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1 Improper Integrals on Finite Intervals

The standard definitions for improper integrals often raise questions in students’ minds.
In order to treat the reasons why we make the definitions as we do, we begin with a näıve
approach to the topic.

Let f be a function which is continuous at every point of the interval (a, b]. If we
choose R so that a < R ≤ b, then the standard existence theorem for the definite in-
tegral assures us that

∫ b
R f(t) dt exists. But the standard theorem gives us no informa-

tion regarding
∫ b
a f(t) dt. Indeed,

∫ b
a f(t) dt need not exist in the same sense that the

integrals
∫ b
R f(t) dt exist. The following example makes this statement precise. (We

use the notation S(f, [0, 1],P,P ′) for the Riemann sum
∑n

k=1 f(ξk)(xk − xk−1), where
P = {x0, x1, x2, . . . , xn} is a partition of the interval [0, 1] and P ′ = {ξk : xk−1 ≤ ξk ≤
ξk−1 and k = 1, 2, . . . , n} is a network of points ξk, k = 1, . . . , n, such that xk−1 ≤ ξk ≤ xk

for every k.)

1.1 Example:

Let f be given by f(x) = 1/
√

x on (0, 1]. Then lim‖P‖→0 S(f, [0, 1],P,P ′) does not exist.

Analysis: Consider the Riemann sums

S(f, [0, 1],Pn,P ′n) =
n∑

k=1

f(ξk)(xk − xk−1), (1)

where the points xk of the partition Pn are chosen so that x1 = 1/n, and the points ξk of
the network P ′n are chosen so that ξ1 = 1/n4. (We are indifferent as to how the other points
of the partition Pn and the network P ′n are chosen, as long as the standard requirements
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0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1 and xk−1 ≤ ξk ≤ xk are all met.) For each
n ∈ N, we have

S(f, [0, 1],Pn,P ′n) =
n∑

k=1

f(ξk)(xk − xk−1) (2)

=
1√
1/n4

· 1
n

+
n∑

k=2

f(ξk)(xk − xk−1) (3)

≥ n2

1
· 1
n

= n. (4)

We can therefore find partitions of arbitrarily small norm for which the corresponding Rie-
mann sums can be arbitrarily large. This means that lim‖P‖→0 S(f, [0, 1],P,P ′) does not
exist.•

The reader should verify that, with the same choices we have made above, but with
g(x) = 1/x2, a similar phenomenon occurs. In fact, if h is any function continuous
on an interval (a, b], but for which limx→a+ h(x) = ∞, a similar argument shows that
lim‖P‖→0 S(h, [a, b],P,P ′) does not exist. The underlying idea is that, no matter how
small the norm of our partition may be, the integrand is unbounded in the left-most sub-
division. In consequence, we can find a point there where the value of the function is so
large that its product with the length of the subdivision is as large as we wish.

There is, however, an important difference between the two examples f and g of the
preceding paragraphs. If we choose R ∈ (0, 1], then we have∫ 1

R
f(t) dt =

∫ 1

R

dt√
t

(5)

= 2
√

t

∣∣∣∣1
R

(6)

= 2− 2
√

R, (7)

and limR→0+

∫ 1
R f(t) dt exists. On the other hand,∫ 1

R
g(t) dt =

∫ 1

R

dt

t2
(8)

= −1
t

∣∣∣∣1
R

(9)

= −1 +
1
R

, (10)
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and limR→0+

∫ 1
R g(t) dt doesn’t exist. This striking difference in behaviors is what prompts

the standard definition of an improper integral
∫ b
a f(t) dt for a function given continuous

on (a, b].

1.2 Definition (Improper Integral Ia):

Let f be a function which is continuous on an interval (a, b]. If limR→a+

∫ b
R f(t) dt exists,

we say that the improper integral
∫ b
a f(t) dt converges, and we assign the value of the limit

to the integral. If the limit does not exist, we say that the improper integral
∫ b
a f(t) dt

diverges, and we assign no value to the integral.

