gression

Notes

Notes

Notes

12 Correlation and Linear Regression

MTH 3240 Environmental Statistics

Spring 2020

Objectives:

- Obtain and interpret the correlation between two numerical variables.
- State and interpret the simple linear regression model.
- Obtain and interpret estimates of model coefficients.
- Obtain and interpret fitted values and residuals associated with a fitted regression model.
- Interpret the R^2 associated with a fitted regression model.
- Carry out a t test for the slope in a regression model.

MTH 3240 Environmental Statistics

Correlatio

Introduction to Correlation and Regression

- For one-factor ANOVA, the explanatory variable (or factor) was categorical.
- When the explanatory variable is numerical, we evaluate its relationship to the response variable using *correlation* and *linear regression*.
 - The correlation summarizes the strength (and direction) of the relationship.
 - Linear regression gives the equation of the best line describing that relationship.

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

Introduction Correlation

Notes

Example

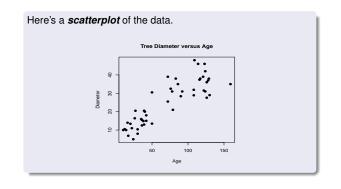
In a study of the recent decline in the number of "overstory" aspen trees in Yellowstone National Park, the **ages** (yrs) and **diameters** (cm) at breast height of n = 49 aspen trees were recorded.

Introduction	
Correlation	
Linear Regression	

Age Diamete	Age	Tree
24 5.0	24	1
17 6.9	17	2
30 8.0	30	3
10 10.0	10	4
14 10.0	14	5
12 10.5	12	6
22 11.0	22	7
30 10.4	30	8
:	:	:
. 129 38.0	129	47
124 42.0	124	48
123 46.0	123	49

MTH 3240 Environmental Statistics

Correlation Linear Regression



MTH 3240 Environmental Statistics

Introduction Correlation

- Data for which **two variables** are measured on each of *n* individuals are called *bivariate data*.
- We'll denote the *explanatory* and *response* variables by *X* and *Y*, respectively, and store them in columns as below.

Observation	X variable	Y variable
1	X_1	Y_1
2	X_2	Y_2
3	X_3	Y_3
:	÷	÷
n	X_n	Y_n

MTH 3240 Environmental Statistics

Introduction Correlation

Thus

- n = The number of individuals upon which X and Y are measured, i.e. the sample size.
- X_i = The value of the explanatory (predictor) variable for the *i*th individual.
- $Y_i =$ The value of the response variable for the *i*th individual.

Notes

Notes

Notes

Correlation Unear Regression Correlation • When two variables exhibit (approximately) a linear relationship, we summarize that relationship by the sample correlation, denoted r. Correlation: The correlation between two variables

Correlation: The correlation between two variables X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n is

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{S_x} \right) \left(\frac{Y_i - \bar{Y}}{S_y} \right)$$

where \bar{X} and \bar{Y} are the sample means of the X_i 's and Y_i 's, respectively, and S_x and S_y are their sample standard deviations.

MTH 3240 Environmental Statistics

Correlation inear Regression

Notes

- The following **properties** of the **correlation** *r* help us **interpret** its value:
 - 1. The value of r will always lie between -1.0 and 1.0.
 - 2. The **sign** of *r* tells us the **direction** of the relationship between *X* and *Y*:
 - Positive *r* values indicate a **positive** relationship.
 - Negative r values indicate a **negative** relationship.

MTH 3240 Environmental Statistics

Correlation Linear Regression

- 3. The **value** of *r* also tells us how **strong** the relationship between *X* and *Y* is:
 - *r* values near **zero** imply a very **weak** relationship or none at all.
 - *r* values close to **-1.0** or **1.0** imply a very **strong** linear relationship.
 - The extreme values r = -1.0 and r = 1.0 occur only when there's a **perfect linear** relationship.

