Notes

6 One-Sample Confidence Intervals (Cont'd)

MTH 3240 Environmental Statistics

Spring 2020

MTH 3240 Environmental Statistics	
Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p	
Obiectives	

Notes

Notes

Notes

Objectives:

- Determine the sample size needed to keep the margin of error no bigger than a desired value.
- Assess normality of data using graphs, and transform non-normal data to normality.
- Compute and interpret a one-sample *z* confidence interval for a proportion.

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

Sample Size Determination

- Planning a study often involves deciding how large the sample size *n* should be.
- Larger samples produce smaller margins of error in estimates of population parameters such as μ .
- But larger sample sizes are more expensive and time consuming to collect.
- Our goal is to determine the smallest *n* that's still large enough that the margin of error won't be unacceptably big.

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

• Suppose we want the margin of error in a CI for μ to be no bigger than some value *B*, i.e we want

Margin of Error $\leq B$.

• If the population standard deviation σ is known, then for a **95% CI**, we require *n* to be **large enough** that

$$1.96 \sigma_{\bar{X}} \leq B$$
 i.e. $1.96 \frac{\sigma}{\sqrt{n}} \leq B$.

Solving for n gives the required sample size:

MTH 3240 Environmental Statis

$$n \geq \frac{(1.96\,\sigma)^2}{B^2}.$$

Checking Normality and Transforming Data to Normalit

Notes

Notes

Notes

• For other confidence levels, replace 1.96 by the appropriate *z* critical value.

Sample Size Determination: The margin of error in a $100(1-\alpha)\%$ Cl for μ will be no bigger than B if the sample size satisfies

$$n \geq \frac{(z_{\alpha/2}\sigma)^2}{B^2}$$

which should be rounded up to the nearest integer.

 In practice, we replace σ by a reasonable guess, for example based on a *pilot study* or preexisting studies.

MTH 3240 Environmental Statistics

Sample Size Determination Checking Normality and Transforming Data to Normality

Exercise

Consider a new study of background radiation levels along the Front Range.

Suppose we want an **estimate** of the **population mean background radiation level** μ to be **within 0.2 Bq/kg** of the true value (with 95% confidence).

At how many sites would we need to measure background radiation?

(Use **0.76**, the sample standard deviation from the earlier study, as a **guess** for σ .)

Hint: You should end up with n = 55.5, which rounds up to n = 56.

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

Checking Normality of Data

 Many statistical procedures (e.g. the one-sample t procedure) require that the data are a sample from a normal population (or that n is large).

Two commonly used tools to check this assumption are:

- 1. Histograms (should look bell-shaped)
- 2. Normal probability plots (the points should hug a line)

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

Notes

- If a histogram looks reasonably symmetric and bell-shaped, the normality assumption is tenable.
- If the points in a normal probability plot follow approximately a straight line, the normality assumption is tenable.

Curved patterns in the **normal probability plot** indicate various types of **non-normality**.

x

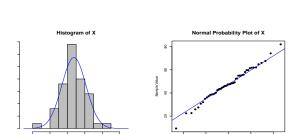


Figure: Histogram of symmetric, approximately normal data (left). Normal probability plot of the same data (right).

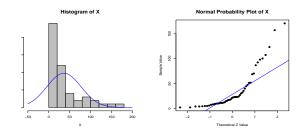


Figure: Histogram of non-normal, right skewed data (left). Normal probability plot of the same data (right).

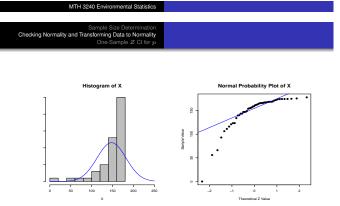


Figure: Histogram of non-normal, left skewed data (left). Normal probability plot of the same data (right).

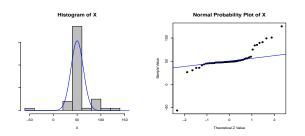
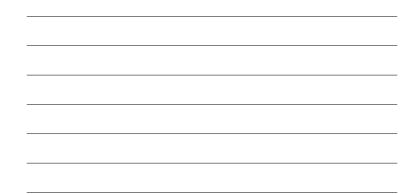


Figure: Histogram of non-normal, "heavy tailed" data (left). Normal probability plot of the same data (right).

MTH 3240 Environmental Statistics

Notes



Notes

Notes

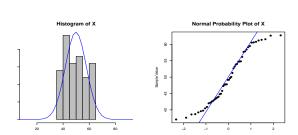


Figure: Histogram of non-normal, "light tailed" data (left). Normal probability plot of the same data (right).