And, of course, the situation is symmetric; mutatis mutandis, we find that the same
kinds of things happen for functions continuous on intervals [a, b). Thus, we have another
definition.

1.3 Definition (Improper Integral Ib):

Let f be a function which is continuous on an interval [a, b). If limS→b−
∫ S
a f(t) dt exists,

we say that the improper integral
∫ b
a f(t) dt converges, and we assign the value of the limit

to the integral. If the limit does not exist, we say that the improper integral
∫ b
a f(t) dt

diverges, and we assign no value to the integral.

In both instances, the term improper reflects the fact that, because f has a disconti-
nuity at one end of the interval [a, b], we don’t expect

∫ b
a f(t) dt to have its usual meaning

as a limit of Riemann sums. As we have seen, the latter limit may not exist; improper
integrals really are something different from definite integrals.

We remark that some authors ([1], for example) make it explicit that an integral∫ b
a f(t) dt is an improper integral of the kind in Definition 1.2 by writing

∫ b
a+ f(t) dt for

such integrals. The corresponding notation for integrals of the Definition 1.3 flavor is∫ b−

a f(t) dt. This notation is helpful, but not commonly encountered.

So far, so good, but we have dealt only with functions that have just one singularity—
and that at an end-point of the interval of integration. Two questions now confront us.

1. What are we to do if the integrand has a singularity interior to the interval of
integration?

2. What are we to do if the integrand has singularities at both ends of the interval of
integration?
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The key to answering these two questions lies in this: We would like for the algebra of our
new, extended, notion of an integral to be the same as the algebra of our original definite
integral. The show-stopper here turns out to be the requirement that when a < c < b we
want to have ∫ b

a
f(t) dt =

∫ c

a
f(t) dt +

∫ b

c
f(t) dt. (11)

This innocent-looking equation causes difficulty in some—but not all—instances when f
has an unbounded discontinuity at c, and in some—but not all—instances when f has
unbounded discontinuities at both a and b. So we must take care in the way we assign
meaning to the symbol

∫ b
a f(t) dt in such cases.

1.4 Example:

Let g be the function given by g(x) = 1/x. There is no way, consistent with the algebra of
definite integrals, to assign numerical meaning to the improper integral

∫ 1
−1 g(t) dt.

Analysis: An argument like that of Example 1.1 shows that lim‖P‖→0 S(g, [−1, 1],P,P ′)
does not exist. We must be a little more finicky about our partitions than we were in Ex-
ample 1.1, however. We can consider partitions symmetric about the origin that contain
consecutive points −1/n, 0, and 1/n with associated networks that contain the points
−1/n ∈ [−1/n, 0] and 1/n2 ∈ [0, 1/n] but are otherwise also symmetric about the origin.
Every Riemann sum arising from such a choice of partition and associated network yields
n − 1, so the integral is indeed improper in the sense that we can’t interpret it as a limit
of Riemann sums.

Because f(−x) = −f(x), it is tempting to assign the value 0 to the integral
∫ 1
−1(1/t) dt.

This is certainly consistent with the idea that
∫ 1
−1(1/t) dt should be the limit, as R → 0+

of the sum
∫ −R
−1 (1/t) dt+

∫ 1
R(1/t) dt. But asking that

∫ −1
−1 (1/t) dt =

∫ 0
−1(1/t) dt+

∫ 1
0 (1/t) dt

leads to profound difficulties, because neither of the improper integrals on the right side of
the latter equation has meaning. Notice that we cannot dismiss this difficulty lightly by
writing

∫ 0
−1(1/t) dt = −∞,

∫ 1
0 (1/t) dt = ∞, and then passing off −∞ + ∞ as zero. Do-

ing so gets us into immediate trouble with
∫ 1
−2(1/t) dt, which then becomes

∫ 0
−2(1/t) dt +∫ 1

0 (1/t) dt. The latter must be −∞+∞ (which we have tried to call zero) on the one hand,
but must also be

