison value is no longer 215, but rather

 $\log(215) = 5.4$,

so the hypotheses are now

$$H_0: \mu \geq 5.4$$
$$H_a: \mu < 5.4$$

where now μ is the true (unknown) population mean $\log 1^{37}{\rm Cs}$ concentration.

MTH 3240 Environmental Statistics

The One-Sample Sign Tes The One-Sample Z Test for p

Using the log data, the test statistic is t = -3.21 and the **p-value** is **0.005**.

Thus we **reject** H_0 and conclude that the **population mean** log ¹³⁷Cs concentration μ is less than 5.4

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Z Test for p

Carrying Out a Nonparametric Test

MTH 3240 Environmental Statistics

• The second approach to testing hypothesis with **non-normal** data is to use a *nonparametric* test, i.e. one that **doesn't** rely on a normality assumption.

The *sign test* (described next) is a **nonparametric** alternative to the *one-sample* t *test*.

Notes

Notes

Dealing with Non-Normal Data **The One-Sample Sign Test** The One-Sample Z Test for p

One-Sample Sign Test

- The one-sample sign test is a nonparametric test for a population median μ
 .
- The null hypothesis is that $\tilde{\mu}$ is equal to some *claimed* value $\tilde{\mu}_0$.

Null Hypothesis:

 $H_0: \tilde{\mu} = \tilde{\mu}_0.$

MTH 3240 Environmental Statistics Dealing With Non-Normal Data The One-Sample Sign Test

Notes

Notes

Notes

• The alternative hypothesis is one of the following.

Alternative	Hvp	oothe	esis:
/			

1. $H_a: \tilde{\mu} > \tilde{\mu}_0$	(upper-tailed test)
2. $H_a: \tilde{\mu} < \tilde{\mu}_0$	(lower-tailed test)
3. $H_a: \tilde{\mu} \neq \tilde{\mu}_0$	(two-tailed test)

depending on what we're trying to verify using the data.

MTH 3240 Environmental Statistics

The One-Sample Sign Test

Sign Test Statistic:

 S^+ = Number of X_i 's that are greater than $\tilde{\mu}_0$.

(If any $X_i{\rm 's}$ equal $\tilde{\mu}_0,$ they're discarded, and n is diminished by the number of discarded $X_i{\rm 's}.)$

To compute S^+ , we just **count** how many data values fall **above** $\tilde{\mu}_0$.

Dealing With Non-Normal Data The One-Sample Sign Test

MTH 3240 Environmental Statistics

Notes

- If H_0 was true, the population median $\tilde{\mu}$ would be equal to $\tilde{\mu}_0, \ldots$
 - ... and because half of the population would fall above $\tilde{\mu}_0$...
 - ... we'd expect about **half** of the sample to fall above $\tilde{\mu}_0$, ...
 - ... in which case S^+ would be close to n/2.

MTH 3240 Environmental Statistics

 But if H_a was true, the population median μ̃ would differ from μ̃₀ in the direction specified by H_a, ...

... and we'd expect more or less than half of the sample to fall above $\tilde{\mu}_0,$ depending on the direction of $H_a,$...

... in which case S^+ would differ from n/2 in that same direction.

MTH 3240 Environmental Statistics Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Zigt for a

Notes

- Thus ...
 - 1. S^+ will be approximately n/2 (most likely) if H_0 is true.
 - 2. It will **differ from** n/2 (most likely) in the direction specified by H_a if H_a is true.

MTH 3240 Environmental Statistics

The One-Sample Sign Test

- 1. Large values of S^+ (larger than n/2) provide evidence in favor of $H_a: \tilde{\mu} > \tilde{\mu}_0$.
- 2. Small values of S^+ (smaller than n/2) provide evidence in favor of $H_a: \tilde{\mu} < \tilde{\mu}_0$.
- 3. Both large and small values of S^+ (larger or smaller than n/2) provide evidence in favor of $H_a : \tilde{\mu} \neq \tilde{\mu}_0$.

MTH 3240 Environmental Statistics

ealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p

 Now suppose our sample is from any (continuous) population whose median is μ̃.

The null distribution is as follows.

