A Remarkable Concurrence

Louis A. Talman

Metropolitan State College of Denver

Lemma: Let A, B, and C be three noncollinear points labeled so that $\angle ABC$ is less than 180°, and let D, E be, respectively, the midpoints of the segments \overline{AB} and \overline{BC} . Let α_1 and α_2 be parallel lines passing through, respectively, D and E. Let β_1 be the line determined by the reflections of the points A and B about the line α_1 , and let β_2 be the line determined by the reflections of the points B and C about the line α_2 . Then β_1 and β_2 meet at a unique point G and the angle at G from G to G (which we shall write as G (G) is congruent with G0.

Proof: We may assume, without loss of generality, that $\angle ABC = \angle [\overline{BA}, \overline{BC}]$ opens counter-clockwise. We impose a standard Cartesian coordinate system in such a way that its origin lies at the point B, while the point A lies on the positive half of the x-axis at, say, (2a,0) for a certain a>0. Then the coordinates of D are (a,0).

We suppose that C has coordinates (2c, 2mc) for a certain c > 0 so that the terminal ray of $\angle[\overline{BA}, \overline{BC}]$ is the line through the origin with slope m. Moreover, the point E then has coordinates (c, mc).

Finally, we suppose further that the parallel lines α_1 and α_2 , passing through D and E respectively, have slope M.

The line β_1 , which is the reflection of the x-axis about the line α_1 is then the line through (a,0) with slope $2M/(1-M^2)$, or the line whose equation is

$$y = \frac{2M}{1 - M^2}(x - a), \tag{1}$$

which can be rewritten

$$2Mx + (M^2 - 1)y = 2Ma. (2)$$

The angle $\angle[\overline{BC}, \alpha_2]$ satisfies

$$\tan \angle [\overline{BC}, \alpha_2] = \frac{M - m}{1 + mM}.$$
 (3)

and so the line β_2 must have slope given by

$$slope[\beta_2] = \frac{M + \frac{M-m}{1+mM}}{1 - M\frac{M-m}{1+mM}}$$

$$\tag{4}$$

$$= -\frac{mM^2 + 2M - m}{M^2 - 2mM - 1}. (5)$$

Consequently, an equation for the line β_2 is

$$y = mc - \frac{mM^2 + 2M - m}{M^2 - 2mM - 1}(x - c), \tag{6}$$

and this can be rewritten as

$$(mM^{2} + 2M - m)x + (M^{2} - 2mM - 1)y = 2c(mM - 1)(M - m).$$
 (7)

A straightforward (but tedious) calculation shows that equations (2) and (7) are independent unless m = 0—which we have ruled out by our requirement that A, B, and C be non-collinear. This assures that the lines β_1 and β_2 meet in a unique point G, whose coordinates we could calculate if we were interested.

Moreover, we have

$$\tan \angle [\beta_2, \beta_1] = \frac{\operatorname{slope}[\beta_1] - \operatorname{slope}[\beta_2]}{1 + \operatorname{slope}[\beta_1] \operatorname{slope}[\beta_2]}$$
(8)

$$= \frac{\frac{2M}{1-M^2} + \frac{mM^2 + 2M - m}{M^2 - 2mM - 1}}{1 - \left(\frac{2M}{1-M^2}\right) \left(\frac{mM^2 + 2M - m}{M^2 - 2mM - 1}\right)} \tag{9}$$

$$= m, (10)$$

and it follows that $\angle[\beta_2, \beta_1] \cong \angle ABC. \bullet$

Corollary: Let A, B, C, D, E, and G be as in the Lemma. If G and B lie on the same side of \overrightarrow{DE} , then $\angle ABC$ and $\angle DGE$ are supplementary. If G and B lie on opposite sides of \overrightarrow{DE} , then $\angle ABC$ and $\angle DGE$ are congruent.

Remark: It is obvious that G cannot lie on \overrightarrow{DE} unless G coincides with one of the points D or E.

Theorem: Let D, E, and F be the midpoints, respectively, of the sides \overline{AB} , \overline{BC} , and \overline{AC} of the triangle $\triangle ABC$. Let α_1 , α_2 , and α_3 be parallel lines with α_1 passing through D, α_2 passing through E, α_3 passing through F. If β_1 is the line determined by reflecting A and B about α_1 , β_2 is the line determined by reflecting B and C about A0, and A1 is the line determined by reflecting A2 and A3 are concurrent at a point A3 which lies on the Nine-Point Circle of ABC3.

Proof: Consider $\triangle DEF$, which is the medial triangle of $\triangle ABC$. Thus, $\angle EFD \cong \angle ABC$. Moreover, F and B lie on opposite sides of the line DE. Taking the Corollary into account, we see, as a consequence of the Two-Chord Angle Theorem and its relatives (the Two-Secant Angle Theorem, etc.) that the point G, where the lines β_1 and β_2 meet according to the Lemma, lies on the circumcircle of the medial triangle, which is the Nine-Point Circle for $\triangle ABC$.

Let G' be the point where the lines β_2 and β_3 meet according to the Lemma. Then, as above, G' also lies on the Nine-Point Circle of $\triangle ABC$. But β_2 meets the Nine-Point Circle only at E and G, whereas β_3 meets the Nine-Point Circle only at F and G'. It follows that G' = G so that the lines β_1 , β_2 , and β_3 are concurrent at $G. \bullet$