10 One-Factor Analysis of Variance (Cont'd)11 Tests for the Effects of Two Factors

MTH 3240 Environmental Statistics

Spring 2020

MTH 3240 Environmental Statistics

Multiple Comparisons oduction to Two-Factor Studies

Objectives

Objectives:

- Carry out a Bonferroni multiple comparison procedure to identify which of k population means differ from each other (Optional for Spring 2020).
- Recognize two-factor studies.

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies

Multiple Comparisons Procedures (Optional for Spring 2020)

- ullet After rejecting the null hypothesis in an ANOVA F or Kruskal-Wallis test, we can determine **which** means differ from each other using a **multiple comparison** procedure.
- It can be shown that the total number of comparisons of means is

Number of pairs μ_i and μ_j to compare $=\frac{k(k-1)}{2}$.

MTH 3240 Environmental Statistics

Multiple Comparisons atroduction to Two-Factor Studies

(Optional for Spring 2020)

Example

For the lead measurements made at k=5 labs, if we want to know **which** labs differ from each other, we'd need to make

$$\frac{k(k-1)}{2} = \frac{5(5-1)}{2} = 10$$

comparisons, namely

Lab1 vs Lab2 Lab1 vs Lab3 Lab1 vs Lab4 Lab1 vs Lab5 Lab2 vs Lab3 Lab2 vs Lab4 Lab2 vs Lab5 Lab3 vs Lab4

٠ı	_	+~	. ~
v	()	! ←	:>

	_
	_
	_
	_
	_
Notes	
	_
	_
	_
Notes	
	_
	_
	_
	_
	_
	_
	_
Notes	
	_
	_
	_

Multiple Comparisons Introduction to Two-Factor Studies

(Optional for Spring 2020)

• We don't just perform multiple two-sample t tests (or rank sum tests), each using a level of significance, say, $\alpha=0.05$.

If we did, although the **Type I error** probability on *any* particular test would be **0.05**, ...

the probability of making at least one Type I error among the set of tests would be substantially greater than 0.05.

MTH 3240 Environmental Statistics

Multiple Comparisons ntroduction to Two-Factor Studies

(Optional for Spring 2020)

Pairwise and Familywise Type I Error Rates

• Suppose k population means are being tested for differences $\mu_i - \mu_j$ one pair at a time.

The *pairwise Type I error rate*, denoted α_p , is the **probability** that any *particular* pairwise test will result in a Type I error.

The *familywise Type I error rate*, denoted α_f , is the **probability** that *at least one* of the tests will result in a **Type I error**.

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies

(Optional for Spring 2020)

- The goal in a multiple comparison procedure is to hold the familywise Type I error rate at a fixed level, say 0.05.
- There are several multiple comparison procedures.

We'll look at the simplest one, called the **Bonferroni** procedure.

MTH 3240 Environmental Statistics

Multiple Comparisons ntroduction to Two-Factor Studies

(Optional for Spring 2020)

The Bonferroni Procedure

ullet The **Bonferroni procedure** holds the **familywise Type I** error rate at a fixed level (usually $lpha_f=0.05$) by using a sufficiently small level of significance for each pairwise test of hypotheses

$$H_0: \mu_i - \mu_j = 0$$

$$H_0: \mu_i - \mu_i \neq 0$$

I_a	:	μ_i	- <i>p</i>	ι_j	\neq	(

Notes	Notes		
Notes			
	Notes		
	Votes		
Notes	10100		
Notes			
	Votes		

(Optional for Spring 2020)

 More specifically, it divides the familywise Type I error rate equally among the pairwise tests.

Thus, for example, to perform the **10** pairwise tests comparing the **five labs**, we'd use level of significance

$$\alpha_p = \frac{0.05}{10} = 0.005$$

Notes

for each test.

MTH 3240 Environmental Statistics

Multiple Comparisons Introduction to Two-Factor Studies

(Optional for Spring 2020)

Bonferroni Procedure After an ANOVA F Test

 The next slide gives the Bonferroni procedure after the null hypothesis is rejected in an ANOVA F test.

