Corrections to:

Discrete Dynamical Systems, Chaos Theory and Fractals (2018) by Linda Sundbye

Last Updated: March 15, 2019

1. Chapter 1

a) p. 15 , pr. 6 a, change window to $[0,3]$.
b) p. 15 , pr. 6 b, change window to $[-5,5]$.

2. Chapter 2

a) p. 19, Figure 2.2, swap the epsilons and the deltas.
b) p. 32, Equation 2.27 is missing an equals sign. Should read $A_{n+1}=(1+0.01) A_{n} \ldots$..
c) p. 33 , in part c) on the top half of the page, should read $n=\ln (15 / 13) / \ln (1.01)=14.38$ months.
d) p. 36 , pr. 11 , change ' 100 years' to ' 1 billion years'; change ' 1000 years' to ' 2 billion years.'
e) p. 36 , pr. 13 , use $A_{0}=\$ 10,000$.
f) p. 36, pr. 16, 17, 18, change 'At retirement' to 'If you retire now.'
g) p. 37, pr. 23, change 'yo udrive' to 'you drive'.

3. Chapter 3

a) p. 47, 2nd line of Theorem 3.10, should read 'the orbit of \tilde{x} '; remove 'the.'
b) p. 62, pr. 1f) and 1 g), change $x_{0}=0.001$ and use niter $=10$.
c) p. 62 , pr. 1i), use niter $=10$.
d) p. 62 , pr. 5 , should read $x_{n+1}=x_{n}^{2}+a x_{n}+b$.
e) p. 63 , pr. 13 , change x_{0} to \tilde{x} is both places.

4. Chapter 4

a) p. 71, 2nd paragraph under 'Pitchfork Bifurcation', change 'loaded beam' to 'loaded vertical beam'.
b) p. 73 , Figure 4.20 change $x_{0}=-0.2$
c) p. 73 , Figure 4.21 change $x_{0}=0.2$
d) p. 83, label the Tent Map as T_{a} in 3 places near bottom of page.
e) p. 84 , bottom line, the orbit of $x_{0}=1 / 4$ is $\{1 / 4,1 / 2,1,0,0,0, \ldots\}$. The 1 is missing.
f) p. 86 , Figure 4.36 change $x_{0}=0.4$
g) p. 86, Figure 4.37 change $x_{0}=0.4001$

5. Chapter 5

a) p. 89 , the sequence for the number of baby pairs has $F_{0}=0, F_{1}=1, F_{2}=2$. In Equation 5.1, change to $F_{1}=1, F_{2}=1$.
b) p. 89, in Equation 5.2, change both exponents to n.
c) p. 92, in Equation 5.18, change $F_{0}=0$
d) p. 92, in Equation 5.19, $c_{1}=\frac{1}{\sqrt{5}}$ and $c_{1}=\frac{-1}{\sqrt{5}}$.
e) p. 92, in Equation 5.20, change both exponents to n.
f) p. 92, bottom 2 formulas: change F_{2} to F_{3}, and change F_{3} to F_{4}. And add: $F_{2}=$

$$
\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right]=1
$$

g) p. 97, pr. 1i), change to $x_{n+2}=-25 x_{n}$.
h) p. 98 , pr. 6 , change to $n \geq 1$.
i) p. 98 , pr. 6 h , change to $F_{n+6}=4 F_{n+3}+F_{n}$
j) p. 98 , pr. 7 , change to $n \geq 1$.

