13 Multiple Regression

MTH 3240 Environmental Statistics

Spring 2020

Objectives

Objectives:

- State and interpret the multiple regression model (Optional for Spring 2020).
- Obtain and interpret estimates of multiple regression model coefficients.
- Obtain and interpret fitted values and residuals associated with a fitted multiple regression model.
- Interpret the \mathbb{R}^2 associated with a fitted multiple regression model.
- Carry out t tests for the coefficients in a multiple regression model.

Introduction to Multiple Regression

 Often a single explanatory variable doesn't adequately explain the variation in the response variable.

Introduction to Multiple Regression

 Often a single explanatory variable doesn't adequately explain the variation in the response variable.

Instead, multiple explanatory variables are needed.

Introduction to Multiple Regression

- Often a single explanatory variable doesn't adequately explain the variation in the response variable.
 - Instead, multiple explanatory variables are needed.
- Multiple regression analysis refers to fitting a regression model containing multiple explanatory variables.

 Some reasons for including more than one explanatory variable in a model:

- Some reasons for including more than one explanatory variable in a model:
 - The model may explain substantially more of the variation in Y than one containing a single explanatory variable, thereby giving better predictions of Y values.

- Some reasons for including more than one explanatory variable in a model:
 - The model may explain substantially more of the variation in Y than one containing a single explanatory variable, thereby giving better predictions of Y values.
 - The model allows us to study the effect of one explanatory variable on Y while *controlling* for the effects of the others.

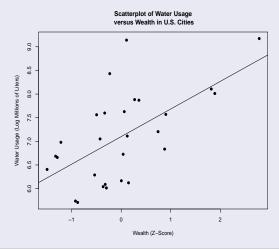
Example

The data below show, for n=28 U.S. cities, the **water** consumption (log of millions of liters/day), **population** (in millions in 2000), and **wealth** (z-score of the city's median income).

Water Usage for U.S. Metropolitan Areas

City	Water Usage (Y)	Wealth (X_1)	Population (X_2)
New York	9.17	2.787	21.286
Los Angeles	9.14	0.108	16.374
Chicago	8.43	-0.231	9.158
DC/Baltimore	8.11	1.819	6.484
San Francisco	8.01	1.890	6.263
<u>:</u> :	÷	:	÷
Stockton	5.74	-0.923	0.564
Mobile	6.41	-1.496	0.540

Here's a scatterplot of the water consumption (Y) vs wealth (X).



The equation of the **fitted regression line** in the scatterplot is

$$\hat{Y} = 7.10 + 0.58X.$$

The positive slope indicates that water consumption increases by **0.58** units for each one-unit increase in wealth.

The *predicted* water consumption for a city whose wealth is, say, **1.0** is

$$\hat{Y} = 7.10 + 0.58(1.0) = 7.68.$$

 First, a city's water consumption is related to its population size, and differences among population sizes inflate the residuals in the scatterplot (two slides back).

 First, a city's water consumption is related to its population size, and differences among population sizes inflate the residuals in the scatterplot (two slides back).

In other words, a city's **wealth** *alone* doesn't **predict** its **water consumption** very well.

 First, a city's water consumption is related to its population size, and differences among population sizes inflate the residuals in the scatterplot (two slides back).

In other words, a city's **wealth** *alone* doesn't **predict** its **water consumption** very well.

Including **population** in the model will lead to smaller residuals and better **predictions** of **water consumption**.

 Second, including population in the model will allow us to control for the effect of population size on water consumption while investigating the effect of wealth. Second, including population in the model will allow us to control for the effect of population size on water consumption while investigating the effect of wealth.

This is important because it turns out that **wealthier** cities tend to also be **larger**, so the effects of **wealth** and **population size** are **confounded**.

 Second, including population in the model will allow us to control for the effect of population size on water consumption while investigating the effect of wealth.

This is important because it turns out that **wealthier** cities tend to also be **larger**, so the effects of **wealth** and **population size** are **confounded**.

We'll see that including **population** in the model will allow us to investigate the effect of **wealth** on **water consumption** while holding **population size** *constant* (i.e. *controlling* for it).

The so-called *fitted multiple regression model*, with water **consumption** as the response variable (Y) and *both* wealth (X_1) and population size (X_2) as explanatory variables, is

$$\hat{Y} = 6.48 + 0.11 X_1 + 0.16 X_2$$

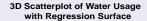
(obtained using software).

