Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

6 One-Sample Confidence Intervals (Cont'd)

MTH 3240 Environmental Statistics

Spring 2020

イロン イボン イヨン イヨン

3

MTH 3240 Environmental Statistics

Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

Objectives

Objectives:

- Determine the sample size needed to keep the margin of error no bigger than a desired value.
- Assess normality of data using graphs, and transform non-normal data to normality.
- Compute and interpret a one-sample *z* confidence interval for a proportion.

ヘロト ヘ戸ト ヘヨト ヘヨト

Sample Size Determination

• Planning a study often involves deciding how large the sample size *n* should be.

イロン イボン イヨン イヨン

ъ

Sample Size Determination

- Planning a study often involves deciding how large the sample size *n* should be.
- Larger samples produce smaller margins of error in estimates of population parameters such as μ.

ヘロト ヘ戸ト ヘヨト ヘヨト

Sample Size Determination

- Planning a study often involves deciding how large the sample size *n* should be.
- Larger samples produce smaller margins of error in estimates of population parameters such as μ.
- But larger sample sizes are more expensive and time consuming to collect.

くロト (過) (目) (日)

Sample Size Determination

- Planning a study often involves deciding how large the sample size *n* should be.
- Larger samples produce smaller margins of error in estimates of population parameters such as μ.
- But larger sample sizes are more expensive and time consuming to collect.
- Our goal is to determine the smallest n that's still large enough that the margin of error won't be unacceptably big.

ヘロト ヘ戸ト ヘヨト ヘヨト

 Suppose we want the margin of error in a Cl for μ to be no bigger than some value B, i.e we want

Margin of Error $\leq B$.

イロト イポト イヨト イヨト

3

 Suppose we want the margin of error in a Cl for μ to be no bigger than some value B, i.e we want

Margin of Error $\leq B$.

If the population standard deviation *σ* is known, then for a 95% CI, we require *n* to be large enough that

$$1.96 \sigma_{\bar{X}} \leq B$$
 i.e. $1.96 \frac{\sigma}{\sqrt{n}} \leq B$.

ヘロト ヘ戸ト ヘヨト ヘヨト

 Suppose we want the margin of error in a Cl for μ to be no bigger than some value B, i.e we want

Margin of Error $\leq B$.

If the population standard deviation *σ* is known, then for a
95% Cl, we require *n* to be large enough that

$$1.96 \sigma_{\bar{X}} \leq B$$
 i.e. $1.96 \frac{\sigma}{\sqrt{n}} \leq B$.

Solving for n gives the **required sample size**:

$$n \geq \frac{(1.96\,\sigma)^2}{B^2}.$$

イロト イ理ト イヨト イヨト

• For other confidence levels, replace 1.96 by the appropriate *z* critical value.

・ロン ・聞と ・ ほと ・ ほとう

= 990

• For other confidence levels, replace 1.96 by the appropriate *z* critical value.

Sample Size Determination: The margin of error in a $100(1-\alpha)\%$ CI for μ will be no bigger than *B* if the sample size satisfies

$$n \geq \frac{(z_{\alpha/2}\sigma)^2}{B^2},$$

イロト イポト イヨト イヨト

æ

which should be *rounded up* to the nearest integer.

• For other confidence levels, replace 1.96 by the appropriate *z* critical value.

Sample Size Determination: The margin of error in a $100(1-\alpha)\%$ CI for μ will be no bigger than *B* if the sample size satisfies

$$n \geq \frac{(z_{\alpha/2}\sigma)^2}{B^2},$$

which should be *rounded up* to the nearest integer.

 In practice, we replace σ by a reasonable guess, for example based on a *pilot study* or preexisting studies.

イロト イポト イヨト イヨト

Exercise

Consider a new study of background radiation levels along the Front Range.

Exercise

Consider a new study of background radiation levels along the Front Range.

Suppose we want an **estimate** of the **population mean background radiation level** μ to be **within 0.2 Bq/kg** of the true value (with 95% confidence).

Exercise

Consider a new study of background radiation levels along the Front Range.