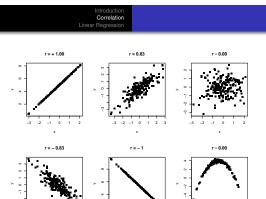
MTH 3240 Environmental Statistics Introduction Correlation Linear Hegression

Notes

Notes

- 4. *r* only measures the strength of the **linear relationship** between *X* and *Y*. Curved relationships often have *r* near zero.
- 5. *r* is **not resistant** to outliers.

MTH 3240 Environmental Statistics



MTH 324

Correlation

Example

The data below are the **lengths** (cm) and weights (g) of n = 9prairie rattlesnakes sampled from the Pawnee National Grassland in northeastern Colorado.

L	Lengths and Wts of Snakes					
S	Snake Length Weight					
	1	85.7	331.9			
	2	64.5	121.5			
	3	84.1	382.2			
	4	82.5	287.3			
	5	78.0	224.3			
	6	81.3	245.2			
	7	71.0	208.2			
	8	86.7	393.4			
	9	78.7	228.3			

The next slide shows a **scatterplot** of the data.

MTH 3240 Environmental Statistics

Correla

The $\ensuremath{\textit{correlation}}$ between $\ensuremath{\textit{length}}$ and $\ensuremath{\textit{weight}}$ (obtained using software) is r = 0.90, which summarizes the strong, positive, approximately linear relationship seen in the scatterplot.

MTH 3240 Environmental Statistics

MTH 3240 Environmental Statistics

Corre

Example

Data were collected for a study to determine if **urbanization** is associated with development.

Shown below, for each of n=40 sub-Saharan countries, is the urbanization rate (percentage of the population living in cities) and human development index (HDI), which measures the country's health, education, and standard of living.

Notes

Notes

Notes

Correlation

Urbanization and Development in Africa					
Country	HDI	Urbanization			
Angola	0.344	34.20			
Benin	0.378	42.30			
Botswana	0.678	50.30			
BurkinaFaso	0.219	18.50			
Burundi	0.241	9.01			
Cameroon	0.481	48.90			
CoteDIvoire	0.368	46.40			
:	:	:			
•					
Zambia	0.378	39.60			
Zimbabwe	0.507	35.30			

A scatterplot of the **HDI** values versus **urbanization rates** is on the next slide.

MTH 3240 Environmental Statistics Introduction Correlation

HDI Versus Urbanization

The correlation between the HDI value and the degree of **urbanization** (obtained using software) is r = 0.54, which reflects the **moderate**, **positive relationship** seen in the plot.

MTH 3240 Environmental Statistics

Introduction to Linear Regression

Linear Regression

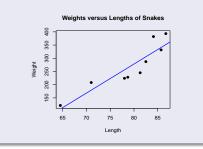
- *Linear regression* is a method for obtaining the **equation** of the **line** that best describes the relationship between two variables *X* and *Y*.
 - 1. The **slope** of the line quantifies the amount by which *Y* **changes** per **one-unit change** in *X*.
 - 2. The **equation** can be used to **predict** the value of *Y* from a given value of *X* (by plugging the *X* value into the equation).
 - 3. The line enhances the appearance of the scatterplot.

MTH 3240 Environmental Statistics

Introduction Correlation Linear Regression

Example

Here's a scatterplot of the data on **lengths** and **weights** of snakes, with the so-called *fitted regression line*.



Notes

.....

Notes

Correlation

Notes

The equation of the *fitted regression line* (obtained using software) is:

$$\hat{Y} = -601.1 + 11.0X$$

where $\hat{Y} =$ weight and X = length.

The "hat" over the Y indicates that it's the **fitted regression line**, not an observed snake's weight (which would be denoted Y_i).

The **slope**, **11.0**, says that on average, a snake's **weight increases** by about **11.0 g** for each additional **one-cm elongation**.

Notes

Notes

Notes

The **predicted weight** of a snake that's, say, **75 cm** long is obtained by **plugging** X = 75 into the **equation**:

$$\hat{Y} = -601.1 + 11.0(75) = 223.9$$

Thus we **predict** that a 75-centimeter-long snake will weigh **223.9** g.