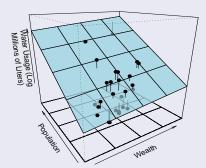
The so-called *fitted multiple regression model*, with water **consumption** as the response variable (Y) and *both* wealth (X_1) and population size (X_2) as explanatory variables, is

$$\hat{Y} = 6.48 + 0.11 X_1 + 0.16 X_2$$

(obtained using software).

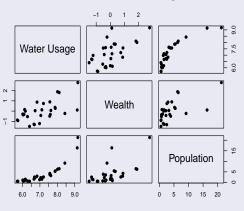
This is the **equation** of a **plane** in a three-dimensional coordinate system, as shown on the next slide.





Here's a *scatterplot matrix* of the data.

Scatterplot Matrix of Water Usage, Wealth, and Size of a City



• In general, an equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

describes a **plane** relating a response variable Y to two explanatory variables X_1 and X_2 :

• In general, an equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

describes a **plane** relating a response variable Y to *two* explanatory variables X_1 and X_2 :

1. The *intercept* b_0 is the value of Y when X_1 and X_2 are **both zero**.

• In general, an equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

describes a **plane** relating a response variable Y to *two* explanatory variables X_1 and X_2 :

- 1. The *intercept* b_0 is the value of Y when X_1 and X_2 are **both zero**.
- 2. The **coefficient** b_1 quantifies the **change** in Y for each **one-unit change** in X_1 , **while** X_2 **is held constant**.

In general, an equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

describes a **plane** relating a response variable Y to *two* explanatory variables X_1 and X_2 :

- 1. The *intercept* b_0 is the value of Y when X_1 and X_2 are **both zero**.
- 2. The **coefficient** b_1 quantifies the **change** in Y for each **one-unit change** in X_1 , **while** X_2 **is held constant**.
- 3. The **coefficient** b_2 quantifies the **change** in Y for each **one-unit change** in X_2 , **while** X_1 **is held constant**.

• The equation can be used to **predict** the value of Y from given values of X_1 and X_2 (by plugging the X_1 and X_2 values into the equation).

Here's the equation of the *fitted multiple regression model* again,

$$\hat{Y} = 6.48 + 0.11 X_1 + 0.16 X_2,$$

where Y is water consumption, X_1 is wealth, and X_2 is population size.

Here's the equation of the *fitted multiple regression model* again,

$$\hat{Y} = 6.48 + 0.11 X_1 + 0.16 X_2,$$

where Y is water consumption, X_1 is wealth, and X_2 is population size.

The **estimated coefficient** for **wealth** is $b_1 = 0.11$.

Here's the equation of the *fitted multiple regression model* again,

$$\hat{Y} = 6.48 + 0.11 X_1 + 0.16 X_2,$$

where Y is water consumption, X_1 is wealth, and X_2 is population size.

The **estimated coefficient** for wealth is $b_1 = 0.11$.

This says that water consumption increases by **0.11** units for each one-unit increase in wealth, *holding population size* constant (i.e. controlling for it).

Here's the equation of the *fitted multiple regression model* again,

$$\hat{Y} = 6.48 + 0.11 X_1 + 0.16 X_2,$$

where Y is water consumption, X_1 is wealth, and X_2 is population size.

The **estimated coefficient** for wealth is $b_1 = 0.11$.

This says that water consumption increases by **0.11** units for each one-unit increase in wealth, *holding population size constant* (i.e. *controlling* for it).

In other words, the difference in water consumptions of two same-sized cities whose wealths differ by one unit would be about 0.11 units.

By contrast, in the model that **only** contained **wealth**, the slope **0.58** indicated that when we **don't control for population size**, the **water consumption** increases by **0.58** units for each **one-unit** increase in **wealth** (more than five times as much as when we control for population size!)

The *predicted* water consumption for a city whose wealth score is **1.0** and whose population is **3.0** million is

$$\hat{Y} = 6.48 + 0.11(1.0) + 0.16(3.0) = 7.07.$$

• When the response variable Y is related to **multiple** explanatory variables X_1, X_2, \ldots, X_p , an equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_p X_p$$

relates Y to those explanatory variables.