Suppose we want an **estimate** of the **population mean background radiation level** μ to be **within 0.2 Bq/kg** of the true value (with 95% confidence).

At how many sites would we need to measure background radiation?

Exercise

Consider a new study of background radiation levels along the Front Range.

Suppose we want an **estimate** of the **population mean background radiation level** μ to be **within 0.2 Bq/kg** of the true value (with 95% confidence).

At how many sites would we need to measure background radiation?

(Use **0.76**, the sample standard deviation from the earlier study, as a **guess** for σ .)

Exercise

Consider a new study of background radiation levels along the Front Range.

Suppose we want an **estimate** of the **population mean background radiation level** μ to be **within 0.2 Bq/kg** of the true value (with 95% confidence).

At how many sites would we need to measure background radiation?

(Use **0.76**, the sample standard deviation from the earlier study, as a **guess** for σ .)

Hint: You should end up with n = 55.5, which rounds up to n = 56.

Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

Checking Normality of Data

Many statistical procedures (e.g. the one-sample t procedure) require that the data are a sample from a normal population (or that n is large).

ヘロト 人間 ト くほ ト くほ トー

Checking Normality of Data

Many statistical procedures (e.g. the one-sample t procedure) require that the data are a sample from a normal population (or that n is large).

Two commonly used tools to check this assumption are:

- 1. Histograms (should look bell-shaped)
- 2. **Normal probability plots** (the points should hug a line)

 If a histogram looks reasonably symmetric and bell-shaped, the normality assumption is tenable.

3

- If a histogram looks reasonably symmetric and bell-shaped, the normality assumption is tenable.
- If the points in a normal probability plot follow approximately a straight line, the normality assumption is tenable.

イロト イポト イヨト イヨト

- If a histogram looks reasonably symmetric and bell-shaped, the normality assumption is tenable.
- If the points in a normal probability plot follow approximately a straight line, the normality assumption is tenable.

Curved patterns in the **normal probability plot** indicate various types of **non-normality**.

イロト イ理ト イヨト イヨト

< □ > < □ > < □ >

э

э

Figure: Histogram of symmetric, approximately normal data (left). Normal probability plot of the same data (right).

프 🕨 🗆 프

Figure: Histogram of non-normal, right skewed data (left). Normal probability plot of the same data (right).

프 🕨 🗆 프

Figure: Histogram of non-normal, left skewed data (left). Normal probability plot of the same data (right).

(日)

э

э

Figure: Histogram of non-normal, "heavy tailed" data (left). Normal probability plot of the same data (right).

イロト イポト イヨト イヨト

э

Figure: Histogram of non-normal, "light tailed" data (left). Normal probability plot of the same data (right).

• A *normal probability plot* is a plot of the **observed data values** (*y*-axis) versus the theoretical values we'd **expect** to get **if** our sample was from a **normal population** (*x*-axis).

イロト イポト イヨト イヨト

э.

• A *normal probability plot* is a plot of the **observed data values** (*y*-axis) versus the theoretical values we'd **expect** to get **if** our sample was from a **normal population** (*x*-axis).

(On the next slide, the observed data (y) follow a right skewed distribution. The theoretical (x) values correspond to an exact normal distribution.)

ヘロト ヘアト ヘビト ヘビト

Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

MTH 3240 Environmental Statistics

Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

Transforming Data to Normality

 Most of the statistical procedures that require the normality assumption are *robust* to mild departures from normality.

イロト イポト イヨト イヨト

Sample Size Determination Checking Normality and Transforming Data to Normality One-Sample Z Cl for p

Transforming Data to Normality

 Most of the statistical procedures that require the normality assumption are *robust* to mild departures from normality.

This means they're still **approximately valid**, even when n is **small**, as long as the non-normality isn't severe.

< □ > < 同 > < 三 > <

 But if the population is severely non-normal (i.e. skewed) and n isn't large, those procedures shouldn't be used.