MTH 3240 Environmental Statistics

Correlation Linear Regression

The Linear Regression Model (Optional for Spring 2020)

 We can describe bivariate numerical data using a statistical model called the *linear regression model*.

The model has a part representing a true (unknown) **non-random linear process**, which drives the straight line pattern in the data, and another representing **random deviations** away from that linear pattern.

MTH 3240 Environmental Statistics

Introductio Correlatio Linear Regressio

(Optional for Spring 2020)

Simple Linear Regression Model: A statistical model for describing bivariate numerical data is:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where

- Y_i is the observed value of the response variable for the *i*th individual (i = 1, 2, ..., n).
- X_i is the observed value of the explanatory variable for the *i*th individual.

- eta_0 is the true (unknown) y-intercept of the underlying true regression line
- β_1 is the true (unknown) **slope** of the **true regression line**.
- ϵ_i is a random error term following a **N**(0, σ) distribution (and the ϵ_i 's are uncorrelated with each other.)

Introduction Correlation Linear Regression

MTH 3240 Environmental Statistics

(Optional for Spring 2020)

 The (true) underlying linear process, β₀ + β₁X, might represent a physical, chemical, or biological process, the exact nature of which isn't known, ...

... but the (unknown) intercept and slope coefficients, β_0 and β_1 , can be **estimated** from the data.

• When we estimate the coefficients, we say that we've *fitted* the model to the data.

MTH 3240 Environmental Statistics

Correlatio Linear Regressio

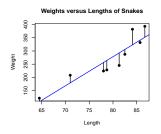
Estimation of Model Parameters

• We *fit* the *model* to the data using the *method of least squares*, which says that the "best fitting" line is the one whose *y*-intercept *b*₀ and slope *b*₁ result in the smallest possible value for the sum of squared vertical deviations away from the line,

$$\sum_{i=1}^{n} [Y_i - (b_0 + b_1 X_i)]^2.$$

MTH 3240 Environmental Statistics

Correlatio



Notes

Notes

Notes

Correlati Linear Regressi

- Notes
- A line fitted by least squares is called a *fitted regression line* and denoted

 $\hat{Y} = b_0 + b_1 X$.

The *y*-intercept b_0 and slope b_1 (obtained using statistical software) are called the *least squares estimates* of the true (unknown) *population* (or *model*) *coefficients*, which are denoted β_0 and β_1 .

(For the snakes data, β_0 and β_1 would be the *y*-intercept and slope of the line relating **weights** to **lengths** in the **population** of snakes.)

Example

For the data on **lengths** and **weights** of snakes, the **fitted regression line** given previously,

$$\hat{Y} = -601.1 + 11.0X$$

was obtained using statistical software, which reported the estimated intercept and slope as

$$b_0 = -601.$$

 $b_1 = 11.0$

MTH 3240 Environmental Statistics

Correlation Linear Regression

• Be aware:

- 1. Linear regression should only be used if the data exhibit a **linear relationship**.
- 2. *Influential points* are outliers that have a strong influence on the fitted regression line. Outliers in the horizontal (*X*) direction can be particularly influential.

Fitted Values and Residuals

MTH 3240 Environmental Statistics

ental Statistics

MTH 3240 Environn

 The *fitted values*, denoted Ŷ_i, are points on the fitted line that correspond to the **observed** X_i's.

Fitted Value: For the *i*th individual in the data set,

 $\hat{Y}_i = b_0 + b_1 X_i,$

where X_i is the value of the explanatory variable for that individual.

The **fitted values** are *Y* values we'd **predict** for individuals **in** the **data set** that the line was fitted to, using that fitted line.

