MTH 3240 Lab 5

Due Thu., Feb. 27

1 Part A: Two-Sample t Test and Confidence Interval

1.1 Contaminants in Bird's Eggs Data Set

A study was carried out to assess the risk to reproductive success of herons and egrets due to contaminants in their nesting areas. An egg was taken from each of **nine** randomly selected **Little Egret** nests in the Mai Po Marshes Nature Reserve in Hong Kong and from each of **nine** randomly selected **Black-Crowned Heron** nests in the A Chau egretry.

In each egg, the **PCBs** (organochlorine compounds) were measured. The data are below.

Little Egret PCBs	Black-Crowned Heron PCBs
1700, 1000, 800, 970, 1600, 1000, 270, 370, 970	530, 140, 110, 600, 160, 85, 170, 150, 120

We want to decide whether the **PCB** concentrations **differ** for the two species of birds' eggs.

- 1. Use c() to create two data vectors, one containing the Little Egret PCBs and the other the Black-Crowned Heron PCBs.
- 2. Recall that boxplot() will produce a boxplot of a data set. The main argument passed to boxplot() is a data vector x, but it accepts other optional arguments too. Among its arguments are:

Х	a data vector.
col	a color used to fill the body of the box.
xlab	a label for the x-axis.
ylab	a label for the y-axis.
main	a main title.
names	a character vector of group names for the x-axis.

It turns out that boxplot() will accept any number of vectors as arguments and plot them as *side-by-side boxplots* (e.g. boxplot(x, y, z) plots the data vectors x, y, and z).

For example, if you named your **PCBs** vectors le and bch, then the following produces the boxplots:

Use boxplot() to make *side-by-side boxplots* of the PCB concentrations.

3. We want to decide if the **PCB** concentrations **differ** for the two species of birds' eggs.

The t.test() function, when passed two vectors, will carry out a *two-sample t test* (and compute a 95% *two-sample t confidence interval*) for two population means μ_x and μ_y . Among its arguments are:

x	a data vector.
У	another data vector.
alternative	the direction for the alternative hypothesis, one of "two.sided", "less",
	or "greater".
mu	the null hypothesized value for the unknown difference between population
	means, with default value 0.
conf.level	the confidence level for a confidence interval for the unknown difference
	between population means, with default value 0.95.

Use t.test() to carry out a *two-sample t test* of

$$H_0: \mu_x - \mu_y = 0$$
$$H_a: \mu_x - \mu_y \neq 0$$

where μ_x is the true (unknown) mean PCB concentration for Little Egret eggs and μ_y is the true mean forBlack-Crowned Heron eggs. For example, if your data vectors are called le and bch, then you'd type:

t.test(x = le, y = bch, mu = 0, alternative = "two.sided")

4. The function t.test() also reports a 95% confidence interval for the true (unknown) difference $\mu_x - \mu_y$, or effect size. Find the endpoints of the 95% confidence interval for the effect size.