∫ −1
−2 (1/t) dt +

∫ 1
−1(1/t) dt (which consistency requires us to evaluate as

− ln 2 + 0) on the other hand.•

In fact, we must not assign a general meaning to the expression “−∞ + ∞”. And
the reason that this is so is precisely the existence of examples, like the one we are
examining, where assigning a general meaning leads us to a contradiction. Recall that
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the symbolism
∫ 1
0 (1/t) dt = ∞ means that limR→0+

∫ 1
R(1/t) dt = ∞, and the symbolism

limx→a+ F (x) = ∞ is a short-hand for the statement that limx→a+ F (x) does not exist on
account of a specific kind of behavior indulged in by the function F . And we may never
assert the existence, without further justification, of the limit of a sum when the two limits
of the summands do not exist. In this case, there is no way to find further justification.

There is nothing inherently wrong with wanting equation (11) to work for improper
integrals. If we interpret the equation carefully enough in the case where the integrand
has a discontinuity at c, we can achieve a workable definition. The important insight that
leads to a workable definition is that we must evaluate the two improper integrals on the
right side of the equation independently of each other; that is, we must insist

1. that
∫ c
a f(t) dt converge and

2. that
∫ b
c f(t) dt converge

before we try to assign meaning to
∫ b
a f(t) dt. Notice that this meaning is implicit in the

symbols of equation (11), because we assign no meaning to the integral from a to c when
it diverges, and we assign no meaning to the integral from c to b when it diverges. Thus,
(11) is meaningless if either of the integrals on the right side diverges. When both the
integral from a to c and the integral from c to b converge, we can replace each with a
real number—and we can always add real numbers. Thus, the definition for an improper
integral where the integrand has a singularity interior to the interval of integration has to
go as follows.

1.5 Definition (Improper Integral Ic):

Let f be a function which is continuous on [a, c) ∪ (c, b]. If limS→c−
∫ S
a f(t) dt exists and

limR→c+
∫ b
R f(t) dt exists, we say that the improper integral

∫ b
a f(t) dt converges, and we

assign the sum of the limits as the value of
∫ b
a f(t) dt. If either limit fails to exist (or if

both fail to exist), we say that the improper integral
∫ b
a f(t) dt diverges, and we assign no

value to the integral.

A very similar analysis, also based upon (11), leads to a definition when f has singu-
larities at both endpoints of [a, b].

1.6 Definition (Improper Integral Ic):

Let f be a function which is continuous on (a, b). Choose c arbitarily in (a, b). If

limS→a+

∫ c
S f(t) dt exists and limR→b−

∫ R
c f(t) dt exists, we say that the improper inte-

gral
∫ b
a f(t) dt converges, and we assign the sum of the limits as the value of

∫ b
a f(t) dt.
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If either limit fails to exist (or if both fail to exist), we say that the improper integral∫ b
a f(t) dt diverges, and we assign no value to the integral.

Technically, we must show that this definition is meaningful, because different people
might choose different numbers for c, and we want to be sure that those different people
will arrive at common values for

∫ b
a f(t) dt. However, if a < c < c′ < b, then whatever

S ∈ (a, c) may be,
∫ c′

S f(t) dt =
∫ c
S f(t) dt +

∫ c′

c f(t) dt, so that

lim
S→a+

∫ c′

S
f(t) dt = lim

S→a+

[∫ c

S
f(t) dt +

∫ c′

c
f(t) dt

]
(12)

= lim
S→a+

[∫ c

S
f(t) dt

]
+

∫ c′

c
f(t) dt, (13)

while

lim
R→b−

∫ R

c′
f(t) dt = lim

R→b−

[∫ c

c′
f(t) dt +

∫ R

c
f(t) dt

]
(14)

= lim
R→b−

[∫ R

c
f(t) dt

]
−

∫ c′

c
f(t) dt, (15)

These observations show that our fears that different people might get different numbers
were without foundation because we may now write

lim
S→a+

∫ c′

S
f(t) dt + lim

R→b−

∫ R

c′
f(t) dt = lim

S→a+

[∫ c

S
f(t) dt

]
+

∫ c′

c
f(t) dt

+ lim
R→b−

[∫ R

c
f(t) dt

]
−

∫ c′

c
f(t) dt (16)

= lim
S→a+

[∫ c

S
f(t) dt

]
+ lim

R→b−

[∫ R

c
f(t) dt

]
(17)

regardless of the choices made for c and c′.