MTH 3240 Environmental Statistics	
Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p	

• A normal probability plot is a plot of the observed data values (y-axis) versus the theoretical values we'd expect to get if our sample was from a normal population (x-axis).

(On the next slide, the observed data (y) follow a right skewed distribution. The theoretical (x) values correspond to an exact normal distribution.)

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to



MTH 3240 Enviror ental Statistics

Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

Transforming Data to Normality

MTH 3240 Environmental Statistics

• Most of the statistical procedures that require the normality assumption are *robust* to mild departures from normality.

This means they're still approximately valid, even when nis **small**, as long as the non-normality isn't severe.

Notes

Notes

Notes

Checking Normality and Transforming Data to Normality

- Notes
- But if the population is severely non-normal (i.e. skewed) and *n* isn't large, those procedures shouldn't be used.

Instead, we can either:

- Transform the data first, for example by taking their logs, so that the transformed data are more normally distributed, or
- Use a so-called *nonparametric* procedure, i.e. one that doesn't require a normality assumption.

Sample Size Determination Checking Normality and Transforming Data to Normality

MTH 3240 Environmental Statistics

Notes

- Right skewed data can be modeled as a sample from a lognormal population.
- Thus their (natural) **logs** can be treated as a sample from a **normal** population.

In this case, we can carry out the statistical procedures on the $\boldsymbol{\log s}$ of the data.

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

Example

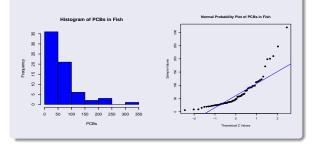
In a U.S. EPA study, Polychlorinated biphenyls (**PCBs**) were measured in fish from n = 69 U.S. lakes. There are more than 200 types of PCBs. The data below are measured values of the total sum of all **PCBs** (ppb) found in the fish.

20.0	6.1	25.0	37.4	30.2	20.8	41.4	29.5	24.2	26.3
8.6	36.4	66.4	30.6	25.5	68.6	23.1	43.0	39.5	36.5
26.5	22.1	19.2	33.0	9.1	42.0	48.8	55.9	31.8	60.1
97.3	18.4	27.5	79.0	97.8	44.9	58.2	57.4	57.5	33.6
115.7	14.8	91.6	92.2	37.0	87.7	111.4	48.0	38.1	122.8
113.1	79.2	98.3	33.0	64.2	119.4	80.7	171.4	132.9	91.8
32.6	59.5	200.5	65.4	198.5	89.4	210.3	246.7	318.7	

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

We want a **95% CI** for the (unknown) **population mean PCB** concentration for U.S. lakes. A **histogram** and **normal probability** plot of the data are below.



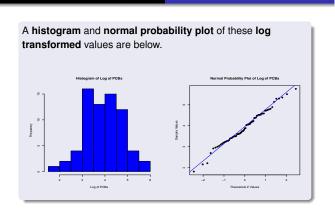
Notes

Based on the plots, it would be **unreasonable** to assume the data are a sample from a normal population.

Here are the **logs** of the data.

2.2 3.3 4.6 4.8 4.7	3.6 3.1 2.9 2.7 4.4	4.2 3.0 3.3 4.5 4.6	3.4 3.5 4.4 4.5 3.5	3.2 2.2 4.6 3.6 4.2	4.2 3.7 3.8 4.5 4.8	3.1 3.9 4.1 4.7 4.4	3.8 4.0 4.1 3.9 5.1		3.6 4.1 3.5 4.8
3.5	4.1	5.3	4.2	5.3	4.5	5.3	5.5	5.8	

MTH 3240 Environmental Statistics Sample Size Determination Checking Normality and Transforming Data to Normality



MTH 3240 Environmental Statisti

Checking Normality and Transforming Data to Normality

The assumption of a **normal population** appears to be met for the **logs** of the **PCB** concentrations.

We'll let μ denote the true (unknown) **population mean** *log* **PCB** concentration.

The **sample mean** and **standard deviation** of the **log PCB** concentrations are

 $ar{Y}=3.92$ and S=0.80

Thus the **estimate** of the (unknown) **population mean** *log* **PCB** concentration μ is **3.92** (log ppb).

MTH 3240 Environmental Statistics

Sample Size Determination Checking Normality and Transforming Data to Normality

The (estimated) standard error is

$$S_{\bar{Y}} = \frac{S}{\sqrt{n}} = \frac{0.80}{\sqrt{69}} = 0.10,$$

so the 95% one-sample t Cl for μ is

MTH 3240 Environmental Statistics

$$\bar{Y} \pm t_{0.025,68} S_{\bar{Y}} = 3.92 \pm 1.995(0.10)$$

= 3.92 ± 0.20
= (3.72, 4.12)

We can be 95% confident that the (unknown) **population mean** *log* PCB concentration μ is between 3.72 and 4.12 (log ppb).

