Continuity \& Differentiability of Inverse Functions

Louis A. Talman
Department of Mathematical \& Computer Sciences
Metropolitan State College of Denver

February 10, 2009

0.1 Theorem: Continuous Inverse

Suppose that $f:(a, b) \rightarrow(\alpha, \beta)$ is strictly monotonic and onto. Then f is continuous on (a, b) and has an inverse $f^{-1}:(\alpha, \beta) \rightarrow(a, b)$ which is also strictly monotonic, onto, and continuous.

Proof: We will assume, without loss of generality, that f is increasing; the proof is very similar for decreasing f. Choose $x_{0} \in(a, b)$, and let $\epsilon>0$ be given. We may assume that ϵ is so small that $f\left(x_{0}\right) \pm \epsilon \in(\alpha, \beta)$, and thus that $\alpha<f\left(x_{0}\right)-\epsilon<f\left(x_{0}\right)<f\left(x_{0}\right)+\epsilon<\beta$. Because f is onto, we can find x_{0}^{-}and x_{0}^{+}, both in (a, b) so that $f\left(x_{0}^{-}\right)=f\left(x_{0}\right)-\epsilon$ and $f\left(x_{0}^{+}\right)=f\left(x_{0}\right)+\epsilon$. We put $\delta=\min \left\{x_{0}-x_{0}^{-}, x_{0}^{+}-x_{0}\right\}$. Now if x is chosen so that $\left|x-x_{0}\right|<\delta$, it follows that $x_{0}^{-}<x<x_{0}^{+}$, so that, by monotonicity, $f\left(x_{0}\right)-\epsilon=f\left(x_{0}^{-}\right)<$ $f(x)<f\left(x_{0}^{+}\right)=f\left(x_{0}\right)+\epsilon$, or, equivalently, $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. Hence f is continuous on (a, b).

That f^{-1} exists is immediate from the strict monotonicity of f (which guarantees that f is one-to-one); that the domain of f^{-1} is (α, β) follows from the fact that f maps (a, b) onto (α, β). Moreover, if $a<x<b$, then $f(x) \in(\alpha, \beta)$ so that $x=f^{-1}[f(x)]$. This means that f^{-1} maps (α, β) onto (a, b).
Suppose that $\alpha<y_{1}<y_{2}<\beta$. We have $f\left[f^{-1}\left(y_{1}\right)\right]=y_{1}<y_{2}=f\left[f^{-1}\left(y_{2}\right)\right]$, and from the monotonicity of f, we find that $f^{-1}\left(y_{1}\right) \geq f^{-1}\left[y_{2}\right]$ is not possible. Hence f^{-1} is a strictly monotonic function mapping (α, β) onto (a, b), and it follows from what we have already established that f^{-1} is continuous.•

0.2 Theorem: Inverse Function Rule

Let $\delta>0$, and suppose that f is a function carrying $\left(x_{0}-\delta, x_{0}+\delta\right)$ onto another interval (α, β) in strictly monotone fashion. Let $y_{0}=f\left(x_{0}\right)$. If $f^{\prime}\left(x_{0}\right)$ exists and is non-zero, then $\left(f^{-1}\right)^{\prime}\left(y_{0}\right)$ exists and is given by

$$
\begin{equation*}
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left[f^{-1}\left(y_{0}\right)\right]} \tag{1}
\end{equation*}
$$

Proof: Theorem 0.1, Continuous Inverse, guarantees us not only that f is continuous on the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ but also that f^{-1} is defined on (α, β), is strictly monotonic on (α, β), is onto $\left(x_{0}-\delta, x_{0}+\delta\right)$, and is continuous on (α, β). To show that $\left(f^{-1}\right)^{\prime}$ exists and has the necessary properties, we consider the difference quotient:

$$
\begin{align*}
\frac{f^{-1}\left(y_{0}+\Delta y\right)-f^{-1}\left(y_{0}\right)}{\Delta y} & =\frac{f^{-1}\left[f\left(x_{0}+\Delta x\right)\right]-f^{-1}\left[f\left(x_{0}\right)\right]}{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)} \tag{2}\\
& =\frac{\left(x_{0}+\Delta x\right)-x_{0}}{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)} \tag{3}\\
& =\frac{1}{\left[\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}\right]} . \tag{4}
\end{align*}
$$

We may write this for Δy sufficiently small, because for such Δy we know that $f^{-1}\left(y_{0}+\Delta y\right)$ lies in $\left(x_{0}-\delta, x_{0}+\delta\right)$ and is distinct from x_{0}; thus, $f^{-1}\left(y_{0}+\Delta y\right)=x_{0}+\Delta x$, or, equivalently, $y_{0}+\Delta y=f\left(x_{0}+\Delta x\right)$. Moreover, the continuity of f^{-1} guarantees that $\Delta x \rightarrow 0$ when $\Delta y \rightarrow 0$. Consequently,

$$
\begin{align*}
\left(f^{-1}\right)^{\prime}\left(y_{0}\right) & =\lim _{\Delta y \rightarrow 0} \frac{f^{-1}\left(y_{0}+\Delta y\right)-f^{-1}\left(y_{0}\right)}{\Delta y} \tag{5}\\
& =\frac{1}{\lim _{\Delta x \rightarrow 0}\left[\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}\right]} \tag{6}\\
& =\frac{1}{f^{\prime}\left(x_{0}\right)} \tag{7}\\
& =\frac{1}{f^{\prime}\left[f^{-1}\left(y_{0}\right)\right]} \cdot \tag{8}
\end{align*}
$$