2 Improper Integrals on Infinite Intervals

We now turn to integrals of the form
∫∞
a f(t) dt, where we suppose that f is continuous on

the interval [a,∞). Once again, we find that we cannot interpret the symbol
∫∞
a f(t) dt as

a limit of Riemann sums, so the term improper is appropriate for these integrals. However,
this time the reason why no such limit can enter the picture is even more compelling than
the reason we found in our earlier analysis: No finite partition of the interval [a,∞) can
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possibly result in intervals [xk−1, xk], k = 0, 1, . . . , n, of finite length but whose union is
the entire interval [a,∞), even if we fudge and allow xn = ∞. Thus, it isn’t even possible
to form the Riemann sums S(f, [a,∞),P,P ′) that we need before we can pass to a limit
as ‖P‖ → 0.

But the fundamental existence theorem does guarantee us that if we choose any real
number T , a < T < ∞, the integral

∫ T
a f(t) dt exists. Examples such as∫ T

1

dt

t2
= −1

t

∣∣∣∣T
1

(18)

= − 1
T

+ 1 → 1 as T →∞ (19)

and ∫ T

1

dt√
t

= 2
√

t

∣∣∣∣T
1

(20)

= 2
√

T − 2 →∞ as T →∞ (21)

convince us that, in general, limT→∞
∫∞
a f(t) dt may or may not exist. These observations

lead us to the standard definition for this kind of improper integral.

2.1 Definition (Improper Integral IIa):

Let f be a function which is continuous on [a,∞). If limT→∞
∫ T
a f(t) dt exists, we say that

the improper integral
∫∞
a f(t) dt converges, and we assign the value of the limit as the value

of the integral. If the limit does not exist, we say that the improper integral
∫∞
a f(t) dt

diverges, and we assign no value to the integral.

It is now clear what we must do with integrals of the form
∫ a
∞ f(t) dt.

2.2 Definition (Improper Integral IIb):

Let f be a function which is continuous on (−∞, a). If limU→−∞
∫ a
U f(t) dt exists, we say

that the improper integral
∫ a
−∞ f(t) dt converges, and we assign the value of the limit as

the value of the integral. If the limit does not exist, we say that the improper integral∫ a
−∞ f(t) dt diverges, and we assign no value to the integral.

It remains to deal with combinations of the five different kinds of improper integrals
we have so far discussed. Because a näıve approach causes problems similar to those we
encountered when we tried to interpret

∫ 1
−1(1/t) dt as zero, we must always break such

combinations up as we did with this latter integral. Thus, if f is continuous on the whole
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real line we must intepret
∫∞
−∞ f(t) dt as the sum of the two improper integrals

∫ a
−∞ f(t) dt

and
∫∞
a f(t) dt. (We get to pick the number a at our convenience—see the discussion

following Definition 1.6.) Both
∫ a
−∞ f(t) dt and

∫∞
a f(t) dt must converge if we are to allow

that
∫∞
−∞ f(t) dt converges. If g is continuous on (a, b) ∪ (b,∞), we must consider all of

the improper integrals
∫ c
a f(t) dt,

∫ b
c f(t) dt,

∫ d
b f(t) dt, and

∫∞
d f(t) dt, where c is a point

chosen from (a, b) and d is a point chosen from (b,∞). All four of these improper integrals
must converge before we can conclude that

∫∞
a f(t) dt converges.
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