MTH 3240 Environmental Statistics

Sampling Distribution of the Test Statistic Under H_0 : If S^+ is the one-sample sign test statistic, then when

$$H_0: \tilde{\mu} = \tilde{\mu}_0$$

is true,

 $S^+ \sim \text{binomial}(n, 0.5).$

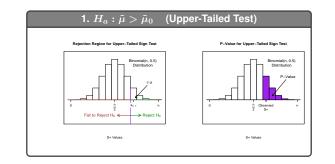
Notes

The One-Sample Ziest for a

Notes

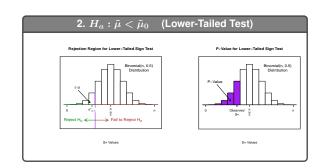
• **P-values** and **rejection regions** are obtained from the appropriate tail(s) of the **binomial**(n, 0.5) **distribution**, as shown on the next slides.

MTH 3240 Environmental Statistics Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p



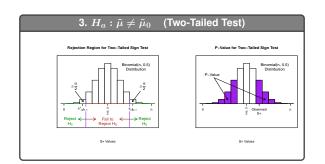
ealing With Non-Normal Data The One-Sample Sign Test

MTH 3240 Environmental Statistics



ealing With Non-Normal Data The One-Sample Sign Test

MTH 3240 Environmental Statistics



Notes

Notes

Notes

One-Sample Sign Test for $\tilde{\mu}$

Assumptions: x_1, x_2, \ldots, x_n is a random sample from *any* continuous population.

Null hypothesis: $H_0: \tilde{\mu} = \tilde{\mu}_0.$

Test statistic value: $s^+ =$ number of x_i 's greater than $\tilde{\mu}_0$.

Decision rule: Reject H_0 if p-value $< \alpha$ or s^+ is in rejection region.

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Z Test for p

One-Sa	ample Si	ign Test	for $\tilde{\mu}$	

Alternative	P-value = tail probability of the	Rejection region =	
hypothesis	binomial $(n, 0.5)$ distribution: *	s^+ values such that: **	
$H_a: \tilde{\mu} > \tilde{\mu}_0$	to the right of (and including) s^+	$s^+ \ge s_{\alpha,n}$	
$H_a: \tilde{\mu} < \tilde{\mu}_0$	to the left of (and including) s^+	$s^+ \le s^*_{\alpha,n}$	
$H_a: \tilde{\mu} \neq \tilde{\mu}_0$	2-(the smaller of the tail prob-	$s^+ \leq s^*_{\alpha/2,n}$ or $s^+ \geq s_{\alpha/2}$	$_{,n}$
	abilities to the right of (and		
	including) s^+ and to the left		
	of (and including) s ⁺)		
	ample size (after deleting $\tilde{\mu}_0$ -valued x_i		
	obtained from a binomial $(n, 0.5)$ distribution	, ,	
upper or lower tail probability (depending on the direction of H_a) associated			
with the obse	rved S ⁺ value. For a two-tailed test, le	ocate both the upper and	
lower tail probabilities and multiply the smaller of these by two.			

MTH 3240 Environmental Statistics

The One-Sample Sign Test

One-Sample Sign Test for $\tilde{\mu}$

** For a given sample size (after deleting $\bar{\mu}_0$ -valued x_i 's) n and level of significan α , $s_{\alpha,n}$ is obtained from a binomial(n, 0.5) distribution table by locating the smallest s for which the upper tail probability is less than α . $s_{\alpha,n}^*$ is obtained by locating the largest s for which the lower tail probability is less than α . For the two-tailed test, $s_{\alpha/2,n}$ and $s_{\alpha/2,n}^*$ are defined analogously but with $\alpha/2$ used in place of α . In practice, due to the discreteness of the distribution, it's not alway possible obtain a rejection region having exact probability α .

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p

Example

Here again are **radiocesium** measurements (137 Cs, in pCi/L) in n = 10 water specimens.

 $69, \quad 77, \quad 227, \quad 215, \quad 28, \quad 153, \quad 25, \quad 325, \quad 55, \quad 42$

Instead of the *t* test on the log data (as in the earlier example), we could carry out a **sign test** on the **original** data.

Notes

Notes

In this case, the hypotheses are:

$$H_0: \tilde{\mu} = 215$$
$$H_a: \tilde{\mu} < 215$$

where $\tilde{\mu}$ is the (unknown) population median $^{137}\mathrm{Cs}$ concentration.

One of the data values equals 215, so before computing S^+ , we discard it and diminish the sample size from n = 10 to n = 9.

MTH 3240 Environmental Statistics Dealing With Non-Normal Data The One-Sample Sign Test

Notes

Notes

This leaves us with **2** observations greater than **215**, out of the n = 9 that remain, so the **test statistic** is

 $S^+ = 2.$

From the sign test table, the **p-value** is **0.0898**, and we fail to reject H_0 .