Notes

Notes

Correlation Linear Regression

Notes

Notes

Notes

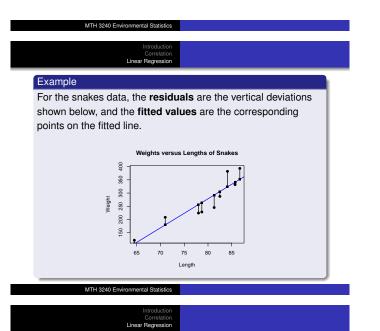
 A residual, denoted e_i, is the difference between an observed Y_i value and that individual's fitted value Ŷ_i.

Residual: For the *i*th individual in the data set,

 $e_i = Y_i - \hat{Y}_i,$

where Y_i is the observed response for that individual and \hat{Y}_i is the fitted value.

The **residuals** are the **deviations** above or below the fitted line.



• In a regression analysis, the line represents the (linear) effect of X on Y.

The residuals represent the net effect of all other variables besides X on Y.

• Example: In the snakes regression analysis, a residual represents the effects of all *other* variables *besides* length on the snake's weight (e.g. it's bone density, girth, diet/caloric intake, metabolic rate, etc.).

MTH 3240 Environmental Statistics					
Introduction Correlation Linear Regression					
R Squared					
 The <i>coefficient of determination</i>, denoted R² (usually just called "R squared"), measures how well the fitted line fits the data. One way to compute R² is to square the correlation: 					
· · ·					
Coefficient of Determination	on:				
R^2	$- r^{2}$				

where r is the correlation.

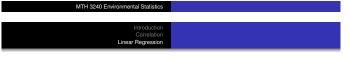
(We'll see another way to compute it later.) MTH 3240 Environmental Statistics Correlation near Regression

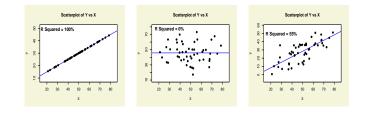
- Notes
- R^2 is interpreted as the proportion of variation in Y that is explained by X:
 - An \mathbb{R}^2 value close to one means most of the Y variation is explained by the X variable, and the model fits the data well.

This shows up as small residuals.

• An \mathbb{R}^2 value close to zero means very little or none of the Y variation is explained by X (but is explained by *other variables besides* X), and the **model doesn't fit** the data.

This shows up as large residuals.





MTH 3240 Environmental Statistics

Correlation near Regression

Example

For the data on lengths and weights of snakes

 $R^2 = 0.821.$

(obtained using software). Thus **82.1%** of the variation in snakes' **weights** is attributable to differences in their **lengths**.

The other **17.9%** is due to the combined effects of **all other variables** (e.g. bone density, girth, diet/caloric intake, metabolic rate, etc.).

MTH 3240 Environmental Statistics

t Test for the Slope

• In the fitted regression line

$$\hat{Y} = b_0 + b_1 X,$$

the slope b_1 is the estimated average change in Y associated with a one-unit increase in X.

- If b_1 was zero, there'd be no change in Y for any given change in X, i.e. no relationship between Y and X.
- A b_1 different from zero would mean there's a relationship between *Y* and *X*.

MTH 3240 Environmental Statistics

Notes

Notes

Correlation

- But *b*₁ can differ from zero due to **sampling error** (because it's just an **estimate** based on data **sampled** from the population).
- We'll test the **null hypothesis** that there's **no relationship** between *X* and *Y*.

 $H_0:\beta_1 = 0$

where β_1 is the true (unknown) **population** (or **model**) slope coefficient.

MTH 3240 Environmental Statistics
Introduction Correlation Linear Regression

Notes

Notes

• The alternative is that there's a **relationship** between *X* and *Y*.

MTH 3240 Environmental Stat

Correlation near Regression

t Test Statistic for a Slope:

$$t \; = \; \frac{b_1 - 0}{S_{b_1}}$$

where S_{b_1} is the (estimated) **standard error** of the estimated slope b_1 .

• *t* indicates how many **standard errors** *b*₁ is **away from** 0, and in what direction (positive or negative).