• When the response variable Y is related to **multiple** explanatory variables X_1, X_2, \ldots, X_p , an equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_p X_p$$

relates Y to those explanatory variables.

1. The *intercept* b_0 is the value of Y when X_1, X_2, \ldots, X_p are all zero.

• When the response variable Y is related to **multiple** explanatory variables X_1, X_2, \ldots, X_p , an equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_p X_p$$

relates Y to those explanatory variables.

- 1. The *intercept* b_0 is the value of Y when X_1, X_2, \ldots, X_p are all zero.
- 2. Each *coefficient* b_k (for k = 1, 2, ..., p) quantifies the change in Y for a one-unit change in X_k , while the other X's are all held constant.

• The equation can be used to **predict** the value of Y from given values of X_1, X_2, \ldots, X_p (by plugging the X_1, X_2, \ldots, X_p values into the equation).

Example

Efficient design of municipal waste incinerators requires knowing the energy content of the waste.

Example

Efficient design of municipal waste incinerators requires knowing the energy content of the waste.

In a study of the relationship between the **energy content** of waste and its **composition**, the following variables were measured on each of n=30 waste specimens:

Y =Energy content (kcal/kg)

 X_1 = Percent plastics by weight

 X_2 = Percent paper by weight

 X_3 = Percent garbage by weight

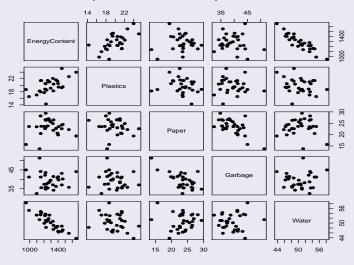
 X_4 = Percent moisture by weight

The data are below.

Municipal Waste Composition

mamorpai tracto composition										
Waste	Energy									
Specimen	Content	Plastics	Paper	Garbage	Water					
1	947	18.69	15.65	45.01	58.21					
2	1407	19.43	23.51	39.69	46.31					
3	1452	19.24	24.23	43.16	46.63					
4	1553	22.64	22.20	35.76	45.85					
5	989	16.54	23.56	41.20	55.14					
6	1162	21.44	23.65	35.56	54.24					
:	:	:	:	:	:					
29	1391	21.25	20.63	40.72	48.67					
30	1372	21.62	22.71	36.22	48.19					

Scatterplot Matrix of Municipal Waste Data



$$\hat{Y} = 2245 + 28.9 X_1 + 7.64 X_2 + 4.30 X_3 - 37.4 X_4.$$

The *estimated coefficient* for plastics (X_1) is $b_1 = 29.8$.

$$\hat{Y} = 2245 + 28.9 X_1 + 7.64 X_2 + 4.30 X_3 - 37.4 X_4.$$

The *estimated coefficient* for plastics (X_1) is $b_1 = 29.8$.

This says the **energy content** increases by **29.8** units for each one-unit increase in **plastics**, *holding the other explanatory variables constant* (i.e. *controlling* for those variables).

$$\hat{Y} = 2245 + 28.9 X_1 + 7.64 X_2 + 4.30 X_3 - 37.4 X_4.$$

The *estimated coefficient* for plastics (X_1) is $b_1 = 29.8$.

This says the **energy content** increases by **29.8** units for each one-unit increase in **plastics**, *holding the other explanatory variables constant* (i.e. *controlling* for those variables).

The *estimated coefficient* for paper (X_2) is $b_2 = 7.64$.

$$\hat{Y} = 2245 + 28.9 X_1 + 7.64 X_2 + 4.30 X_3 - 37.4 X_4.$$

The *estimated coefficient* for plastics (X_1) is $b_1 = 29.8$.

This says the **energy content** increases by **29.8** units for each one-unit increase in **plastics**, *holding the other explanatory variables constant* (i.e. *controlling* for those variables).

The **estimated coefficient** for paper (X_2) is $b_2 = 7.64$.

This says the **energy content** increases by **7.64** units for each one-unit increase in **paper** (*holding the other explanatory variables constant*).

This says the **energy content** increases by **4.30** units for each one-unit increase in **garbage** (*holding the other explanatory variables constant*).

This says the **energy content** increases by **4.30** units for each one-unit increase in **garbage** (*holding the other explanatory variables constant*).

The **estimated coefficient** for water (X_4) is $b_4 = -37.4$.

