
MTH 3240 R Notes 7

6 Data Frames (Cont’d)

6.7 Merging the Columns of Two Data Frames

• To merge (combine) the columns of two data frames, a useful function is:

merge() # Merge two data frames that share one or more variables

(columns) in common

• For example, we can combine the columns of the following two data frames, whose rows
correspond to people:

NamesAndAges

Name Age

1 John 23

2 Karen 27

3 Margaret 19

4 Ann 36

5 Karl 32

6 Eric 24

7 Justin 22

8 Janet 28

JumbledNamesAndWts

Name Weight

1 Eric 184

2 Ann 159

3 Karen 170

4 Justin 161

5 Margaret 147

6 John 155

7 Janet 154

8 Karl 201

The two data frames contain the same eight people, but they’re in different orders.

1

Class Notes 6 Data Frames (Cont’d)

• To merge (combine) NamesAndAges with JumbledNamesAndWts so that the names get
matched, use merge():

merge(NamesAndAges, JumbledNamesAndWts, by = "Name")

Name Age Weight

1 Ann 36 159

2 Eric 24 184

3 Janet 28 154

4 John 23 155

5 Justin 22 161

6 Karen 27 170

7 Karl 32 201

8 Margaret 19 147

Note that merge() sorted the rows of both NamesAndWeights and JumbledNamesAndWts

according to the alphabetical ordering of Name before merging them.

• Above, we merged NamesAndAges with JumbledNamesAndWts by the values in one column,
Name.

We can can also merge two data frames by the values in two columns if we need to. For
more info, see the help file for merge() (type ?merge).

Section 6.7 Exercises

Exercise 1 Here are two data frames containing responses to two survey questions (on
a scale of 1 to 100):

dfA <- data.frame(RespondentID = c(1000, 1001, 1002, 1003, 1004, 1005, 1006),

Response1 = c(55, 62, 39, 45, 70, 77, 56))

dfA

RespondentID Response1

1 1000 55

2 1001 62

3 1002 39

4 1003 45

5 1004 70

6 1005 77

7 1006 56

dfB <- data.frame(RespondentID = c(1003, 1002, 1000, 1004, 1006, 1001, 1005),

Response2 = c(12, 17, 23, 24, 19, 30, 20))

dfB

Environmental Statistics 2

Class Notes 6 Data Frames (Cont’d)

RespondentID Response2

1 1003 12

2 1002 17

3 1000 23

4 1004 24

5 1006 19

6 1001 30

7 1005 20

Note that the RespondentIDs are the same, but in different orders. Write a command
involving merge(), with by = "RespondentID", that merges the columns of the two data
frames. You should end up with this:

RespondentID Response1 Response2

1 1000 55 23

2 1001 62 30

3 1002 39 17

4 1003 45 12

5 1004 70 24

6 1005 77 20

7 1006 56 19

6.8 Stacking and Unstacking Columns of a Data Frame

• Sometimes data are arranged in separate columns representing, say, different groups, but
we’d prefer them to be in a single column with an adjacent column indicating the group.

Other times we need to do the opposite (take a single column and turn it into multiple
columns).

The functions below are useful for such tasks.

stack() # "Stack" columns in a data frame

unstack() # "Unstack" a column in a data frame

• For example, the data might be ”unstacked” (aka in ”wide” format) like this:

unstacked.data

Grp1 Grp2 Grp3

1 23 19 31

2 11 26 28

3 14 24 34

4 16 29 25

Environmental Statistics 3

Class Notes 6 Data Frames (Cont’d)

We ”stack” the data (into ”long” format) by typing:

stacked.data <- stack(unstacked.data)

names(stacked.data) <- c("Response", "Group")

stacked.data

Response Group

1 23 Grp1

2 11 Grp1

3 14 Grp1

4 16 Grp1

5 19 Grp2

6 26 Grp2

7 24 Grp2

8 29 Grp2

9 31 Grp3

10 28 Grp3

11 34 Grp3

12 25 Grp3

• To ”unstack” the data, we need indicate which column we want to ”unstack” into separate
columns and which one is the group indicator for forming column headers.