MTH 3240 Environmental Statistics

Notes

- b_1 is an estimate of β_1 , so ...
 - If H₀ was true, ...
 - \dots we'd expect b_1 to be close zero.
 - But if Ha was true, ...

MTH 3240 Environmental Statistics

... we'd expect b_1 to differ from zero in the direction specified by ${\cal H}_a.$

- Thus ...
 - 1. t will be approximately **zero** (most likely) if H_0 is true.
 - 2. It will **differ from zero** (most likely) in the direction specified by H_a if H_a is true.

Correlation ear Regression

- 1. Large positive values of t provide evidence in favor of $H_a: \beta_1>0.$
- 2. Large negative values of t provide evidence in favor of $H_a:\beta_1<0.$
- 3. Both large positive and large negative values of t provide evidence in favor of $H_a: \beta_1 \neq 0.$

MTH 3240 Environmental Statistics	
Introduction Correlation Linear Regression	

Notes

Notes

 Now suppose the **residuals**^{*} e₁, e₂, ..., e_n are a sample from a N(0, σ) distribution or that n is **large**.

In this case, the null distribution is as follows.

* More formally, the $\textit{errors}\,\epsilon_1,\,\epsilon_2,\,...,\,\epsilon_n$ in the regression <code>model</code>.

Introduction Correlation

MTH 3240 Enviror

near Regression

Sampling Distribution of t **Under** H_0 : If t is the test statistic in a t test for the slope, then when

$$H_0:\beta_1 = 0$$

is true,

 $t \sim t(n-2).$

Introductio

MTH 3240 Environmental Statistics

MTH 3240 Enviror

Notes

• P-values and rejection regions are obtained from the appropriate tail(s) of the t(n-2) distribution.

Correlation Linear Regression

- Notes
- The *t* test statistic and p-value for the *t* test for the slope are reported in the output of statistical software.
- The software also reports results of a *t* test for the *y*-intercept:

$$H_0: \beta_0 = 0$$
$$H_a: \beta_0 \neq 0$$

but this is usually of little interest.

MTH 3240 Environmental Statistics Introduction Correlation Linear Regression

• The software summarizes the results in a **regression table** of the form below.

	Estimated	Standard		
	Coefficent	Error	t	P-value
Intercept	b_0	S_{b_0}	$t = b_0 / S_{b_0}$	р
X	b_1	S_{b_1}	$t = b_1 / S_{b_1}$	р

	Introd	luctio

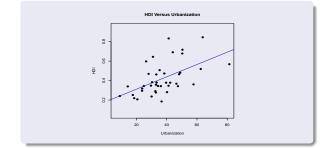
MTH 3240 Environmental Statistics

Linear Regressio

Example

A scatterplot of data on **urbanization rates** and **human development index (HDI)** values for n = 40 countries (from a previous example), with **fitted regression line**, is on the next slide.

MTH 3240 Environmental Statistics Introduction Correlation Linear Regression



MTH 3240 Environmental Statistics

Notes

Notes

Correlation inear Regression

The t test results (obtained using software) are below.

	Estimated	Standard		
	Coefficent	Error	t	P-value
Intercept	0.1852	0.0629	2.942	0.0055
Urbanization	0.0063	0.0016	3.979	0.0003

Thus, the equation of the fitted regression line is

 $\hat{Y} = 0.1852 + 0.0063X$

MTH 3240 Environmental Statistics

Correlation Linear Regression

For the t test for the slope, the hypotheses are

$$H_0: \beta_1 = 0$$
$$H_a: \beta_1 \neq 0$$

The observed test statistic value is t=3.979 and the p-value is 0.0003.

Thus, using $\alpha = 0.05$, we reject H_0 and conclude that the observed linear relationship between HDI and urbanization is statistically significant.

The R^2 value turns out to be **0.294**, so **29.4%** of the variation in **HDI** values can be attributed to differences in the countries' **urbanization** rates. The other **70.6%** is due to **other factors**.

MTH 3240 Environmental Statistics

Notes

Notes