
MTH 3270 Notes 4

4 Data Wrangling (Cont’d) (4)

4.11 Chaining Together Actions Using the Pipe Operator %>%

• We’ll use the flights data set in the "nycflights13" package again to illustrate the use
of the pipe operator %>%:

library(nycflights13)

Suppose we want to look at the relationship between the distance traveled and arrival
delay for destinations that received more than 20 flights. We could type:

by_dest <- group_by(.data = flights, dest)

delay_dist <- summarize(.data = by_dest,

count = n(),

dist = mean(distance, na.rm = TRUE),

delay = mean(arr_delay, na.rm = TRUE))

delay_20_plus <- filter(.data = delay_dist, count > 20, dest != "HNL")

Here’s a plot of the data:

ggplot(data = delay_20_plus, mapping = aes(x = dist, y = delay)) +

geom_point(aes(size = count), alpha = 1/3) +

geom_smooth(se = FALSE)
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(The alpha argument to geom_point() controls the degree of transparency of points for
overplotting.)

It looks like arrival delays increase with distance up to a distance of about 600 miles, then
decrease. Perhaps with longer flights, there’s more ability to make up for lost time.

• Another way to write the command above is to use the pipe operator %>%:

delay_20_plus <- flights %>%

group_by(dest) %>%

summarize(count = n(),

dist = mean(distance, na.rm = TRUE),

delay = mean(arr_delay, na.rm = TRUE)) %>%

filter(count > 20, dest != "HNL")

The pipe operator %>% passes the output data frame from one command as the input
(first argument) for the next command.

With the pipe operator, there’s no need to pick names for intermediate data frames. This
can make the code more readable.

• In general,

– x %>% f() is equivalent to f(x).

– x %>% f(y) is equivalent to f(x, y).

– x %>% f(y) %>% g(z) is equivalent to g(f(x, y), z).

– etc.
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Section 4.11 Exercises

Exercise 1 This exercise concerns the pipe operator %>%.

a) Rewrite the following command using the pipe operator:

delay <- select(.data = flights, arr_delay)

b) Rewrite the following command using the pipe operator:

dest_delay <- select(.data = flights, dest, arr_delay)

c) Rewrite the following command using the pipe operator:

dest_delay <- select(.data = flights, dest, arr_delay)

sea_den <- filter(.data = dest_delay,

dest == "SEA" | dest == "DEN")

d) Rewrite the following sequence of commands using the pipe operator:

dest_delay <- select(.data = flights, dest, arr_delay)

sea_den <- filter(.data = dest_delay,

dest == "SEA" | dest == "DEN")

by_dest <- group_by(sea_den, dest)

delay_by_dest <- summarize(by_dest,

delay = mean(arr_delay, na.rm = TRUE))

Exercise 2 Rewrite the following command using the pipe operator:

den_delays <- summarize(filter(.data = flights,

dest == "DEN"),

mean_dep_delay = mean(dep_delay, na.rm = TRUE),

mean_arr_delay = mean(arr_delay, na.rm = TRUE))

4.12 Combining Multiple Data Frames

• These three functions (from the "dplyr" package) are useful for combining two data frames:

inner_join() # Merge two data frames x and y by matching rows.

# Returns only rows that have matches in both x and y.

left_join() # Merge two data frames x and y by matching rows.

# Returns all rows of x even if they do not have
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# a match in y.

full_join() # Merge two data frames x and y by matching rows.

# Returns all rows of x and all rows of y regardless

# of whether they have a match.

• All three functions append the columns of a data frame y to another data frame x by
matching the rows of the two data frames.