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Sign Test

Exercise

A study was carried out to determine the accuracy of a new a method developed by the U.S. EPA for measuring sulfur dioxide (SO_2) emissions from coal burning power plants.

Nine lab technicians used the new method to measure SO_2 in an EPA audit cylinder containing a known concentration of **447** ppm.

Their results are below.

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Z Test for p

SO₂ Measurements on EPA Audit Cylinder Containing 447 ppm

Technician	SO ₂ Measurement
1	688
2	478
3	524
4	447
5	2135
6	434
7	712
8	464
9	478

Notes

The One-Sample Sign Test The One-Sample Sign Test

Notes

Notes

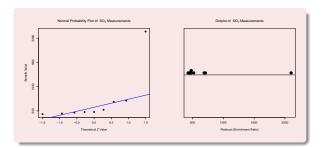
(The very large SO_2 result may have been due to an equipment malfunction, but we'll leave it in the data set).

We want to decide if there's any statistically significant **evidence** for **bias** (in either direction) using the new method.

A **normal probability** plot and **dotplot** of the data are on the next slide.

Dealing With Non-Normal Data **The One-Sample Sign Test** The One-Sample Z Test for p

MTH 3240 Environmental Statistics



MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Z Test for p

Due to the outlier, it **wouldn't** be reasonable to assume the data are a sample from a **normal** distribution. Also, n is small, so one-sample t **test** is **not** appropriate.

Carry out a sign test to decide if there's evidence for bias in the new method. Use level of significance $\alpha=0.05.$

Hints: The hypotheses are

 $\begin{array}{rcl} H_0: \tilde{\mu} &=& 447 \\ H_a: \tilde{\mu} &\neq& 447 \end{array}$

where $\tilde{\mu}$ is the (unknown) population **median** SO₂ measurement result at the lab.

(You should get $S^+ = 7$ and p-value = 0.0704.)

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Z Test for p

The One-Sample Z Test

• The *one-sample z test for p* is a hypothesis test for an (unknown) population proportion *p*.

It's used with a **dichotomous** (success/failure) random sample of size n from a **population** whose (unknown) **proportion** of **successes** is p.

• The null hypothesis is that *p* is equal to some *claimed value p*₀.

Null Hypothesis:

MTH 3240 Environmental Statistics

 $H_0: p = p_0.$

Notes

Notes

• The alternative hypothesis is one of the following.

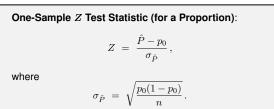
Alternative Hypothesis:

(upper-tailed test)
(lower-tailed test)
(two-tailed test)

depending on what we're trying to verify using the data.

Dealing With Non-Normal Data The One-Sample Sign Tes The One-Sample Z Test for p

MTH 3240 Environmental Statistics



Z indicates how many standard errors P̂ is away from p₀, and in what direction (positive or negative).

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Z Test for p

- \hat{P} is an estimate of p, so ...
 - If H₀ was true, ...
 - ... we'd expect \hat{P} to be close p_0 .
 - But if H_a was true, ...

... we'd expect \hat{P} to differ from p_0 in the direction specified by $H_a.$

- Thus ...
 - 1. Z will be approximately **zero** (most likely) if H_0 is true.
 - 2. It will **differ from zero** (most likely) in the direction specified by H_a if H_a is true.

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Z Test for p

Notes

- 1. Large positive values of Z provide evidence in favor of $H_a: p > p_0.$
- 2. Large negative values of Z provide evidence in favor of $H_a: p < p_0$.
- 3. Both large positive and large negative values of Z provide evidence in favor of $H_a: p \neq p_0$.

Notes

- Notes
- Suppose we have a random sample from a **dichotomous** population.

If sample size n is large, the **null distribution** is as follows.

Sampling Distribution of the Test Statistic Under H_0 : If Z is the one-sample Z test statistic (for a proportion), then when $H_0: p = p_0$

is true,

 $Z \sim \mathsf{N}(0, 1).$

Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p

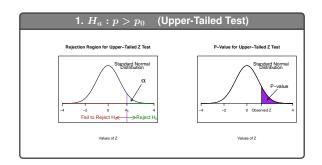
MTH 3240 Environmental Statistics

Notes

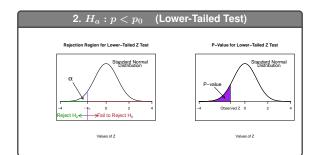
• P-values and rejection regions are obtained from the appropriate tail(s) of the N(0, 1) distribution, as shown on the next slides.