It merely involves doing ${\bf multiple}\ {\bf two-sample}\ t\ {\bf tests},$ but with two adjustments:

- We use the Bonferroni-corrected level of significance on each test.
- 2. We use the square root of the mean squared error in place of S_i and S_j in the t test statistics.

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

(Optional for Spring 2020)

Bonferroni Multiple Comparison Procedure After One-Factor ANOVA: To decide which pairs of means differ while controlling the familywise Type I error rate at α_f , for each pair of means μ_i and μ_j , test the hypotheses

$$H_0: \mu_i - \mu_j = 0$$

$$H_a: \mu_i - \mu_j \neq 0$$

using the **Bonferroni pairwise** t **test statistic**

$$t \ = \ \frac{\bar{Y}_i - \bar{Y}_j - 0}{\sqrt{\frac{\mathsf{MSE}}{n} + \frac{\mathsf{MSE}}{n}}} \ = \ \frac{\bar{Y}_i - \bar{Y}_j}{\sqrt{\frac{2 \cdot \mathsf{MSE}}{n}}}$$

MTH 3240 Environmental Statistics

Multiple Comparisons Introduction to Two-Factor Studies

(Optional for Spring 2020)

and decision rule

Reject H_0 if p-value $< \alpha_p$ Fail to reject H_0 if p-value $\geq \alpha_p$.

where

$$\alpha_p = \frac{\alpha_f}{(k(k-1)/2)}$$

When the corresponding H_0 is true, the test statistic t follows a t(N-k) distribution, from which the p-value for that test is obtained.

Notes	
Notes	
Notes	

(Optional for Spring 2020)

Example

For the study of lead measurements at five labs, we'll use the **Bonferroni procedure** to decide *which* labs' means differ from each other, while controlling the **familywise Type I error rate** at $\alpha_f=0.05$.

We need to test 10 sets of hypotheses of the form

$$H_0: \mu_i - \mu_j = 0$$

$$H_a: \mu_i - \mu_j \neq 0$$

MTH 3240 Environmental Statistics

Multiple Comparisons roduction to Two-Factor Studies

(Optional for Spring 2020)

Because k=5, the Bonferroni-corrected level of significance to use for each pairwise test is

$$\alpha_p = \frac{0.05}{5(5-1)/2} = 0.005,$$

and so the decision rule is

Reject H_0 if p-value < 0.005Fail to reject H_0 if p-value ≥ 0.005

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

(Optional for Spring 2020)

Statistical software reports the results of **all 10 pairwise tests**. Statistically significant differences (at the Bonferroni-corrected significance level $\alpha_p=0.005$) are marked with an asterisk.

Pair of Means	t	P-value
Lab1 vs Lab2	1.03	0.3070
Lab1 vs Lab3	-0.50	0.6188
Lab1 vs Lab4	3.69	0.0006*
Lab1 vs Lab5	3.01	0.0043*
Lab2 vs Lab3	-1.53	0.1320
Lab2 vs Lab4	2.66	0.0107
Lab2 vs Lab5	1.97	0.0547
Lab3 vs Lab4	4.20	0.0001*
Lab3 vs Lab5	3.51	0.0010*
Lab4 vs Lab5	-0.69	0.4945

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

(Optional for Spring 2020)

We conclude that Labs 1 and 4 differ, Labs 1 and 5 differ, Labs 3 and 4 differ, and Labs 3 and 5 differ.

Notes				
Notes				
Notes				

(Optional for Spring 2020)

Bonferroni Multiple Comparison Procedure After a Kruskal-Wallis Test: To decide which pairs of means differ while controlling the familywise Type I error rate at α_f , for each pair of means μ_i and μ_j , test the hypotheses

$$H_0: \mu_i - \mu_j = 0$$

$$H_a: \mu_i - \mu_j \neq 0$$

using a rank-sum test with decision rule

Reject H_0 if p-value $< \alpha_p$ Fail to reject H_0 if p-value $\ge \alpha_p$

where
$$\alpha_p = \frac{\alpha_f}{(k(k-1)/2)}$$
.