• Here’s a data frame with names and ages of four people:

NamesAndAges

## Name Age

## 1 John 23

## 2 Karen 27

## 3 Ann 19

and here’s another with their names and weights:

NamesAndWeights

## Name Weight

## 1 John 155

## 2 Karen 170

## 3 Ann 157

To combine the two data frames using inner_join(), matching their rows by the Name

variable, we type:

inner_join(x = NamesAndAges, y = NamesAndWeights, by = "Name")

## Name Age Weight

## 1 John 23 155

## 2 Karen 27 170

## 3 Ann 19 157

To combine them using left_join(), we type:

left_join(x = NamesAndAges, y = NamesAndWeights, by = "Name")

## Name Age Weight

## 1 John 23 155

## 2 Karen 27 170

## 3 Ann 19 157

To combine them using full_join(), we type:
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full_join(x = NamesAndAges, y = NamesAndWeights, by = "Name")

## Name Age Weight

## 1 John 23 155

## 2 Karen 27 170

## 3 Ann 19 157

• Above, inner_join(), left_join(), and full_join() all returned the same thing.

They return different things when some rows of x and y don’t match:

– inner_join() returns only the rows that have matches in both x and y.

– left_join() returns all rows of x regardless of whether or not there’s a match in y.
Rows of x with no match in y will have NA values in the new columns.

– full_join() returns all rows of x and all rows of y regardless of whether they have
a match in the other data frame. Rows of either data frame that don’t have a match
in the other will have NA values in the new columns.

• For example, consider again the NamesAndAges data frame:

NamesAndAges

## Name Age

## 1 John 23

## 2 Karen 27

## 3 Ann 19

and this other data frame containing three Names, only two of which match the first data
frame, and their Heights:

NamesAndHeights

## Name Height

## 1 Karen 63

## 2 Ann 65

## 3 Karl 36

Using inner_join() gives:

inner_join(x = NamesAndAges, y = NamesAndHeights, by = "Name")

## Name Age Height

## 1 Karen 27 63

## 2 Ann 19 65

(Only the Names that are in both data frames are returned.)

Using left_join() gives:
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left_join(x = NamesAndAges, y = NamesAndHeights, by = "Name")

## Name Age Height

## 1 John 23 NA

## 2 Karen 27 63

## 3 Ann 19 65

(All the Names that are in the first data frame are returned, and NA is inserted for the
missing Height. Note that the third Name in the second data frame isn’t returned.)

Using full_join() gives:

full_join(x = NamesAndAges, y = NamesAndHeights, by = "Name")

## Name Age Height

## 1 John 23 NA

## 2 Karen 27 63

## 3 Ann 19 65

## 4 Karl NA 36

(All the Names from both data frames are returned, and NAs are inserted for the missing
Height and the missing Age.)

• The Name variable is common to both data frames, and is used to match rows.

The variable (such as Name) that’s common to both data frames and is used to match their
rows is called the key.

• The key values don’t have to be in the same order in the two data frames.

For example, if the Names were in different orders in the two data frames, inner_join(),
left_join(), and full_join() would match their orders before combining:

NamesAndAges

## Name Age

## 1 John 23

## 2 Karen 27

## 3 Ann 19

## These Names are in a jumbled order:

JumbledNamesAndWts

## Name Weight

## 3 Ann 157

## 1 John 155

## 2 Karen 170
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## The rows are put in matching order before combining:

inner_join(NamesAndAges, JumbledNamesAndWts, by = "Name")

## Name Age Weight

## 1 John 23 155

## 2 Karen 27 170

## 3 Ann 19 157

• Sometimes two key variables needed to distinguish rows in a data set.

For example, suppose some Names were duplicated (e.g. there are two "John"s and three
"Ann"s below), but we had another column City that could be used to distinguish between
them:

NamesDuplicatedAndAges

## Name City Age

## 1 John Denver 23

## 2 John Longmont 42

## 3 Karen Salida 27

## 4 Ann Boulder 19

## 5 Ann Denver 29

## 6 Ann Leadville 45

## 7 Karl Denver 36

NamesDuplicatedAndWts

## Name City Weight

## 1 John Denver 155

## 2 John Longmont 203

## 3 Karen Salida 170

## 4 Ann Boulder 157

## 5 Ann Denver 161

## 6 Ann Leadville 164

## 7 Karl Denver 201

In this case, a proper merge of the two data frames would need to be done by the values
in both columns.

