MTH 4230 Lab 1 **Answer Sheet**

Due Wed., Feb. 5

1 Part A: Simple Linear Regression

1.1	Murder Rates Data Set
1.	NA
2.	NA ($don't$ print the scatterplot).
3.	NA
4.	NA ($don't$ print the scatterplot).
5.	Give the following values:
	The estimate of β_0 is $b_0 = \dots$
	The estimate of β_1 is $b_1 = \dots$
	The estimated standard error of b_1 is $s\{b_1\} =$
	The observed value of the test statistic for the t test of
	$H_0: \beta_1 = 0$
	$H_a: \beta_1 \neq 0$
	is $t = \dots$
	The p-value =

Is the observed b_1 statistically significantly different from zero (Yes/No)? ______

What does this indicate about whether there's any relationship between the **murder rate** and the **illiteracy rate**?

	Give the value of the $coefficient\ of\ determination\ R^2$ (labeled Multiple R-squared in the output from summary().
	Coefficient of determination $R^2 = \dots$
	Based on the value of \mathbb{R}^2 , what percentage of the variation in murder rates is explained by illiteracy rate?
6.	$Don't$ print the histogram, just answer the following question. Based on the histogram, does the assumption of normally distributed errors ϵ_i appear to be met? (Yes/No)?
7.	$Don't$ print the plot, just answer the following question. Based on the plot of residuals versus fitted values, does the assumption of a constant standard deviation assumption for ϵ appear to be met (Yes/No)?
8.	
	a) The regression ANOVA table in R gives the following:
	Analysis of Variance Table Response: Y
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Residuals Df for SSE SSE MSE
	From regression ANOVA table , give the values of the following statistics:
	SSR = $SSE = $ $SSTO =$
	$MSR = \dots F Test Statistic = \dots F$
	b) Give the degrees of freedom for SSR:
	Give the degrees of freedom for SSE:

c) Show that the F test statistic is the square of the t statistic from Step 5, and confirm that the p-values for the two tests are the same.

Give the degrees of freedom for SSTO: _____

d) Show that

$$R^2 = 1 - \frac{\text{SSE}}{\text{SSTO}}$$

where \mathbb{R}^2 is the coefficient of determination from Step 5.

2 Part B: Intercept-Only Regression

- 2.1 Murder Rates Data Set (Continued)
 - 1. NA
 - 2. Give the following values:

The estimate of β_0 is $b_0 =$ _____

The estimated standard error of b_0 is $s\{b_0\} = \dots$

Give the value of the *coefficient of determination* \mathbb{R}^2 (labeled Multiple R-squared in the output from summary().

Coefficient of determination $R^2 = \dots$

For which model, the one that included **illiteracy** as a predictor or the **intercept-only** model, is the \mathbb{R}^2 larger?

- 3. **Don't** print the plot, just describe the fitted line.
- 4. Compare the value of \bar{Y} to that of b_0 . Are they the same (Yes/No)? ______
- 5. Are the results (t value and **p-value**) of the test for μ the same as those of the test for β_0 (Yes/No)? _____

3 Part C: Simple Linear Regression

3.1 Murder Rates Data Set (Continued)

- 1. NA
- 2. Give the endpoints of the 95% confidence interval for β_1 , and interpret the interval.
- 3. Give the value of the *estimate* of the mean response.
- 4. Give the endpoints of the 95% confidence interval for $E(Y_h)$ and interpret the interval.
- 5. Give the 95% prediction interval for the new response $Y_{h(new)}$, and interpret the prediction interval.