イロト イポト イヨト イヨト

 But if the population is severely non-normal (i.e. skewed) and n isn't large, those procedures shouldn't be used.
Instead, we can either:

- But if the population is severely non-normal (i.e. skewed) and n isn't large, those procedures shouldn't be used.
 Instead, we can either:
 - Transform the data first, for example by taking their logs, so that the transformed data are more normally distributed, or

くロト (過) (目) (日)

- But if the population is severely non-normal (i.e. skewed) and n isn't large, those procedures shouldn't be used.
 Instead, we can either:
 - *Transform* the data first, for example by taking their logs, so that the transformed data are more normally distributed, or
 - Use a so-called *nonparametric* procedure, i.e. one that doesn't require a normality assumption.

イロト イ理ト イヨト イヨト
• **Right skewed** data can be modeled as a sample from a **lognormal** population.

イロン イボン イヨン イヨン

- **Right skewed** data can be modeled as a sample from a **lognormal** population.
- Thus their (natural) **logs** can be treated as a sample from a **normal** population.

æ

- **Right skewed** data can be modeled as a sample from a **lognormal** population.
- Thus their (natural) **logs** can be treated as a sample from a **normal** population.

In this case, we can carry out the statistical procedures on the **logs** of the data.

In a U.S. EPA study, Polychlorinated biphenyls (**PCBs**) were measured in fish from n = 69 U.S. lakes. There are more than 200 types of PCBs. The data below are measured values of the total sum of all **PCBs** (ppb) found in the fish.

20.0	6.1	25.0	37.4	30.2	20.8	41.4	29.5	24.2	26.3
8.6	36.4	66.4	30.6	25.5	68.6	23.1	43.0	39.5	36.5
26.5	22.1	19.2	33.0	9.1	42.0	48.8	55.9	31.8	60.1
97.3	18.4	27.5	79.0	97.8	44.9	58.2	57.4	57.5	33.6
115.7	14.8	91.6	92.2	37.0	87.7	111.4	48.0	38.1	122.8
113.1	79.2	98.3	33.0	64.2	119.4	80.7	171.4	132.9	91.8
32.6	59.5	200.5	65.4	198.5	89.4	210.3	246.7	318.7	

э.

We want a **95% CI** for the (unknown) **population mean PCB** concentration for U.S. lakes. A **histogram** and **normal probability** plot of the data are below.

Based on the plots, it would be **unreasonable** to assume the data are a sample from a normal population.

Here are the **logs** of the data.

3.0	1.8	3.2	3.6	3.4	3.0	3.7	3.4	3.2	3.3
2.2	3.6	4.2	3.4	3.2	4.2	3.1	3.8	3.7	3.6
3.3	3.1	3.0	3.5	2.2	3.7	3.9	4.0	3.5	4.1
4.6	2.9	3.3	4.4	4.6	3.8	4.1	4.1	4.1	3.5
4.8	2.7	4.5	4.5	3.6	4.5	4.7	3.9	3.6	4.8
4.7	4.4	4.6	3.5	4.2	4.8	4.4	5.1	4.9	4.5
3.5	4.1	5.3	4.2	5.3	4.5	5.3	5.5	5.8	

イロン 不得 とくほ とくほとう

A histogram and normal probability plot of these log transformed values are below.

イロト イポト イヨト イヨト

э

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

ъ

We'll let μ denote the true (unknown) **population mean** *log* **PCB** concentration.

We'll let μ denote the true (unknown) **population mean** *log* **PCB** concentration.

The **sample mean** and **standard deviation** of the **log PCB** concentrations are

$$ar{Y}=3.92$$
 and $S=0.80$

< 口 > < 同 > < 臣 > < 臣 >

We'll let μ denote the true (unknown) **population mean** *log* **PCB** concentration.

The **sample mean** and **standard deviation** of the **log PCB** concentrations are

$$ar{Y}=3.92$$
 and $S=0.80$

イロト イポト イヨト イヨト

Thus the **estimate** of the (unknown) **population mean** *log* **PCB** concentration μ is **3.92** (log ppb).