This says the **energy content** increases by **4.30** units for each one-unit increase in **garbage** (*holding the other explanatory variables constant*).

The **estimated coefficient** for water (X_4) is $b_4 = -37.4$.

This says the **energy content** *decreases* by **37.4** units for each one-unit increase in **water** (*holding the other explanatory variables constant*).

• The **response variable** is denoted by Y and the **explanatory variables** by X_1, X_2, \ldots, X_p .

- The **response variable** is denoted by Y and the **explanatory variables** by X_1, X_2, \ldots, X_p .
- We store the data in columns as below.

Observation	Y	X_1	X_2		X_p
1	Y_1	X_{11}	X_{21}		X_{p1}
2	Y_2	X_{12}	X_{22}		X_{p2}
3	Y_3	X_{13}	X_{23}		X_{p3}
:	:	÷	÷	:	÷
n	Y_n	X_{1n}	X_{2n}	• • •	X_{pn}

Thus

 Y_i = The value of the response variable for the ith individual.

p = The number of explanatory (predictor) variables.

 $n=\mbox{The number of individuals upon which the response}$ and explanatory variables are measured, i.e. the sample size.

 $X_{1i}, X_{2i}, \dots, X_{pi}$ = The values of the p explanatory variables for the ith individual.

The Multiple Regression Model (Optional for Spring 2020)

 We'll describe the relationship between a response variable and multiple explanatory variables using a (theoretical) statistical model called the multiple regression model.

The Multiple Regression Model (Optional for Spring 2020)

 We'll describe the relationship between a response variable and multiple explanatory variables using a (theoretical) statistical model called the multiple regression model.

Later, we'll test hypothesis about the model coefficients.

The model (next slide) reflects a true (unknown)
 non-random relationship between the response and
 explanatory variables, but allows for random deviations
 away from that relationship.

Multiple Linear Regression Model with p Explanatory Variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_p X_{pi} + \epsilon_i,$$

where

 Y_i is the observed value of the response variable for the *i*th individual (i = 1, 2, ..., n).

- $X_{1i}, X_{2i}, \dots, X_{pi}$ are the observed values of the p explanatory variables for the ith individual.
- β_0 is the true (unknown) *y-intercept* of the underlying *true regression model*.
- $m{eta_1,eta_2,\ldots,eta_p}$ are the true (unknown) *coefficients* for X_1,X_2,\ldots,X_p in the *true regression model*.
- ϵ_i is a random error term following a N(0, σ) distribution (and the ϵ_i 's are independent of each other).

• When there are only **two** explanatory variables (p = 2), the model is:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i,$$

which describes a **plane**, but allows each Y_i to **deviate** above or below it by a **random** amount ϵ_i .

Fitted Values and Residuals

- We fit the model to the data using the method of least squares (via statistical software).
- The fitted multiple regression model will be denoted by

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_p X_p.$$

The y-intercept b_0 and coefficients b_1, b_2, \ldots, b_p (obtained using statistical software) are called the **least** squares estimates of the true (unknown) population (or model) coefficients, which are denoted β_0 and $\beta_1, \beta_2, \ldots, \beta_p$.

(For the water consumption data, β_0 and β_1 and β_2 would be the y-intercept and coefficients of the plane relating water consumption to wealth and population size in the population of cities.)

• The *fitted values*, denoted \hat{Y}_i , are values of the fitted model corresponding to **observed** values of **observed** values of X_1, X_2, \ldots, X_p .

Fitted Value: For the ith individual in the data set,

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_p X_{pi},$$

where $X_{1i}, X_{2i}, \dots, X_{pi}$ are the values of the p explanatory variables for that individual.

• The *fitted values*, denoted \hat{Y}_i , are values of the fitted model corresponding to **observed** values of **observed** values of X_1, X_2, \dots, X_p .

Fitted Value: For the ith individual in the data set,

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_p X_{pi},$$

where $X_{1i}, X_{2i}, \dots, X_{pi}$ are the values of the p explanatory variables for that individual.

When there are only **two** explanatory variables (p=2), the **fitted values** lie **on** the **fitted plane**.

• The *fitted values*, denoted \hat{Y}_i , are values of the fitted model corresponding to **observed** values of **observed** values of X_1, X_2, \ldots, X_p .