To to do this, we specify both Name and City in a "character" vector passed to inner_join()
via the by argument:

inner_join(x = NamesDuplicatedAndAges,

y = NamesDuplicatedAndWts,

by = c("Name", "City"))
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## Name City Age Weight

## 1 John Denver 23 155

## 2 John Longmont 42 203

## 3 Karen Salida 27 170

## 4 Ann Boulder 19 157

## 5 Ann Denver 29 161

## 6 Ann Leadville 45 164

## 7 Karl Denver 36 201

• In fact, by default inner_join(), left_join(), and full_join() merge data frames by
whatever column names the two data frames have in common.

So in all of the examples above, it actually wasn’t necessary to specify the key variable(s)
explicitly via the by argument.

Section 4.12 Exercises

Exercise 3 Here are two data frames, df1 and df2, containing responses to two survey
questions:

df1 <- data.frame(Respondent_ID = c(1001, 1002, 1003),

Q1_Response = c(55, 62, 39))

df1

## Respondent_ID Q1_Response

## 1 1001 55

## 2 1002 62

## 3 1003 39

df2 <- data.frame(Respondent_ID = c(1002, 1003, 1004),

Q2_Response = c("yes", "no", "yes"))

df2

## Respondent_ID Q2_Response

## 1 1002 yes

## 2 1003 no

## 3 1004 yes

Notice that the Respondent_IDs differ across two data frames.

a) Guess what the result of the following command will be, then check your answer
and report the result.

inner_join(x = df1, y = df2, by = "Respondent_ID")

b) Guess what the result of the following command will be, then check your answer
and report the result.
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left_join(x = df1, y = df2, by = "Respondent_ID")

c) Guess what the result of the following command will be, then check your answer
and report the result.

full_join(x = df1, y = df2, by = "Respondent_ID")

d) If we didn’t specify by = "Respondent_ID", what would each of the *_join() func-
tions use to match rows? Try it, for example:

full_join(x = df1, y = df2)

e) What would happen if Q1_Response and Q2_Response were both named Response

in the two data frames, and we typed:

full_join(x = df1, y = df2)

Try it (after changing both names to Response), and report the result:

df1 <- rename(.data = df1, Response = Q1_Response)

df2 <- rename(.data = df2, Response = Q2_Response)

f) What would happen if, as in Part e), Q1_Response and Q2_Response were both
named Response, and we typed:

inner_join(x = df1, y = df2)

Try it and report the result.

Exercise 4 Here are two data frames containing responses to two survey questions:

df1 <- data.frame(Respondent_ID = c(1000, 1001, 1002, 1003, 1004, 1005, 1006),

Q1_Response = c(55, 62, 39, 45, 70, 77, 56))

df1

df2 <- data.frame(Respondent_ID = c(1003, 1002, 1000, 1004, 1006, 1001, 1005),

Q2_Response = c(12, 17, 23, 24, 19, 30, 20))

df2

Note that the Respondent_IDs are the same, but in different orders.

a) What happens to the ordering of the rows of df2 when you combine it with df1

using:

inner_join(x = df1, y = df2, by = "Respondent_ID")
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b) How would the result differ if you swapped the roles of df1 and df2, e.g.

inner_join(x = df2, y = df1, by = "Respondent_ID")

Exercise 5 Here are two data frames:

dfX <- data.frame(LastName = c("Smith", "Smith", "Jones", "Smith",

"Olsen", "Taylor", "Olsen"),

FirstName = c("John", "Kim", "John", "Marge", "Bill",

"Bill", "Erin"),

Gender = c("M", "F", "M", "F", "M", "M", "F"),

ExamScore = c(75, 80, 64, 78, 90, 89, 79))

dfX

## LastName FirstName Gender ExamScore

## 1 Smith John M 75

## 2 Smith Kim F 80

## 3 Jones John M 64

## 4 Smith Marge F 78

## 5 Olsen Bill M 90

## 6 Taylor Bill M 89

## 7 Olsen Erin F 79

dfY <- data.frame(LastName = c("Olsen", "Jones", "Taylor", "Smith",

"Olsen", "Smith", "Smith"),

FirstName = c("Bill", "John", "Bill", "Kim", "Erin",

"John", "Marge"),

Gender = c("M", "M", "M", "F", "F", "M", "F"),

Grade = c("A", "D", "B", "B", "C", "C", "C"))

dfY

## LastName FirstName Gender Grade

## 1 Olsen Bill M A

## 2 Jones John M D

## 3 Taylor Bill M B

## 4 Smith Kim F B

## 5 Olsen Erin F C

## 6 Smith John M C

## 7 Smith Marge F C

Notice that the two data frames contain the same seven people, but in different orders.
Notice also that both the LastName and FirstName are needed to uniquely identify the
people.