MTH 3240 Environmental Statistics

Multiple Comparisons Introduction to Two-Factor Studies

Two-Factor Studies

- Environmental studies often involve simultaneously investigating the effects of two factors.
- This can involve samples from populations or conducting randomized experiments.

(In the next example, the data are **samples** from **eight populations** defined by **two factors**: **soil type** and **topography**.)

MTH 3240 Environmental Statistics

Multiple Comparisons Introduction to Two-Factor Studies Two-Factor ANOVA

Example

In a study of the effects of **topography** and **soil type** on soil **phosphorus** levels, two **soil types**, *shale-derived* and *sandstone-derived*, were examined in each of four **topographies**: *valleys*, *north-facing slopes*, *south-facing slopes*, and *hilltops*.

In each of the **eight** combinations of soil type and topography, **three** phosphorus measurements (ppm) were made, giving a total of **24** phosphorus observations.

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

The data are shown in the two-way layout below.

			Factor B: T	opography		
			North-	South-		
		Valley	Facing	Facing	Hilltop	
		(j=1)	(j=2)	(j=3)	(j=4)	
	Shale	98	78	117	83	
Factor	(i=1)	172	77	54	12	$\bar{Y}_{1.} = 90.5$
A: Soil		185	100	96	14	
Type	Sand-	19	27	28	55	
	stone	39	49	53	21	$\bar{Y}_{2.} = 35.9$
	(i=2)	25	24	72	19	
		$\bar{Y}_{.1} = 89.7$	$\bar{Y}_{\cdot 2} = 59.2$	$\bar{Y}_{\cdot 3} = 70.0$	$\bar{Y}_{.4} = 34.0$	$\bar{Y} = 63.2$

Notes			
Notes			
Notes			
Notes			

Multiple Comparisons Introduction to Two-Factor Studies

Here's a summary of the data. Factor B: Topography North-South-Valley Facing Facing Hilltop (j=1) (j=2) (j=3)(j=4)Shale $\bar{Y}_{11} = 151.7$ $\bar{Y}_{1.} = 90.5$ $\bar{Y}_{12} =$ $\bar{Y}_{13} =$ $\bar{Y}_{14} =$ (i=1) Factor 85.0 36.3 89.0 A: Soil Type Sandstone $\bar{Y}_{21} =$ $\bar{Y}_{22} =$ $\bar{Y}_{23} =$ $\bar{Y}_{24} =$ \bar{Y}_2 . = 35.9 (i=2)27.7 33.3 51.0 31.7 $\bar{Y}_{\cdot 2} = 59.2$ $\bar{Y}_{\cdot 3} = 70.0$ $\bar{Y}_{\cdot 4} = 34.0$

MTH 3240 Environmental Statistic

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

The two *factors* are soil type, which has two *levels*, and topography, which has four *levels*.

There were three research questions:

- 1. Does **soil type** affect phosphorus concentrations?
- 2. Does topography affect phosphorus concentrations?
- 3. If **soil type** has an effect on phosphorus, is the effect *different* depending on the **topography**?

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

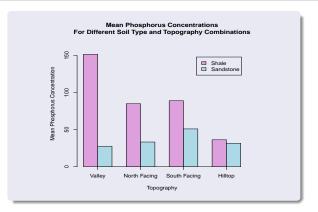
These three research questions refer, respectively, to:

- 1. A soil type main effect.
- 2. A topography main effect.
- 3. An interaction effect between soil type and topography.

Plots of the data are on the next slides.

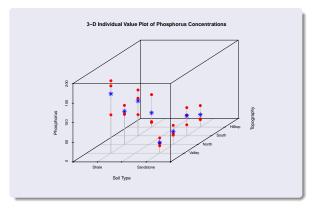
MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA



Notes		
Notes		
Notes		
Notes		

Multiple Comparisons Introduction to Two-Factor Studies Two-Factor ANOVA



MTH 3240 Environmental Statistic

Multiple Comparisons Introduction to Two-Factor Studies

Two-Factor ANOVA

Two-factor analysis of variance (or ANOVA) is a
procedure for deciding if either of two factors have an
effect on a response variable, and if so, whether the effect
of one is different depending on the level of the other (i.e.
whether there's an interaction effect).