Fitted Value: For the ith individual in the data set,

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_p X_{pi},$$

where $X_{1i}, X_{2i}, \dots, X_{pi}$ are the values of the p explanatory variables for that individual.

When there are only **two** explanatory variables (p=2), the **fitted values** lie **on** the **fitted plane**.

The fitted values are the Y values we'd predict for individuals in the data set that the model was fitted to.

• A *residual*, denoted e_i , is the difference between an **observed** Y_i value and that individual's **fitted value** \hat{Y}_i .

Residual: For the *i*th individual in the data set,

$$e_i = Y_i - \hat{Y}_i,$$

where Y_i is the observed response for that individual and \hat{Y}_i is the fitted value.

• A *residual*, denoted e_i , is the difference between an **observed** Y_i value and that individual's **fitted value** \hat{Y}_i .

Residual: For the *i*th individual in the data set,

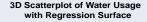
$$e_i = Y_i - \hat{Y}_i,$$

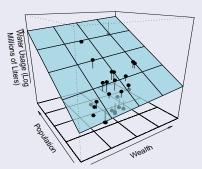
where Y_i is the observed response for that individual and \hat{Y}_i is the fitted value.

When there are only **two** explanatory variables (p=2), the **residuals** are the **deviations** above or below the fitted plane.

Example

For the study of water consumption, wealth, and population size in n=28 cities, the residuals are the vertical deviations away from the fitted plane, and the fitted values are the contact points where the deviation lines meet the plane.





• A fitted multiple regression model represents the effect of X_1, X_2, \ldots, X_p on Y.

• A fitted multiple regression model represents the effect of X_1, X_2, \ldots, X_p on Y.

The residuals represent the net effect of all *other* variables *besides* X_1, X_2, \ldots, X_p on Y.

- A fitted multiple regression model represents the effect of X_1, X_2, \dots, X_n on Y.
 - The residuals represent the net effect of all *other* variables *besides* X_1, X_2, \ldots, X_p on Y.
- Example: In the water consumption regression analysis, a residual represents the net effects of all other variables besides wealth (X₁) and population size (X₂) on a city's water consumption (Y) (e.g. its temperature, precipitation, landscape characteristics, number of swimming pools, etc.).

R-Squared

• The *Multiple R-squared* (more formally, *coefficient of multiple determination*), denoted \mathbb{R}^2 , is a statistic that measures how well the fitted model fits the data.

R-Squared

• The *Multiple R-squared* (more formally, *coefficient of multiple determination*), denoted \mathbb{R}^2 , is a statistic that measures how well the fitted model fits the data.

(We'll see how R^2 is computed later.)

• R^2 is interpreted as the **proportion** of **variation in** Y that is **explained by** X_1, X_2, \ldots, X_p :

- R^2 is interpreted as the **proportion** of **variation in** Y that is **explained by** X_1, X_2, \ldots, X_p :
 - An \mathbb{R}^2 value close to one means most of the Y variation is explained by the variables X_1, X_2, \dots, X_p , and the **model** fits the data well.

- R^2 is interpreted as the **proportion** of **variation in** Y that is **explained by** X_1, X_2, \ldots, X_p :
 - An \mathbb{R}^2 value close to one means most of the Y variation is explained by the variables X_1, X_2, \ldots, X_p , and the **model** fits the data well.

This shows up as **small residuals**.

- R^2 is interpreted as the **proportion** of **variation in** Y that is **explained by** X_1, X_2, \ldots, X_p :
 - An \mathbb{R}^2 value close to one means most of the Y variation is explained by the variables X_1, X_2, \ldots, X_p , and the **model** fits the data well.

This shows up as **small residuals**.

• An \mathbb{R}^2 value **close to zero** means very little or none of the Y variation is explained by the variables X_1, X_2, \ldots, X_p (but is explained by *other variables besides* X_1, X_2, \ldots, X_p), and the **model doesn't fit** the data.

- R^2 is interpreted as the **proportion** of **variation in** Y that is **explained by** X_1, X_2, \ldots, X_p :
 - An \mathbb{R}^2 value close to one means most of the Y variation is explained by the variables X_1, X_2, \ldots, X_p , and the **model** fits the data well.

This shows up as **small residuals**.