a) Write a command involving, say, full_join() that combines the two data frames
by person. You should end up with this:
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## LastName FirstName Gender ExamScore Grade

## 1 Smith John M 75 C

## 2 Smith Kim F 80 B

## 3 Jones John M 64 D

## 4 Smith Marge F 78 C

## 5 Olsen Bill M 90 A

## 6 Taylor Bill M 89 B

## 7 Olsen Erin F 79 C

b) If you don’t specify key variables to match by via the by argument, matching
is done by whatever columns the two data frames have in common (LastName,
FirstName, and Gender).

What happens with the third variable (Gender) when you only specify the other
two (LastName and FirstName) via the by argument? Try it:

full_join(x = dfX, y = dfY, by = c("LastName", "FirstName"))

c) If values in a key variable don’t uniquely identify rows, i.e. if there are multiple
matches between rows of two data frames, all combinations of the matches are
returned.

What would happen if you tried to combine dfX and dfY only specifying LastName

as the key variable? Try it:

full_join(x = dfX, y = dfY, by = "LastName")

5 Tidy Data and Iteration (5)

5.1 Introduction: The "tidyr" Package

• The the "tidyr" package contains several functions for ” tidying” data and for iterating a
statistical analysis by groups. Type:

help(package = tidyr)

to see a list of the functions (and data sets) contained in "tidyr".

5.2 Using gather() and spread()

• Sometimes a single variable is spread across multiple columns. Other times, a single
observation is scattered across multiple rows.
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For example, here are two data frames that contain the same data (student GPAs), but
arranged differently (wide in the first case and narrow in the second):

gpaDataWide

## StudentID Semester1 Semester2 Semester3

## 1 111 2.54 3.42 3.93

## 2 112 2.90 3.19 3.18

## 3 113 3.99 3.45 2.89

## 4 114 2.99 2.78 3.70

## 5 115 3.67 2.68 2.81

gpaDataNarrow

## StudentID Semester GPA

## 1 111 Semester1 2.54

## 2 112 Semester1 2.90

## 3 113 Semester1 3.99

## 4 114 Semester1 2.99

## 5 115 Semester1 3.67

## 6 111 Semester2 3.42

## 7 112 Semester2 3.19

## 8 113 Semester2 3.45

## 9 114 Semester2 2.78

## 10 115 Semester2 2.68

## 11 111 Semester3 3.93

## 12 112 Semester3 3.18

## 13 113 Semester3 2.89

## 14 114 Semester3 3.70

## 15 115 Semester3 2.81

In the wide format, the variable (GPA) is ”spread” across multiple columns (Semesters
1-3). In the narrow format, those columns have been ”gathered” into a single column.

• The following functions, from the "tidyr" package, are useful for converting data back and
forth between the wide and narrow formats:

gather() # Convert from wide to narrow by stacking columns.

spread() # Convert from narrow to wide by unstacking a column.

• To convert a data frame from the wide format, like gpaDataWide, to the narrow format,
use gather(). For example (using gpaDataWide from above):

gather(data = gpaDataWide,

key = Semester,

value = GPA,

Semester1, Semester2, Semester3)
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## StudentID Semester GPA

## 1 111 Semester1 2.54

## 2 112 Semester1 2.90

## 3 113 Semester1 3.99

## 4 114 Semester1 2.99

## 5 115 Semester1 3.67

## 6 111 Semester2 3.42

## 7 112 Semester2 3.19

## 8 113 Semester2 3.45

## 9 114 Semester2 2.78

## 10 115 Semester2 2.68

## 11 111 Semester3 3.93

## 12 112 Semester3 3.18

## 13 113 Semester3 2.89

## 14 114 Semester3 3.70

## 15 115 Semester3 2.81

You’re free to invent any name for the key argument. It’s used as the name of the cate-
gorical variable in the narrow data frame whose categories are the names of the columns
in the wide format (Semester1, Semester2, Semester3 above) that get ”gathered”.