We do this by passing a so-called formula to unstack() via its argument form. The
formula’s left side is the variable to be ”unstacked” and its right side is the group indicator:

unstacked.data <- unstack(stacked.data, form = Response ~ Group)

unstacked.data

Grp1 Grp2 Grp3

1 23 19 31

2 11 26 28

3 14 24 34

4 16 29 25

(Above, the formula is Response ~ Group.)

Section 6.8 Exercises

Exercise 2 Here’s a data frame:

Environmental Statistics 4

Class Notes 7 Factors and Tables

x <- data.frame(a = c(1, 4, 2), b = c(7, 5, 8), c = c(9, 9, 8))

x

a b c

1 1 7 9

2 4 5 9

3 2 8 8

Guess what the following command will do, then check your answer:

stack(x)

Exercise 3 Here’s a data frame containing data from an experiment involving a treat-
ment group and a control group:

x <- data.frame(Group = c("Trt", "Trt", "Trt", "Trt", "Trt", "Ctrl",

"Ctrl", "Ctrl", "Ctrl", "Ctrl"),

Y = c(22, 45, 32, 45, 30, 60, 44, 24, 56, 59))

x

Group Y

1 Trt 22

2 Trt 45

3 Trt 32

4 Trt 45

5 Trt 30

6 Ctrl 60

7 Ctrl 44

8 Ctrl 24

9 Ctrl 56

10 Ctrl 59

Guess what the following command will do, then check your answer:

unstack(x, form = Y ~ Group)

7 Factors and Tables

7.1 Creating and Viewing Factors and Their Levels

• Factors, like "character" vectors, are used to store categorical (qualitative) data.

"character" vectors are the preferred way of storing categorical data in R because they’re
easier to work with than factors.

Environmental Statistics 5

Class Notes 7 Factors and Tables

Factors are a relic from early versions of R. They differ from "character" vectors in the
way R stores them internally, and they contain a bit of extra information called levels.

• The following are functions are useful for working with factors:

factor() # Create a factor from a character vector

length() # Returns the number of elements in a factor

levels() # Examine the levels of the factor

is.factor() # Indicates whether or not an object is a factor

• Below, we use factor() to convert a "character" vector to a factor:

char.vec <- c("ctrl", "trt1", "trt2", "ctrl", "trt1", "trt2", "ctrl",

"trt1", "trt2")

my.fac <- factor(char.vec)

is.factor(my.fac)

[1] TRUE

• When R prints out a factor, it also indicates its levels, which are the unique values that
appear in the factor:

my.fac

[1] ctrl trt1 trt2 ctrl trt1 trt2 ctrl trt1 trt2

Levels: ctrl trt1 trt2

• To convert a factor to a "character" vector, we use:

as.character() # Convert a factor to a character vector

• "character" vectors are easier to work with than factors. Here’s an example of converting
a factor to a "character" vector:

as.character(my.fac)

[1] "ctrl" "trt1" "trt2" "ctrl" "trt1" "trt2" "ctrl" "trt1"

[9] "trt2"

Environmental Statistics 6

Class Notes 7 Factors and Tables

Section 7.1 Exercises

Exercise 4 Here’s a factor:

x.fac <- factor(c("a", "a", "b", "b", "c", "c", "d", "d"))

a) Guess what the result of the following command will be, then check your answer:

levels(x.fac)

b) Write a command involving as.character() that converts x.fac to a "character"

vector.

7.2 Creating Tables

• Categorical (qualitative) data are summarized using tables of counts or proportions.

• To create a table from a "character" vector (or a factor), we use:

table() # Create a table of counts from a factor or

"character" vector

prop.table() # Create a table of proportions from a table

counts

To check whether an object is a table, use:

is.table() # Returns TRUE or FALSE indicating whether an object

is a table

To turn a table of counts (or proportions) into a bar graph, we use:

barplot() # Create a bar graph from a table of counts or

proportions

• table() returns a table of counts of the occurrences of each unique value in a "character"

vector (or level of a factor).