• An \mathbb{R}^2 value **close to zero** means very little or none of the Y variation is explained by the variables X_1, X_2, \ldots, X_p (but is explained by *other variables besides* X_1, X_2, \ldots, X_p), and the **model doesn't fit** the data.

This shows up as large residuals.

For the study of water consumption, wealth, and population size of n=28 U.S. cities, when both wealth and population are included in the model,

$$R^2 = 0.747$$

(obtained using software).

For the study of water consumption, wealth, and population size of n=28 U.S. cities, when both wealth and population are included in the model,

$$R^2 = 0.747$$

(obtained using software).

Thus **74.7%** of the variation in cities' **water consumptions** is attributable to differences among their **wealths** and **population sizes**.

For the study of water consumption, wealth, and population size of n=28 U.S. cities, when both wealth and population are included in the model,

$$R^2 = 0.747$$

(obtained using software).

Thus **74.7%** of the variation in cities' **water consumptions** is attributable to differences among their **wealths** and **population sizes**.

The other **25.3%** is due to the combined effects of **all other variables** (e.g. temperature, precipitation, landscape characteristics, number of swimming pools, etc.).

• R^2 is computed using sums of squares:

• R^2 is computed using sums of squares:

Multiple R-Squared (or **Coefficient of Multiple Determination**):

$$R^2 = \frac{\text{SSR}}{\text{SSTo}} \qquad \left(= 1 - \frac{\text{SSE}}{\text{SSTo}}\right)$$

• R^2 is computed using sums of squares:

Multiple R-Squared (or **Coefficient of Multiple Determination**):

$$R^2 = \frac{\text{SSR}}{\text{SSTo}} \qquad \left(= 1 - \frac{\text{SSE}}{\text{SSTo}}\right).$$

(We'll see later how the sums of squares SSR, SSTo, and SSE are computed.)

• SSR measures variation in Y due to X_1, X_2, \dots, X_p , and SSTo measures *total* variation in Y, so R^2 is

$$R^2 = \frac{\text{Variation in } Y \text{ Due to } X_1, X_2, \dots, X_p}{\text{Total Variation in } Y}.$$

• SSR measures variation in Y due to X_1, X_2, \dots, X_p , and SSTo measures *total* variation in Y, so R^2 is

$$R^2 = \frac{\text{Variation in } Y \text{ Due to } X_1, X_2, \dots, X_p}{\text{Total Variation in } Y}.$$

Thus \mathbb{R}^2 is interpreted as the proportion of variation in Y that's explained by X_1, X_2, \ldots, X_p .

t Tests for the Coefficients

In the fitted regression model

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_p X_p ,$$

for each $k=1,2,\ldots,p$, the coefficient b_k represents the (estimated) **change** in Y for a **one-unit increase** in X_k (holding the other X variables constant, i.e. controlling for them).

t Tests for the Coefficients

In the fitted regression model

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_p X_p \,,$$

for each $k=1,2,\ldots,p$, the coefficient b_k represents the (estimated) **change** in Y for a **one-unit increase** in X_k (holding the other X variables constant, i.e. controlling for them).

If a b_k was zero, there'd be no change in Y for any given change in X_k, i.e. no relationship between Y and X_k (controlling for the other X variables in the model).

t Tests for the Coefficients

In the fitted regression model

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_p X_p ,$$

for each k = 1, 2, ..., p, the coefficient b_k represents the (estimated) **change** in Y for a **one-unit increase** in X_k (holding the other X variables constant, i.e. controlling for them).

If a b_k was zero, there'd be no change in Y for any given change in X_k, i.e. no relationship between Y and X_k (controlling for the other X variables in the model).

A b_k different from zero would mean there's a relationship between Y and X_k .

 But a b_k can differ from zero due to sampling error (because it's just an estimate based on data sampled from the population).

- But a b_k can differ from zero due to sampling error (because it's just an estimate based on data sampled from the population).
- For each explanatory variable X_1, X_2, \ldots, X_p , we'll test the **null hypothesis** that there's **no relationship** between X_k and Y.

$$H_0: \beta_k = 0$$

where β_k is the true (unknown) **population** (or **model**) coefficient for X_k .