You’re also free to invent a name for the value argument. It’s the name of the variable
in the narrow data frame that contains the values from the ”gathered” columns (GPAs
above).

• We can use the ”helper” functions from select() (i.e. starts_with(), ends_with(),
contains(), and num_range()) to specify columns in gather(). For example, to use
num_range() to obtain the same result as the above, type:

gather(data = gpaDataWide,

key = Semester,

value = GPA,

num_range("Semester", 1:3))

## StudentID Semester GPA

## 1 111 Semester1 2.54

## 2 112 Semester1 2.90

## 3 113 Semester1 3.99

## 4 114 Semester1 2.99

## 5 115 Semester1 3.67

## 6 111 Semester2 3.42

## 7 112 Semester2 3.19

## 8 113 Semester2 3.45

## 9 114 Semester2 2.78

## 10 115 Semester2 2.68

## 11 111 Semester3 3.93

## 12 112 Semester3 3.18

## 13 113 Semester3 2.89

## 14 114 Semester3 3.70
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## 15 115 Semester3 2.81

• To covert from the narrow format, like gpaDataNarrow, to wide, use spread():

spread(data = gpaDataNarrow,

key = Semester,

value = GPA)

## StudentID Semester1 Semester2 Semester3

## 1 111 2.54 3.42 3.93

## 2 112 2.90 3.19 3.18

## 3 113 3.99 3.45 2.89

## 4 114 2.99 2.78 3.70

## 5 115 3.67 2.68 2.81

• The StudentID variable in gpaDataNarrow is needed to match GPAs for a given student
across Semesters to compose a row in gpaDataWide. Without the StudentID variable in
gpaDataNarrow, spread() would return an error message.

Section 5.2 Exercises

Exercise 6 Here’s a data frame containing responses for four individuals in each of three
treatment groups in an experiment:

xWide <- data.frame(GrpA = c(1, 4, 2, 3),

GrpB = c(7, 5, 8, 6),

GrpC = c(9, 9, 8, 7))

xWide

## GrpA GrpB GrpC

## 1 1 7 9

## 2 4 5 9

## 3 2 8 8

## 4 3 6 7

Write a command involving gather() that converts xWide to narrow format. Name the
columns Grp and Y. You should end up with this:
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xNarrow

## Grp Y

## 1 GrpA 1

## 2 GrpA 4

## 3 GrpA 2

## 4 GrpA 3

## 5 GrpB 7

## 6 GrpB 5

## 7 GrpB 8

## 8 GrpB 6

## 9 GrpC 9

## 10 GrpC 9

## 11 GrpC 8

## 12 GrpC 7

Exercise 7 Here’s are data from a study in which a variable Y was recorded on each of
five subjects before and after an intervention:

xNarrow <- data.frame(Subject = c(1:5, 1:5),

Period = c("Before", "Before", "Before", "Before",

"Before", "After", "After", "After",

"After", "After"),

Y = c(22, 45, 32, 45, 30, 60, 44, 24, 56, 59),

stringsAsFactors = FALSE)

xNarrow

## Subject Period Y

## 1 1 Before 22

## 2 2 Before 45

## 3 3 Before 32

## 4 4 Before 45

## 5 5 Before 30

## 6 1 After 60

## 7 2 After 44

## 8 3 After 24

## 9 4 After 56

## 10 5 After 59

a) Write a command involving spread() that converts xNarrow to a wide format. You
should end up with this:
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xWide

## Subject After Before

## 1 1 60 22

## 2 2 44 45

## 3 3 24 32

## 4 4 56 45

## 5 5 59 30

b) The Subject variable in xNarrow is needed to match Y values for a given subject
across Periods to compose their row in xWide. What would happen if the Subject

variable was missing? Try it:

xNarrowNoSubject <- data.frame(Period = c("Before", "Before", "Before",

"Before", "Before", "After", "After",

"After", "After", "After"),

Y = c(22, 45, 32, 45, 30, 60, 44, 24, 56, 59),

stringsAsFactors = FALSE)

xNarrowNoSubject

## Period Y

## 1 Before 22

## 2 Before 45

## 3 Before 32

## 4 Before 45

## 5 Before 30

## 6 After 60

## 7 After 44

## 8 After 24

## 9 After 56

## 10 After 59

Exercise 8 This exercise involves using the ”helper” functions (from select()) in
gather().

