Using Definite Integrals to Solve a Separable Initial Value Problem

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

February 9, 2018

1 The Plan

Given the separable differential equation $\frac{d y}{d x}=f(x) g(y)$, with initial condition $y=y_{0}$ when $x=x_{0}$, we begin by supposing that $y=\varphi(x)$ gives the solution.

We note that if $g\left(y_{1}\right)=0$, then the constant function $\varphi(y) \equiv y_{1}$ is a solution. Thus, we may suppose that $g[\varphi(t)]$ doesn't vanish when t is near x_{0}, so that

$$
\begin{equation*}
\frac{\varphi^{\prime}(t)}{g[\varphi(t)]}=f(t) \tag{1}
\end{equation*}
$$

at least when t is close enough to x_{0}. Thus, if we choose x close enough to x_{0}, we have

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{1}{g[\varphi(t)]} \varphi^{\prime}(t) d t=\int_{x_{0}}^{x} f(t) d t . \tag{2}
\end{equation*}
$$

The substitution theorem for definite integrals allows us to make the substitution $u=\varphi(t)$ on the left side of equation (2); this gives

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{1}{g[\varphi(t)]} \varphi^{\prime}(t) d t=\int_{\varphi\left(x_{0}\right)}^{\varphi(x)} \frac{1}{g(u)} d u . \tag{3}
\end{equation*}
$$

Using the initial value and the fact that $y=\varphi(x)$, we see that we can now rewrite (2) as

$$
\begin{equation*}
\int_{y_{0}}^{y} \frac{d u}{g(u)}=\int_{x_{0}}^{x} f(t) d t . \tag{4}
\end{equation*}
$$

If we know functions G and F for which $G^{\prime}(u)=\frac{1}{g(u)}$ and $F^{\prime}(t)=f(t)$, we may now write

$$
\begin{align*}
\left.G(u)\right|_{y_{0}} ^{y} & =\left.F(t)\right|_{x_{0}} ^{x}, \text { or } \tag{5}\\
G(y) & =F(x)+\left[G\left(y_{0}\right)-F\left(x_{0}\right)\right] . \tag{6}
\end{align*}
$$

It remains only to solve for $y=\varphi(x)$ in terms of x. Finishing the solution depends, of course, on our ability to carry out whatever algebra is needed to invert the function G.

2 An Example

Consider the initial value problem

$$
\begin{align*}
\frac{d y}{d x} & =y x^{2}+y x ; \tag{7}\\
y(-3) & =-e^{-9 / 2} . \tag{8}
\end{align*}
$$

We use the standard formal calculation (that is, a calculation that is correct in form, though perhaps not clearly so in content) to avoid a surfeit of notation and explicit use of the substitution theorem. First, we rewrite equation (7):

$$
\begin{equation*}
\frac{d y}{d x}=y x^{2}+y x \tag{9}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{d y}{y}=\left(x^{2}+x\right) d x . \tag{10}
\end{equation*}
$$

Also, because we are going to want the upper limits of our definite integrals to be the variables, y and x, but it's unwise to use one symbol with two different meanings in the same expression, we rewrite (10) as

$$
\begin{equation*}
\frac{d u}{u}=\left(t^{2}+t\right) d t . \tag{11}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\int_{-e^{-9 / 2}}^{y} \frac{d u}{u}=\int_{-3}^{x}\left(t^{2}+t\right) d t . \tag{12}
\end{equation*}
$$

Now turn the crank:

$$
\begin{align*}
\left.\ln |u|\right|_{-e^{-9 / 2}} ^{y} & =\left.\left(\frac{t^{3}}{3}+\frac{t^{2}}{2}\right)\right|_{-3} ^{x}, \tag{13}\\
\ln \left|\frac{y}{-e^{-9 / 2}}\right| & =\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{9}{2}, \tag{14}\\
\left|\frac{y}{-e^{-9 / 2}}\right| & =\exp \left[\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{9}{2}\right], \tag{15}
\end{align*}
$$

where we have used the standard notation $\exp u=e^{u}$.
At this point, we recall that, on account of our intitial condition, we know that y must be negative for values of x near -3 . For such values of x, then, the fraction on the left side of (15) is positive. We may therefore write

$$
\begin{equation*}
\frac{y}{-e^{-9 / 2}}=\exp \left[\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{9}{2}\right], \tag{16}
\end{equation*}
$$

which leads to the solution

$$
\begin{equation*}
y=-\exp \left[\frac{x^{3}}{3}+\frac{x^{2}}{2}\right] \tag{17}
\end{equation*}
$$

It is easily checked that (17) does indeed give the solution to our initial value problem.