The (estimated) standard error is

$$S_{\bar{Y}} = \frac{S}{\sqrt{n}} = \frac{0.80}{\sqrt{69}} = 0.10,$$

MTH 3240 Environmental Statistics

The (estimated) standard error is

$$S_{\bar{Y}} = \frac{S}{\sqrt{n}} = \frac{0.80}{\sqrt{69}} = 0.10,$$

so the 95% one-sample t Cl for μ is

$$\bar{Y} \pm t_{0.025,68} S_{\bar{Y}} = 3.92 \pm 1.995(0.10)$$

= 3.92 ± 0.20
= (3.72, 4.12)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

The (estimated) standard error is

$$S_{\bar{Y}} = \frac{S}{\sqrt{n}} = \frac{0.80}{\sqrt{69}} = 0.10,$$

so the 95% one-sample t Cl for μ is

$$\bar{Y} \pm t_{0.025,68} S_{\bar{Y}} = 3.92 \pm 1.995(0.10)$$

= 3.92 ± 0.20
= (3.72, 4.12)

We can be 95% confident that the (unknown) **population mean** *log* **PCB** concentration μ is between **3.72** and **4.12** (log ppb).

・ロト ・ 理 ト ・ ヨ ト ・

ъ

 When we perform a statistical analysis on log transformed data, the results pertain to the log measurement scale for the data.

イロン イボン イヨン イヨン

- When we perform a statistical analysis on log transformed data, the results pertain to the log measurement scale for the data.
- Sometimes it's possible back-transform the results to the original scale by taking the antilog.

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Example (Cont'd)

The sample mean log PCB concentration was $\bar{Y} = 3.92$ (log ppb).

We can convert \bar{Y} back to the original scale (ppb), so that it's easier to interpret, by taking its **antilog**:

$$e^{\bar{Y}} = e^{3.92}$$

= 50.4 (ppb),

where e is the so-called exponential constant,

$$e = 2.71828.$$

ヘロト 人間 ト ヘヨト ヘヨト

We can take the antilogs of the 95% CI endpoints

(3.72, 4.12)

too, giving the new interval

$$(e^{3.72}, e^{4.12}) = (41.3, 61.6).$$

イロン イボン イヨン イヨン

We can take the antilogs of the 95% CI endpoints

(3.72, 4.12)

too, giving the new interval

$$(e^{3.72}, e^{4.12}) = (41.3, 61.6).$$

イロト イポト イヨト イヨト

ъ

The values **41.3** and **61.6** are easier to interpret because they're measured in **ppb**.

We can take the antilogs of the 95% CI endpoints

(3.72, 4.12)

too, giving the new interval

$$(e^{3.72}, e^{4.12}) = (41.3, 61.6).$$

The values **41.3** and **61.6** are easier to interpret because they're measured in **ppb**.

We're (approximately) 95% confident that the true population mean PCB concentration (in **ppb**) is in this range.

One-Sample Z Cl for p

 A categorical variable is *dichotomous* if it takes only two values.

イロト イポト イヨト イヨト

One-Sample Z Cl for p

 A categorical variable is *dichotomous* if it takes only two values.

イロト イポト イヨト イヨト

3

Examples:

One-Sample Z CI for p

- A categorical variable is *dichotomous* if it takes only two values.
 - Examples:
 - A random sample of wells from across the state of Iowa is selected, and each tested for the presence or absence of E. coli.

イロン 不得 とくほ とくほとう

The variable, **presence** or **absence** of E. coli, is **dichotomous**.

• Examples (Cont'd):

• A random sample of biosolids fertilizer specimens is selected from farmlands in Ohio, and each specimen tested (**positive** or **negative**) for salmonella.

イロト イポト イヨト イヨト

æ

The variable, **positive** or **negative** test result, is **dichotomous**.

• Examples (Cont'd):

• A random sample of biosolids fertilizer specimens is selected from farmlands in Ohio, and each specimen tested (**positive** or **negative**) for salmonella.

The variable, **positive** or **negative** test result, is **dichotomous**.

 A sample of people who didn't participate in decision making involving an environmental assessment of a proposed hog slaughtering facility were asked (yes or no) whether their reason for not participating was that "The ultimate decisions were foregone."