Recall that num_range("x", 1:3) matches x1, x2, x3.

Here’s a wide data frame in which a variable was recorded on each of three Subjects at
four different time points:
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xWide <- data.frame(Subject = c(1001, 1002, 1003),

t1 = c(22, 45, 32),

t2 = c(45, 30, 60),

t3 = c(44, 24, 56),

t4 = c(55, 27, 53))

xWide

## Subject t1 t2 t3 t4

## 1 1001 22 45 44 55

## 2 1002 45 30 24 27

## 3 1003 32 60 56 53

Write a command involving gather() and the ”helper” function num_range() that con-
verts xWide to narrow format. You should end up with this:

xNarrow

## Subject Time Y

## 1 1001 t1 22

## 2 1002 t1 45

## 3 1003 t1 32

## 4 1001 t2 45

## 5 1002 t2 30

## 6 1003 t2 60

## 7 1001 t3 44

## 8 1002 t3 24

## 9 1003 t3 56

## 10 1001 t4 55

## 11 1002 t4 27

## 12 1003 t4 53

Exercise 9 Here’s the wide data frame from Exercise 8, but this time it includes each
Subject’s Gender:

xWide <- data.frame(Subject = c(1001, 1002, 1003),

Gender = c("m", "f", "f"),

t1 = c(22, 45, 32),

t2 = c(45, 30, 60),

t3 = c(44, 24, 56),

t4 = c(55, 27, 53))

xWide

## Subject Gender t1 t2 t3 t4

## 1 1001 m 22 45 44 55

## 2 1002 f 45 30 24 27

## 3 1003 f 32 60 56 53

The Gender of a Subject is constant (i.e. doesn’t change over the four time points).
Thus we’d want the Gender column to be duplicated four times in the narrow format
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just as the Subject column was in Exercise 8.

What happens to the Gender column when you convert xWide to narrow format, e.g. by
typing:

xNarrow <- gather(data = xWide, key = Time, value = Y, num_range("t", 1:4))

5.3 Separating and Uniting Columns Using separate() and unite()

• Sometimes a single column contains multiple variables. Other times, a single vari-
able is split across multiple columns.

The following functions (from "tidyr") are useful for separating and uniting columns

separate() # Separate a column that contains multiple variables.

unite() # Unite multiple columns across which a single variable

# is spread (the reverse of separate()).

• Here’s an example in which two variables, GPA and letter grade, are in a single column:

gpaDataWide

## StudentID GPAandGrade

## 1 111 2.54/C

## 2 112 2.9/B

## 3 113 3.99/A

## 4 114 2.99/B

## 5 115 3.67/A

• To split the GPAandGrade column into two, using separate(), type:

separate(data = gpaDataWide,

col = GPAandGrade,

into = c("GPA", "Grade"),

sep = "/")

## StudentID GPA Grade

## 1 111 2.54 C

## 2 112 2.9 B

## 3 113 3.99 A

## 4 114 2.99 B

## 5 115 3.67 A
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We use the argument col to specify the name of the column to be separated, into to spec-
ify the names of the new columns, and sep to specify the "character" separator between
columns.

For more info, look at the help file by typing:

? separate

• The unite() function does the reverse of separate(): It forms a single column from mul-
tiple columns across which a single variable is spread.

