MTH 4230 Lab 4 **Answer Sheet**

Due Mon., Feb. 26

1 Part A: Multiple Regression

1.1	Patient Satisfaction Data Set
1.	NA
2.	Print the scatterplot matrix.
3.	With which predictor is a patient's satisfaction most highly correlated?
	Give the name of the predictor:
	Give the value of the <i>correlation</i> :
	Which two predictors are most highly correlated with each other?
	Give the names of the two predictors:
	Give the value of the <i>correlation</i> :
4.	
	a) Write the equation of the <i>fitted regression model</i> $\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$ below:
	Give an interpretation of the value of b_1 .
	Give an interpretation of the value of b_2 .
	Give an interpretation of the value of b_3 .

b) Give the value of the <i>coefficient of deterr</i> in the output from summary().	$mination \ R^2 \ ({ m labeled} \ { m Multiple} \ { m ext{R-squared}}$
Coefficient of determination	$R^2 = \dots$

Based on the value of R^2 , what percentage of the variation in **satisfaction** is explained by the model with **age**, **severity**, and **anxiety**?

c) Look at the results of the model F test, which is a test of

 $H_0:$ $\beta_1 = \beta_2 = \beta_3 = 0$ $H_a:$ Not all β_k 's equal 0

Give the following values:

The observed value of the F statistic is: F =

The p-value for the test is: \mathbf{p} -value = _____

State the conclusion (Reject H_0 /Fail to reject H_0).

Based on the result of the F test, is there a statistically significant relationship between Y and (at least one of) these predictors?

d) Give the numerical value of the estimate of the variance σ^2 of the error term ϵ in the multiple regression model.

Give the estimate of the standard deviation σ .

e) Give the following values:

The estimated standard error of b_1 is: $s\{b_1\} = \dots$

The estimated standard error of b_2 is: $s\{b_2\} = \dots$

The estimated standard error of b_3 is: $s\{b_3\} =$ ______

f) Now look at the results of the t tests for individual β_k 's.

Consider first the test of

$$H_0: \beta_1 = 0$$

$$H_a:\beta_1 \neq 0$$

The observed value of the test statistic for the t test is $t = $
The p-value =
Is the observed b_1 statistically significantly different from 0 (Yes/No)?
Now consider the test of
$H_0: \beta_2 = 0$ $H_a: \beta_2 \neq 0$
The observed value of the test statistic for the t test is $t = \dots$
The p-value =
Is the observed b_2 statistically significantly different from 0 (Yes/No)?
Finally consider the test of
$H_0: \beta_3 = 0$
$H_a:eta_3 \neq 0$
The observed value of the test statistic for the t test is $t = $
The p-value =
Is the observed b_3 statistically significantly different from 0 (Yes/No)?
5. Don't print the plots. Based on the plots, does the assumption of normality of the error term ϵ appear to be reasonable? (Yes/No)?
6. Don't print the plot. Based on the plot, does the assumption that the errors ϵ_i have a constant standard deviation appear to be reasonable? (Yes/No)?
Part B: Linearly Dependent Design Matrix

- Tart B. Emoarly Bependent Besign 1.

2.1 Another Hypothetical Snakes Data

1. What property of the (hypothetical) snakes data set prevented R from being able to estimate all the parameters in the multiple regression model?