
MTH 4230 Lab 5

Due Wed., Mar. 4

1 Part A: Extra Sums of Squares, Partial F Tests

1.1 Patient Satisfaction Data Set (Cont’d from Lab 4)

A hospital administrator wished to study the relation between patient satisfaction (Y ) and
patient’s age (X1, in years), severity of illness (X2, an index), and anxiety (X3, an index).
The administrator randomly selected 46 patients and collected the data presented in the file sat-
isfaction.txt. This is the Patient Satisfaction data set from Problem 6.15 of the textbook.

1. Read the data into R using read.table().

2. Use lm() to fit the multiple regression model to the data, with all three predictors
included in the model.

3. Use anova() to obtain the ANOVA table that decomposes the regression sum of squares into
the extra sums squares SSR(X2), SSR(X1|X2), and SSR(X3|X2, X1), for example
by typing:

anova(my.reg)

(where my.reg is the "lm" object from Step 2).

4. Test whether X3 can be dropped from the regression model, given that X1 and X2 are
retained. Use the partial F test (which, recall, is equivalent to the general linear F test).

5. Show that the F test just performed and the t test for β3 are equivalent (i.e. t2 = F and
the p-values are the same).

6. Recall that the coefficient of partial determination is

R2
Xk|X1,...,Xk−1,Xk+1,...,Xp−1

=
SSR(Xk|X1, . . . , Xk−1, Xk+1, . . . , Xp−1)

SSE(X1, . . . , Xk−1, Xk+1, . . . , Xp−1)
.

It measures the reduction in unexplained Y variation (as a proportion) that results
from adding Xk to a model that already includes all the other predictors.

Compute R2
X3|X1,X2

= SSR(X3|X1, X2)/SSE(X1, X2).
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2 Part B: Polynomial Regression

2.1 Nigeria Household Refuse Data Set

In a study of the environmental impact of the increase in solid waste resulting from rapid urban
population growth in the Port Harcort area of Nigeria, the size (number of residents) and annual
refuse generation (in metric tons) was determined for each household in a sample of n = 46
households in the area. The data are in the file NigeriaRefuse.txt.

1. Read the data into data frame using read.table().

2. Use plot() to make a scatterplot of the data, with household size on the x axis and annual
refuse on the y axis, for example by typing:

plot(my.data$size, my.data$refuse, pch = 19, xlab = "Household Size",

ylab = "Annual Refuse", main = "Annual Refuse vs Household Size")

3. Use lm() to fit a simple linear regression model to the data, with household size as
the predictor and annual refuse as the response.

4. Use abline() to add the regression line to the plot of Step 2 by typing something like:

abline(my.reg, col = "blue", lwd = 2)
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5. Use plot() to make a plot of the residuals (y axis) versus the fitted values (x axis). Add
a horizontal line at y = 0 by typing abline(h = 0). Your plot should look like this:
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6. Notice there’s a nonlinear pattern in the scatterplot of Step 2, which leads to the pattern
in residual plot of Step 5.

We want to know if a polynomial regression model will fit the data substantially better.

Add three columns to your data frame, one containing the squares, another the cubes,
and another the quartics (4th powers) of the household sizes by typing something like:

my.data$size2 <- my.data$size^2

my.data$size3 <- my.data$size^3

my.data$size4 <- my.data$size^4

Now check:

head(my.data)

7. Fit a 4th order polynomial regression model

Y = β0 + β1X + β2X
2 + β3X

3 + β4X
4 + ε

to the data, where Y = annual refuse and X = household size. Fit the model by typing
something like:

my.reg <- lm(refuse ~ size + size2 + size3 + size4, data = my.data)
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8. Use summary() to look at the results.

9. We want to know if any of the higher order terms (e.g. X4, X3, or X2) can be dropped
from the model. Use anova() to obtain the ANOVA table that decomposes the variation
in annual refuse into extra sums squares:

• SSR(X)

• SSR(X2|X)

• SSR(X3|X,X2)

• SSR(X4|X,X2, X3)

and carries out the associated partial F tests.

10. Now use lm() to fit the 3rd order polynomial regression model

Y = β0 + β1X + β2X
2 + β3X

3 + ε

to the data.

11. Look at the results using summary().

12. Using the result of Step 11, add the fitted 3rd order polynomial

Ŷ = b0 + b1X + b2X
2 + b3X

3

to the scatterplot of Step 5 by typing:

curve(expr = 12.95114 - 4.76726*x + 0.64641*x^2 - 0.02502*x^3,

from = 5, to = 12, col = "blue", add = TRUE)

You should end up with something like this:
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