For more info, look at the help file by typing:

? unite

Section 5.3 Exercises

Exercise 10 Here’s a data frame containing the Rate of occurrences a rare disease (num-
ber of cases divided by population) and the year for three countries:

diseases <- data.frame(country = c("Afghanistan", "Afghanistan",

"Brazil", "Brazil", "China", "China"),

year = c(1999, 2000, 1999, 2000, 1999, 2000),

rate = c("745/19987071", "2666/20595360",

"37737/172006362", "80488/174504898",

"212258/1272915272", "213766/1280428583"))

diseases

## country year rate

## 1 Afghanistan 1999 745/19987071

## 2 Afghanistan 2000 2666/20595360

## 3 Brazil 1999 37737/172006362

## 4 Brazil 2000 80488/174504898

## 5 China 1999 212258/1272915272

## 6 China 2000 213766/1280428583

Write a command involving separate() that separates the rate column into two columns
named cases and population.

5.4 Iteration Using for() and "dplyr"’s do()

• Sometimes we need to repeatedly execute, i.e. iterate, a set of R commands, each time
changing one or more of the values used in the commands. Looping is a way of iterating
the commands.

• Loops are usually implemented using:
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for() # Iterate a set of statements a specified number of times

• A special case of iteration is applying the same function repeatedly, each time on a dif-
ferent group within a grouped data frame (as returned by "dplyr"’s group_by()).

The following function (from the "dplyr" package) is useful in this regard.

do() # Apply a function repeatedly, each time on a different

# group within a grouped data frame as returned by

# group_by().

5.4.1 Iteration Using a for() Loop

• As a simple (but not useful) example, the following sequence of five commands prints
the numbers 12, 22, ..., 52 to the console (output not shown):

print(1^2)

print(2^2)

print(3^2)

print(4^2)

print(5^2)

We can achieve the same result more succinctly using a for() loop by typing:

for(i in 1:5) { # i takes the values 1, 2, 3, 4, 5 in succession.

print(i^2) # The print() statement is executed 5 times,

} # once for each value of i.

## [1] 1

## [1] 4

## [1] 9

## [1] 16

## [1] 25

Above, i takes the values 1, 2, 3, 4, 5 in succession, and the command print(i^2) is
executed five times, once for each value of i.

• The general form of a for() loop is:

for(var in seq) {

statement1

statement2

.
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.

.

statementq

}

where seq is a vector, usually of the form 1:n, var (whose name you’re free to change)
takes values 1, 2, . . ., n sequentially, each time triggering another iteration of the loop
during which statements 1 through q are executed.

The statements usually involve the variable var.

More generally, seq can be any vector, and var takes the values seq[1], seq[2], . . .,
seq[length(seq)].

• For single-statement loops, we can omit the curly brackets { } as long as we put the entire
for() loop on one line, like this:

for(var in seq) statement1

Section 5.4 Exercises

Exercise 11 Guess how many times "Good Sport" will be printed to the screen in the
following set of commands. Then check your answer.

for(i in 1:5) {

print("Good Sport")

}

Exercise 12 The sequence of values we iterate over doesn’t have to be of the form 1:n.
Guess what will be printed to the screen in the following set of commands. Then check
your answer.

x <- c(2, 4, 6, 8)

for(i in x) {

print(i^2)

}

Exercise 13 The sum of squares

10∑
i=1

i2 = 12 + 22 + · · · + 102

can be computed using a for() loop by typing:
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sum.sq <- 0

for(i in 1:10) {

sum.sq <- sum.sq + i^2

}

Why is it necessary to make the assignment sum.sq <- 0 before entering the loop? What
would happen if sum.sq <- 0 wasn’t there? Try it (but remove sum.sq from your
Workspace if it’s there):

rm(sum.sq)

for(i in 1:10) {

sum.sq <- sum.sq + i^2

}

Hint: Notice that sum.sq appears on both sides of the assignment statement in the loop,
and R attempts to evaluate the right side before making the assignment.

Exercise 14

a) What does the following loop do?

num.sq <- rep(NA, 10) # Pre-allocate a 10-element vector

for(i in 1:10) {

num.sq[i] <- i^2

}

b) Loops are relatively slow to execute in R. It’s advisable to avoid using loops
whenever possible, and instead use the vectorized property of R’s built-in functions
or one of the apply() functions (apply(), sapply(), etc.).

Can you think of a way to create the num.sq vector without using a loop? Hint:
The exponentiation operator ^ is vectorized. Report your R command(s).