The alternative is that there's a relationship between X_k and Y.

$$H_a: \beta_k \neq 0$$

The alternative is that there's a relationship between X_k and Y.

$$H_a: \beta_k \neq 0$$

A separate t *test* is carried out for each of the explanatory variables X_1, X_2, \ldots, X_p .

t Test Statistic for a coefficient:

$$t = \frac{b_k - 0}{S_{b_k}}$$

where S_{b_k} is the (estimated) **standard error** of b_k (computed using statistical software).

t Test Statistic for a coefficient:

$$t = \frac{b_k - 0}{S_{b_k}}$$

where S_{b_k} is the (estimated) **standard error** of b_k (computed using statistical software).

• t indicates how many **standard errors** b_k is **away from** 0, and in what direction (positive or negative).

• Since b_k is an **estimate** of the true (unknown) coefficient β_k :

- 1. Large positive values of t provide evidence in favor of $H_a: \beta_k > 0$.
- 2. Large negative values of t provide evidence in favor of $H_a: \beta_k < 0$.
- 3. Both large positive and large negative values of t provide evidence in favor of $H_a: \beta_k \neq 0$.

• Now suppose the **residuals*** e_1 , e_2 , ..., e_n are a sample from a $N(0, \sigma)$ distribution or that n is **large**.

• Now suppose the **residuals*** e_1 , e_2 , ..., e_n are a sample from a $N(0, \sigma)$ distribution or that n is **large**.

In this case, the **null distribution** is as follows.

^{*} More formally, the *errors* ϵ_1 , ϵ_2 , ..., ϵ_n in the regression **model**.

Sampling Distribution of t **Under** H_0 : If t is the test statistic in a t test for a model coefficient, then when

$$H_0: \beta_k = 0$$

is true,

$$t \sim t(n-(p+1)).$$

• P-values and rejection regions are obtained from the appropriate tail(s) of the t(n - (p + 1)) distribution.

 The t test statistic and p-value for the t tests for the coefficients are reported in the output of statistical software.

- The t test statistic and p-value for the t tests for the coefficients are reported in the output of statistical software.
- The software also reports results of a t test for the y-intercept:

$$H_0: \beta_0 = 0$$

$$H_a: \beta_0 \neq 0$$

but this is usually of little interest.

 The software summarizes the results in a regression table of the form below.

	Estimated	Standard		
	Coefficent	Error	t	P-value
Intercept	b_0	S_{b_0}	$t = b_0 / S_{b_0}$	р
X_1	b_1	S_{b_1}	$t = b_1/S_{b_1}$	р
X_2	b_2	S_{b_2}	$t = b_2/S_{b_2}$	р
:	÷	÷	:	:
X_p	b_p	S_{b_p}	$t = b_p / S_{b_p}$	р

For the study of water consumption, wealth, and population size of n=28 U.S. cities, the t test results (obtained using software) are below.

	Estimated	Standard		
	Coefficent	Error	t	P-value
Intercept	6.48	0.139	46.51	0.000
Wealth	0.11	0.124	0.87	0.391
Population	0.16	0.026	6.12	0.000

Thus, the equation of the fitted regression model is

$$\hat{Y} = 6.48 + 0.11 X_1 + 0.16 X_2.$$

For wealth, the hypotheses are

$$H_0: \beta_1 = 0$$

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

For wealth, the hypotheses are

$$H_0:\beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

The observed **test statistic** value is t = 0.87 and the **p-value** is **0.391**.

For wealth, the hypotheses are

$$H_0: \beta_1 = 0$$

$$H_a:\beta_1 \neq 0$$

The observed **test statistic** value is t = 0.87 and the **p-value** is **0.391**.

Thus, using $\alpha=0.05$, we fail to reject H_0 and conclude that the observed relationship between wealth and water consumption is *not* statistically significant (*controlling* for population size).

For **population size**, the hypotheses are

$$H_0: \beta_2 = 0$$

$$H_0: \beta_2 = 0$$

$$H_a: \beta_2 \neq 0$$

For population size, the hypotheses are

$$H_0: \beta_2 = 0$$

$$H_a:\beta_2\neq 0$$

The observed **test statistic** value is t=6.12 and the **p-value** is **0.000**.

For **population size**, the hypotheses are

$$H_0: \beta_2 = 0$$

$$H_a:\beta_2 \neq 0$$

The observed **test statistic** value is t = 6.12 and the **p-value** is **0.000**.

Thus we reject H_0 and conclude that the observed relationship between population and water consumption is statistically significant (*controlling* for wealth).