Notes

Notes

Notes

Notes

- When we perform a statistical analysis on **log transformed** data, the results pertain to the **log** measurement scale for the data.
- Sometimes it's possible **back-transform** the results to the original scale by taking the **antilog**.

MTH 3240 Environmental Statistics

Checking Normality and Transformation Data to Normality

Example (Cont'd)

The sample mean \log PCB concentration was $\bar{Y}=3.92$ (log ppb).

We can convert \bar{Y} back to the original scale (ppb), so that it's easier to interpret, by taking its **antilog**:

$$e^{\bar{Y}} = e^{3.92}$$

= **50.4** (**ppb**),

where e is the so-called exponential constant,

e = 2.71828.

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

We can take the antilogs of the 95%~Cl endpoints

(3.72, 4.12)

too, giving the new interval

 $(e^{3.72}, e^{4.12}) = (41.3, 61.6).$

The values **41.3** and **61.6** are easier to interpret because they're measured in **ppb**.

We're (approximately) 95% confident that the true population mean PCB concentration (in **ppb**) is in this range.

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

One-Sample Z Cl for p

A categorical variable is *dichotomous* if it takes only two values.

Examples:

• A random sample of wells from across the state of Iowa is selected, and each tested for the **presence** or **absence** of E. coli.

The variable, **presence** or **absence** of E. coli, is **dichotomous**.

Notes

Notes

- Examples (Cont'd):
 - A random sample of biosolids fertilizer specimens is selected from farmlands in Ohio, and each specimen tested (**positive** or **negative**) for salmonella.

The variable, **positive** or **negative** test result, is **dichotomous**.

• A sample of people who didn't participate in decision making involving an environmental assessment of a proposed hog slaughtering facility were asked (**yes** or **no**) whether their reason for not participating was that "The ultimate decisions were foregone."

The variable, yes or no response, is dichotomous.

Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

MTH 3240 Environmental Statistics

Notes

• We'll refer to the two values of a **dichotomous** variable (generically) as *success* and *failure*.

MTH 3240 Environmental Statisti

Checking Normality and Transforming Data to Normality

When a dichotomous variable is measured on a random sample from a population whose proportion of successes is *p*, the (point) estimate of *p* is the sample proportion, denoted *P*.

Sample Proportion: For a data set of *n* observations of a dichotomous variable taking values *success* and *failure*,

 $\hat{P} = \frac{\text{Number of successes in the sample}}{\text{Sample size } n}$

MTH 3240 Environmental Statistics

Checking Normality and Transforming Data to Normality

Example

In a study of bees, a honey solution was sprayed on vegetation along several transects. Bees attracted to the honey were caught with an insect net, and their species later identified.

Among the n = 1,631 bees caught, **546** were of the species *Trigona* (*Tetragonula*) *laeviceps*. The **sample proportion** is

$$\hat{P} = \frac{546}{1,631} = 0.33,$$

which is an estimate of the (unknown) population proportion p.

Notes

• A CI for p is given by the following.

• The CI is valid if the sample is from a dichotomous population and the sample size n is *large*.

The margin of error is:

Margin of Error: For the one-sample *z* CI for *p*, the margin of error is

Margin of Error
$$= z_{\alpha/2} S_{\hat{P}} = z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}.$$

MTH 3240 E

Example (Cont'd)

In the sample of n=1,631 bees, the sample proportion that were T. (T.) laeviceps was

$$\hat{P} = \frac{546}{1,631} = 0.33,$$

which is an estimate of the population proportion *p*.

mental Statistics

ental Statistics

MTH 3240 En

Sample Checking Normality and Transformin One ple Z CI for p

Notes

The (estimated) standard error of \hat{P} is

MTH 3240 Environmental Statistics

$$S_{\hat{P}} = \sqrt{rac{0.33(1-0.33)}{1,631}} = 0.01$$

indicating how far off the mark the estimate is expected to be.

Notes

Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

Notes

A 95% one-sample z CI for the unknown population proportion p that are T. (T.) *laeviceps* is

$$\begin{split} \hat{P} \ \pm \ z_{0.025} \, S_{\hat{P}} &= \ 0.33 \ \pm \ 1.96 \ (0.01) \\ &= \ 0.33 \ \pm \ 0.02 \\ &= \ (0.31, \ 0.35). \end{split}$$

The margin of error is 0.02, indicating that we wouldn't expect the estimate to be off the mark by more than 0.02.

We can be **95% confident** that the unknown **population proportion** p is between **0.31** and **0.35**.

MTH 3240 Environmental Statistics

Notes

Notes