5.4.2 Iteration Over Groups Using "dplyr"’s do()

• We’ll work with the sleepstudy data set from the "lme4" package.

Data Set: sleepstudy

The sleepstudy data set (in the "lme4" package) contains data on the average
reaction time per day for subjects in a sleep deprivation study (Belenky et al.
2003). On day 0 the subjects had their normal amount of sleep. Starting that
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night they were restricted to 3 hours of sleep per night. The response variable,
Reaction, represents average reaction times in milliseconds (ms) on a series of
tests given each Day to each Subject.

The three variables are:

Reaction Average reaction time (milliseconds).
Days Days into the study (0-9)
Subject Subject ID number.

• Here are the data:

library(lme4)

head(sleepstudy)

## Reaction Days Subject

## 1 249.5600 0 308

## 2 258.7047 1 308

## 3 250.8006 2 308

## 4 321.4398 3 308

## 5 356.8519 4 308

## 6 414.6901 5 308

• Here’s a faceted plot of the data by Subject:

ggplot(data = sleepstudy, mapping = aes(x = Days, y = Reaction)) +

facet_wrap(facets = ~ Subject) +

geom_point() +

geom_smooth(method = lm, se = FALSE)
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(The specification method = lm in geom_smooth() fits a a ”linear model”, i.e. straight
line, to the data.)

• We can fit a ”linear model” to a set of data using the built-in, base R lm() function,
which also reports the equation of the fitted line.

lm() # Carry out a linear regression analysis by fitting a

# linear model to a data set.

summary() # Summarize the results of the regression analysis.

To obtain the equations of the lines shown in the faceted plot above, we need to apply
lm() separately to each Subject’s data.

We can do this using "dplyr"’s do() function with the sleepstudy data, grouped by
Subject, by typing:

by_subject <- group_by(.data = sleepstudy, Subject)

models <- do(.data = by_subject, mod = lm(Reaction ~ Days, data = .))

models

## Source: local data frame [18 x 2]

## Groups: <by row>

##

## # A tibble: 18 x 2

## Subject mod

## * <fct> <list>

## 1 308 <lm>
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## 2 309 <lm>

## 3 310 <lm>

## 4 330 <lm>

## 5 331 <lm>

## 6 332 <lm>

## 7 333 <lm>

## 8 334 <lm>

## 9 335 <lm>

## 10 337 <lm>

## 11 349 <lm>

## 12 350 <lm>

## 13 351 <lm>

## 14 352 <lm>

## 15 369 <lm>

## 16 370 <lm>

## 17 371 <lm>

## 18 372 <lm>

do() applies a function (lm() above) separately to each group in a grouped data frame
(such as by_subject above).

In lm(), the expression Reaction ~ Days (an R formula) indicates that Reaction is the
y variable and Days is the x variable.

The ’data = .’ means ”use the current group’s data” as do() iterates over the groups
(Subjects above).

do() returns a data frame. The first column will be the group labels, the second will be
a list-column whose elements are the returned values of the function that’s applied to the
groups (lm() above).

We can look at the equation of the fitted line for, say, Subject 330 (the 4th subject in
the study) by typing:

models$mod[[4]] # Gets the line for the 4th Subject.

##

## Call:

## lm(formula = Reaction ~ Days, data = .)

##

## Coefficients:

## (Intercept) Days

## 289.685 3.008

The y-intercept is 289.685 and the slope is 3.008, so the equation of the line is

Y = 289.685 + 3.008X.
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• More examples on fitting linear models to each group in a grouped data frame can be
found in the help file for do():

? do

Section 5.4 Exercises

Exercise 15 Using the sleepstudy data (from the "lme4" package), use do() with lm()

to fit lines separately to each Subject, with Days as the x variable and Response as the
y variable by typing:

library(lme4) # Contains the sleepstudy data set.

by_subject <- group_by(.data = sleepstudy, Subject)

models <- do(.data = by_subject, mod = lm(Reaction ~ Days, data = .))

models

What’s the equation of the fitted line for Subject 371 (the 17th subject in the study)?
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