• For example, here’s a "character" vector containing responses ("Yes", "No", or "Maybe")
to a survey question:

Environmental Statistics 7

Class Notes 7 Factors and Tables

survey.responses <- c("Yes", "No", "Maybe", "No", "Maybe", "Maybe",

"No", "Yes", "No", "Yes", "Maybe", "No", "Yes", "Yes", "Yes",

"Maybe", "Yes", "No", "Yes")

We can tabulate the responses by typing:

survey.tab <- table(survey.responses)

survey.tab

survey.responses

Maybe No Yes

5 6 8

Here’s a bar plot of the counts:

barplot(survey.tab)

Maybe No Yes

0
2

4
6

8

• prop.table() takes the table of counts returned by table(), and converts them to pro-
portions:

prop.table(survey.tab)

survey.responses

Maybe No Yes

0.2631579 0.3157895 0.4210526

• We can create a two-way table from two "character" vectors (or factors).

For example, here’s a data set showing the age group and political affiliation of 10 people:

Environmental Statistics 8

Class Notes 7 Factors and Tables

AgeGroup Affiliation
Young Democrat
Young Republican
Old Republican
Old Republican
Young Democrat
Young Republican
Old Democrat
Old Republican
Old Republican
Young Democrat

To put the data in a data frame in R, we could type:

age <- c("Young", "Young", "Old", "Old", "Young", "Young", "Old", "Old", "Old",

"Young")

affil <- c("Democrat", "Republican", "Republican", "Republican", "Democrat",

"Republican", "Democrat", "Republican", "Republican", "Democrat")

x <- data.frame(AgeGroup = age, Affiliation = affil)

x

AgeGroup Affiliation

1 Young Democrat

2 Young Republican

3 Old Republican

4 Old Republican

5 Young Democrat

6 Young Republican

7 Old Democrat

8 Old Republican

9 Old Republican

10 Young Democrat

To create a two-way table, in which individuals are cross-classified according to AgeGroup

and political Affiliation, we type:

x.tab <- table(x$AgeGroup, x$Affiliation)

x.tab

##

Democrat Republican

Old 1 4

Young 3 2

Environmental Statistics 9

Class Notes 7 Factors and Tables

For two categorical variables, to make a bar graph, we (usually) specify beside = TRUE in
barplot() so that the bars will be side-by-side (instead of stacked on top of each other).
The graph looks like this:

barplot(x.tab, beside = TRUE)

Democrat Republican

0
1

2
3

4

(The different bar colors represent AgeGroups. We could add a legend, if we wanted one,
using legend().)

Section 7.2 Exercises

Exercise 5 Here are the Music preferences of 11 adults:

mus <- c("Rock", "Jazz", "Classical", "Classical", "Rock", "Rock", "Rock",

"Jazz", "Rock", "Jazz", "Classical")

a) Use table() to create a table summarizing the music preferences as counts. Report
your R command(s).

b) Use prop.table() to create a table summarizing the music preferences as propor-
tions. Report your R command(s).

c) Use barplot() and your table from Part a to create a bar plot of the counts.

Exercise 6 Here are the Music and Beverage preferences of 11 adults:

Environmental Statistics 10

Class Notes 7 Factors and Tables

mus <- c("Rock", "Jazz", "Classical", "Classical", "Rock", "Rock", "Rock",

"Jazz", "Rock", "Jazz", "Classical")

bev <- c("Beer", "Wine", "Wine", "Wine", "Beer", "Beer", "Wine", "Beer",

"Beer", "Wine", "Beer")

x <- data.frame(Music = mus, Beverage = bev)

x

Music Beverage

1 Rock Beer

2 Jazz Wine

3 Classical Wine

4 Classical Wine

5 Rock Beer

6 Rock Beer

7 Rock Wine

8 Jazz Beer

9 Rock Beer

10 Jazz Wine

11 Classical Beer

a) Use table() to create a two-way table, in which individuals are cross-classified
according to Music and Beverage preferences. Report your R command(s).

b) Use barplot() (with beside = TRUE) and your table from Part a to create a bar
plot of the counts.

Environmental Statistics 11

	Data Frames (Cont'd)
	Merging the Columns of Two Data Frames
	Stacking and Unstacking Columns of a Data Frame

	Factors and Tables
	Creating and Viewing Factors and Their Levels
	Creating Tables

