# More on Improper Integrals 

Louis A. Talman<br>Department of Mathematical and Computer Sciences<br>Metropolitan State College of Denver

May 27, 2010

Here is a frequently asked question about improper integrals:
When we teach improper integrals in elementary calculus, why don't we take

$$
\begin{align*}
\int_{-1}^{1} \frac{2 x}{1-x^{2}} d x & =\lim _{t \rightarrow 1^{-}} \int_{-t}^{t} \frac{2 x}{1-x^{2}} d x  \tag{1}\\
& =-\left.\lim _{t \rightarrow 1^{-}} \ln \left(1-x^{2}\right)\right|_{-t} ^{t}  \tag{2}\\
& =-\lim _{t \rightarrow 1^{-}}\left\{\ln \left(1-t^{2}\right)-\ln \left[1-(-t)^{2}\right]\right\}=0 \tag{3}
\end{align*}
$$

for the definition of this improper integral (and others like it)? It would make life so much easier for our students.

The calculation (1)-(3) gives us something called the "Cauchy Principal Value" (CPV) of the improper integral. The CPV is frequently written

$$
\mathrm{PV} \int_{-1}^{1} \frac{2 x}{1-x^{2}} d x
$$

and it does find application in mathematics more advanced than elementary calculus. But there are very good reasons not to introduce this notion in elementary calculus. Here's one.

Let $P$ be the polynomial function given by

$$
\begin{align*}
P(u) & =(u-1)(u+1)(u+3)(u+5)  \tag{4}\\
& =u^{4}+8 u^{3}+14 u^{2}-8 u-15, \tag{5}
\end{align*}
$$

so that

$$
\begin{equation*}
P^{\prime}(u)=4 u^{3}+24 u^{2}+28 u-8 . \tag{6}
\end{equation*}
$$

We also put

$$
\begin{equation*}
f(u)=-\frac{P^{\prime}(u)}{P(u)} \tag{7}
\end{equation*}
$$

Then, taking $|u|<1$ (so that $P(u)$ does not vanish) and putting

$$
\begin{align*}
F(u) & =\int f(u) d u=-\ln |P(u)|  \tag{8}\\
& =-\ln (1-u)-\ln (1+u)-\ln (3+u)-\ln (5+u), \tag{9}
\end{align*}
$$

we easily calculate that

$$
\begin{align*}
\mathrm{PV} \int_{-1}^{1} f(u) d u & =\lim _{t \rightarrow 1^{-}}\left[\left.F(u)\right|_{-t} ^{t}\right]  \tag{10}\\
& =\lim _{t \rightarrow 1^{-}}[F(t)-F(-t)]  \tag{11}\\
& =\lim _{t \rightarrow 1^{-}}\left(\ln \left[\frac{(3-t)(5-t)}{(3+t)(5+t)}\right]\right)=-\ln 3 \tag{12}
\end{align*}
$$

With this preliminary calculation out of the way, we turn our attention to the improper integral with which we began this discussion: $\int_{-1}^{1}\left[2 x /\left(1-x^{2}\right)\right] d x$. As we have seen, the CPV of this integral is 0 .

But now let us make the substitution $4 x=u^{2}+4 u-1$ in this integral. The Substitution Theorem for Definite Integrals then tells us that we must then transform the integral $\int_{-1}^{1}\left[2 x /\left(1-x^{2}\right)\right] d x$ according to:

$$
\begin{align*}
x & =\frac{u^{2}+4 u-1}{4} ;  \tag{13}\\
d x & =\frac{u+2}{2} d u ;  \tag{14}\\
x=-1 & \Rightarrow u=-1 ;  \tag{15}\\
x=1 & \Rightarrow u=1 . \tag{16}
\end{align*}
$$

We thus obtain

$$
\begin{align*}
\int_{-1}^{1} \frac{2 x}{1-x^{2}} d x & =\int_{-1}^{1} x \cdot \frac{1}{1-x^{2}} \cdot 2 d x  \tag{17}\\
& =\int_{-1}^{1} \frac{u^{2}+4 u-1}{4} \cdot \frac{16}{16-\left(u^{2}+4 u-1\right)^{2}} \cdot(u+2) d u  \tag{18}\\
& =-\int_{-1}^{1} \frac{4 u^{3}+24 u^{2}+28 u-8}{u^{4}+8 u^{3}+14 u^{2}-8 u-15} d u . \tag{19}
\end{align*}
$$

Comparing numerator and denominator of this latter integral with (5) and (6), we find that our transformation has produced the integral whose CPV we found in the calculation (10)-(12) -and which is $-\ln 3$.

We are forced to the conclusion that adopting (1) as the definition of the improper integral

$$
\int_{-1}^{1} \frac{2 x d x}{1-x^{2}}
$$

breaks the Substitution Theorem for Definite Integrals. That theorem is too valuable to give up (in elementary calculus), so we adopt the more complicated definition-which doesn't break the theorem.

Remark: There is a whole family of substitutions similar to the one we chose. Let $B$ be any real number for which $|B|>1$, and take

$$
\begin{aligned}
P_{B}(u) & =(u-1)(u+1)(u+2 B-1)(u+2 B+1) \\
f_{B}(u) & =-\frac{P_{B}^{\prime}(u)}{P_{B}(u)}
\end{aligned}
$$

We can use any of the functions $P_{B}$ and $f_{B}$ (with the same $B$, of course) in the rôles of $P$ and $f$ in the calculation we have just examined-where we took $B=2$. We find that

$$
\begin{equation*}
\mathrm{PV} \int_{-1}^{1} f_{B}(u) d u=\ln \frac{B-1}{B+1}, \tag{20}
\end{equation*}
$$

and it is worth noting that the only real value that this latter expression cannot take on is the value 0 .

The rest of the calculation is left to the reader.