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

- ullet We'll call the factors **factor** A and **factor** B.
- In a two-way layout, as in the last example, each row corresponds to a *level* of factor A and each column to a *level* of factor B.
- We'll refer to each of the row-column intersections as a *group*.

Each group corresponds to a random sample of size \boldsymbol{n} from a population.

MTH 3240 Environmental Statistics

Multiple Comparisons Introduction to Two-Factor Studies Two-Factor ANOVA

- In practice:
 - Each group could also be a treatment group, defined by levels of the two factors, in a randomized experiment.
 - The group sample sizes don't all have to be the same, but the notation gets more complicated when they're not.

Notes			
Notes			
Notes			
Notes			

Multiple Comparisons ntroduction to Two-Factor Studies

Notation:

a = The number of levels of Factor A (rows)

b = The number of levels of Factor B (columns)

n = The common **sample size** for the ab groups.

 $\mathbf{Y}_{ijk} = \text{The } k \text{th observation in the } i, j \text{th group.}$

(The first subscript, i, indicates the level of Factor A and takes the values $1,2,\ldots,a$. The second, j, indicates the level of Factor B and takes the values $1,2,\ldots,b$. The third, k, distinguishes individuals within a group and takes values $1,2,\ldots,n$.)

MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

(cont'd)

 $ar{Y}_i$. = The ith row mean in the two-way layout (or Factor A level mean).

 $ar{Y}_{\cdot j} = \text{The } j \textit{th column mean}$ in the two-way layout (or Factor B level mean).

 $\bar{Y}_{ij} = \text{The } i, j \textit{th group mean}.$

 $N = \mbox{The } {\it overall \ sample \ size} \mbox{ for all } ab \mbox{ groups } \mbox{ combined. Note: } N = abn.$

 $ar{Y} = ext{The } \emph{overall sample mean} \ ext{of the } N \ ext{observations} \ ext{combined}.$

MTH 3240 Environmental Statistics

Multiple Comparisons stroduction to Two-Factor Studies

Fact: When the group sample sizes are all the same, the overall mean \bar{Y} is equal to all of the following:

- 1. The average of the ab group means \bar{Y}_{ij} .
- 2. The average of the a row means $\bar{Y}_1, \bar{Y}_2, \dots, \bar{Y}_{a^*}$.
- 3. The average of the b column means $\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{b}$.

MTH 3240 Environmental Statistics

Multiple Comparisons Introduction to Two-Factor Studies Two-Factor ANOVA

Example (Cont'd)

For the study of the effects of **topography** and **soil type** on soil **phosphorus**, we have

a = 2 and b = 4

and also

n = 3 and N = 24

(The row means, column means, group means, and overall mean are shown in the tables in the last example.)

Notes			
10103			
Notes			
Notes			

Multiple Comparisons Introduction to Two-Factor Studies Two-Factor ANOVA

 A factor A main effect is indicated by variation in the row means

A factor \boldsymbol{B} main effect is indicated by variation in the column means.

We refer to these as **between-rows variation** and **between-columns variation**, respectively.

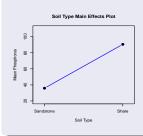
• Variation of individual observations $(Y_{ijk}$'s) within a group will be referred to as **within-groups variation**.

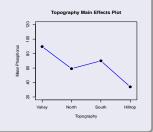
MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies

We can inspect the **between-rows** and **between-columns** variation in a *main effects plot* (or *level means plot*).

For the soil phosphorus study, the **main effects plots** are below.





MTH 3240 Environmental Statistics

Multiple Comparisons
Introduction to Two-Factor Studies
Two-Factor ANOVA

 We'll decide if there's a statistically significant factor A effect by comparing the between-rows variation to within-groups variation.

We'll decide if there's a statistically significant factor ${\cal B}$ effect by comparing the between-columns variation to within-groups variation.

 (We'll see later how to decide if there's a statistically significant interaction effect.)

MTH 3240 Environmental Statistics

Notes	
Notes	
Notes	
110103	
-	
Notes	