Pealing With Non-Normal Dat The One-Sample Sign Tes The One-Sample Z Test for

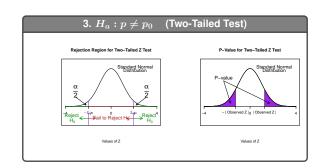
MTH 3240 Environmental Statistics



MTH 3240 Environmental Statistics Dealing With Non-Normal Data The One-Sample Sign Tes The One-Sample Z Test for p



Notes



MTH 3240 Environmental Statistics Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p

One-Sample Z Test for p

Assumptions: The data are a random sample of size n from a dichotomous population, and n is large (using the criteria $np_0 \ge 10$ and $n(1 - p_0) \ge 10$).

Null hypothesis: $H_0: p = p_0$.

Test statistic value: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$.

Decision Rule: Reject H_0 if p-value $< \alpha$ or z is in rejection region.

MTH 3240 Environmental Statistics

The One-Sample Sign Tes

One-Sample Z Test for p

Alternative hypothesis	P-value = area under standard normal distribution:	Rejection region = z values such that:*
$H_a: p > p_0$	to the right of z	$z > z_{\alpha}$
$H_a : p < p_0$	to the left of z	$z < -z_{\alpha}$
$H_a: p \neq p_0$	to the left of $- z $ and right of $ z $	$z>z_{lpha/2}$ or $z<-z_{lpha/2}$

MTH 3240 Environmental Statistics

The One-Sample Sign Test The One-Sample Sign Test

MTH 3240 Environmental Statistics

Example

Farmers use biosolids (sludge) from wastewater treatment plants to fertilize soil.

A study was carried out to assess the risk of farmers' exposure to salmonella through the application of biosolids to farmlands.

In a sample of n=92 biosolids specimens, **22** tested *positive* for salmonella.

Notes

Notes

Notes

Here's a portion of the data set.						
"Neg",	"Neg",	"Pos", "Neg", "Pos",	"Neg"	"Neg",	"Neg",	•
"Neg", "Neg", "Neg"	•	"Neg", "Pos",	•	•	•	"Pos", "Pos",

Dealing With Non-Normal Data The One-Sample Sign Test The One-Sample Z Test for p

ental Statistics

MTH 3240 Er

Notes

We'll carry out a **one-sample** z **test** to decide if the true (unknown) **population proportion** of biosolids specimens that are **positive** for salmonella is **less than 0.25**.

We'll use a level of significance $\alpha = 0.05$.

The One-Sample Sign Tes he One-Sample Z Test for p

The hypotheses are

$$H_0: p = 0.25$$

 $H_a: p < 0.25$

where \boldsymbol{p} is the (unknown) **population proportion** of biosolids specimens that are **positive** for salmonella.

Dealing With Non-Normal Data The One-Sample Sign Tes The One-Sample Z Test for p

ental Statistics

The sample proportion is

MTH 3240 Enviro

$$\hat{P} = \frac{22}{92} = 0.24$$

So the test statistic is

$$Z = \frac{\bar{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

= $\frac{0.24 - 0.25}{\sqrt{0.25(1 - 0.25)/92}}$
= -0.22 .

Thus the sample proportion, $\hat{P}=0.24$, is only 0.22 of a standard error below the hypothesized value 0.25.

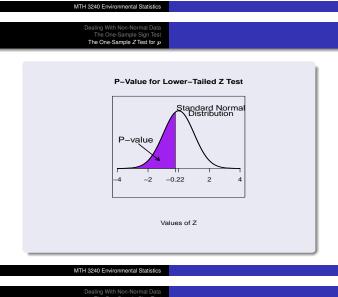
MTH 3240 Environmental Statistics

Notes

Notes

Notes

The **p-value** is the area to the **left** of Z = -0.22 under the **N**(0, 1) curve, as shown on the next slide.



The One-Sample Sign Tes The One-Sample Z Test for g

MTH 3240 Environmental Statistics

The **p-value** (obtained using statistical software) is **0.4129**.

Thus, because the **p-value** *isn't* less than 0.05, we fail to reject H_0 .

There's **not** statistically significant **evidence** that the **population proportion** of biosolids specimens that are **positive** for salmonella is less than 0.25.

Notes

Notes