The variable, yes or no response, is dichotomous.

• We'll refer to the two values of a **dichotomous** variable (generically) as *success* and *failure*.

イロト イポト イヨト イヨト

= 990

• When a **dichotomous** variable is measured on a random sample from a **population** whose **proportion** of **successes** is p, the (point) **estimate** of p is the **sample proportion**, denoted \hat{P} .

Sample Proportion: For a data set of *n* observations of a dichotomous variable taking values *success* and *failure*,

 $\hat{P} = \frac{\text{Number of successes in the sample}}{\text{Sample size } n}$

ヘロト ヘアト ヘヨト

In a study of bees, a honey solution was sprayed on vegetation along several transects. Bees attracted to the honey were caught with an insect net, and their species later identified.

In a study of bees, a honey solution was sprayed on vegetation along several transects. Bees attracted to the honey were caught with an insect net, and their species later identified.

Among the n = 1,631 bees caught, **546** were of the species *Trigona* (*Tetragonula*) *laeviceps*. The **sample proportion** is

$$\hat{P} \;=\; rac{546}{1,631} \;=\; 0.33\,,$$

In a study of bees, a honey solution was sprayed on vegetation along several transects. Bees attracted to the honey were caught with an insect net, and their species later identified.

Among the n = 1,631 bees caught, **546** were of the species *Trigona* (*Tetragonula*) *laeviceps*. The **sample proportion** is

$$\hat{P} = rac{546}{1,631} = 0.33,$$

which is an estimate of the (unknown) population proportion p.

• A **CI** for *p* is given by the following.

イロト イポト イヨト イヨト

ъ

• A **CI** for *p* is given by the following.

One-Sample Z Cl for
$$p$$
:
 $\hat{P} \pm z_{\alpha/2} S_{\hat{P}},$ where $S_{\hat{p}} = \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}.$

イロト イポト イヨト イヨト

• The CI is valid if the sample is from a dichotomous population and the sample size *n* is *large*.

The margin of error is:

Margin of Error: For the one-sample z Cl for p, the margin of error is

Margin of Error
$$= z_{\alpha/2} S_{\hat{P}} = z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$$

イロト イポト イヨト イヨト

= 990

Example (Cont'd)

In the sample of n = 1,631 bees, the **sample proportion** that were *T*. (*T*.) *laeviceps* was

$$\hat{P} = \frac{546}{1,631} = 0.33,$$

ヘロト 人間 とくほとく ほとう

3

which is an **estimate** of the **population proportion** *p*.

The (estimated) standard error of \hat{P} is

$$S_{\hat{P}} = \sqrt{rac{0.33(1-0.33)}{1,631}} = 0.01,$$

indicating how far off the mark the estimate is expected to be.

イロト イポト イヨト イヨト

A 95% one-sample z CI for the unknown population proportion p that are *T*. (*T*.) *laeviceps* is

$$\hat{P} \pm z_{0.025} S_{\hat{P}} = 0.33 \pm 1.96 (0.01)$$

= 0.33 ± 0.02
= (0.31, 0.35).

イロン イボン イヨン イヨン
A 95% one-sample z CI for the unknown population proportion p that are T. (T.) *laeviceps* is

$$\hat{P} \pm z_{0.025} S_{\hat{P}} = 0.33 \pm 1.96 (0.01)$$

= 0.33 ± 0.02
= (0.31, 0.35).

The margin of error is 0.02, indicating that we wouldn't expect the estimate to be off the mark by more than 0.02.

イロト イ理ト イヨト イヨト

A 95% one-sample z CI for the unknown population proportion p that are T. (T.) *laeviceps* is

$$\hat{P} \pm z_{0.025} S_{\hat{P}} = 0.33 \pm 1.96 (0.01)$$

= 0.33 ± 0.02
= (0.31, 0.35).

The margin of error is 0.02, indicating that we wouldn't expect the estimate to be off the mark by more than 0.02.

We can be 95% confident that the unknown population proportion p is between 0.31 and 0.35.

イロト イポト イヨト イヨト