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What is an asymptote? There is considerable disagreement on the subject.
Some elementary calculus textbooks, (e.g., Foerster’s book and Leithold’s
book) do not allow curves to cross their asymptotes in every neighborhood
of ∞. Thus, they deny that the curve y = (sin x)/x can have the x-axis as
a horizontal asymptote because the curve crosses the x-axis for arbitrarily
large values of x.

If the standard calculus books that happened to sit on my shelf at the mo-
ment I started this note are any indication, then Foerster and Leithold are dis-
tinctly in the minority. Stewart (Calculus , 3rd Edition, Brookes/Cole, 1995,
pg. 208), Swokowski (Calculus with Analytic Geometry , Alternate Edition,
Prindle, Weber & Schmidt, 1983, pg. 171), Thomas & Finney (Calculus with
Analytic Geometry , 9th Edition, Addison-Wesley, 1996, pg. 224), Edwards &
Penney (Calculus with Analytic Geometry , 5th Edition, Prentice-Hall, 1998,
pg. 254), and Larson, Hofstetler & Edwards (Calculus (Early Transcendental
Functions), Houghton Mifflin Co., 1999, pg. 228) are the books in question,
and all agree that a horizontal line y = L is an asymptote for the function
y = f [x] if limx→∞ f [x] = L.

James & James (Mathematics Dictionary , Multilingual Edition, D. Van
Nostrand Co., Inc., 1959, p.22) say that an asymptote is “A line such that
a point, tracing a given curve and simultaneously receding to an infinite
distance from the origin, approaches indefinitely near to the line; a line such
that the perpendicular distance from a moving point on a curve to the line
approaches zero as the point moves off an infinite distance from the origin.
Tech. An asymptote is a tangent at infinity, i.e., a line tangent to (touching)
the curve at an ideal point.” However, the fourth edition (1976, pg. 21) and
the fifth edition (1992, p. 22) of the same work say “For a plane curve, an
asymptote is a line which has the property that the distance from a point P

on the curve to the line approaches zero as the distance from P to the origin
increases without bound and P is on a suitable piece of the curve. Often
it is required that the curve not oscillate about the line.” This is a shame,
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because the “tangent at infinity” idea, which somehow got lost between 1959
and 1976 and stayed lost until at least 1992, has great merit.

Even after we accept the “tangent at infinity” idea, the issue is still some-
what clouded, for there is no standard definition for this phrase. Let us adopt
the perspective of projective geometry, which adjoins to the Euclidean plane
an ideal point for every family of parallel lines—it being supposed that every
member of a given such family passes through the ideal point associated with
it. The collection of all such ideal points constitutes the “line at infinity”; it
behaves, in projective geometry, just like all other lines.

One way to effect this extension of the Euclidean plane is by introducing
homogeneous coordinates for the projective plane. We identify the points of
the projective plane with equivalence classes [u1, u2, u3] of ordered triples of
real numbers, not all zero, where two ordered triples (u1, u2, u3) and (v1, v2, v3)
are considered equivalent if there is a non-zero real number k such that
(u1, u2, u3) = (kv1, kv2, kv3). Thus, if at least one of the numbers u1, u2,
u3 is non-zero, the equivalence class [u1, u2, u3] of the triple (u1, u2, u3) is
given by

[u1, u2, u3] = { (ku1, ku2, ku3) : k ∈ R and k =/ 0 }. (1)

The real projective plane, PR2, consists of all such equivalence classes:

PR2 = { [u1, u2, u3] : u1, u2, u3 ∈ R } (2)

A line in PR2 is then any set of points [u1, u2, u3] such that

α1u1 + α2u2 + α3u3 = 0, (3)

where α1, α2, and α3 are fixed real numbers, not all zero. Indeed, if a projec-
tive point [u1, u2, u3] ∈ PR2 satisfies equation (3) for such a triple (α1, α2, α3),
and κ is any non-zero real number, then [u1, u2, u3] also satisfies the equation

κα1u1 + κα2u2 + κα3u3 = 0, (4)

so that the lines in PR2 can themselves be represented by homogeneous equiv-
alence classes of the form

[α1, α2, α3]
tr =


α1

α2

α3

 . (5)
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The reader should note that equation (4) guarantees that our definition of
projective lines, which we phrased in terms of single representatives of the
homogeneous equivalence classes that represent points, doesn’t depend on the
choices we make of those representatives. This issue arises again and again,
but the arguments that resolve the difficulties are all very simple. Henceforth
we will treat the issue with benign neglect.

It is now natural to write equation (3) as

[u1, u2, u3][α1, α2, α3]
tr = 0, (6)

the multiplication on the left being matrix multiplication of the underlying
three-dimensional vectors.

The map I : (x, y) 7→ [x, y, 1] gives an embedding of R2 into PR2. If
[u1, u2, u3] is any point of PR2 for which u3 6= 0, then [u1, u2, u3] lies in the
image of I, for then

[u1, u2, u3] =

[
u1

u3
,
u2

u3
, 1

]
(7)

= I

[(
u1

u3
,
u2

u3
, 1

)]
. (8)

Consequently, the complement in PR2 of I[R2], the image under I of the
Euclidean plane, consists of the set of all projective points of the form [x, y, 0],
where x and y are not both zero. Such points are points of “the line at
infinity”, and we may legitimately think of them as “ideal points” that have
been adjoined to the Euclidean plane in such a way that each such point is
the single point common to a family of all lines parallel to one particular line.
The “line at infinity” is thus the projective line whose equation is u3 = 0.
This is the projective line which corresponds to the homogeneous equivalence
class [0, 0, 1]tr.

Consider now a line in the Euclidean plane whose equation is

ax + by + c = 0. (9)

Under the embedding I, the points (x, y) that lie on this line become the
points [x, y, 1] of PR2. Hence, the image under I of the Euclidean line given by
equation (9) is a subset of the line given by the homogeneous equivalence class
[a, b, c]tr. In particular, the image under I of the Euclidean line whose slope-
intercept equation is y = mx + b is a subset of the line given by [m,−1, b]tr
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and the image of the vertical line x = h is a subset of the line given by
[1, 0, h]tr.

We want to consider the projective transformation

T : [u1, u2, u3] 7→ [u3, u2, u1]. (10)

It is clear that T carries the family of all lines in PR2 onto itself. Indeed, the
image of the line given by [a1, a2, a3]

tr is the line given by [a3, a2, a1]
tr. We

note that T exchanges almost all of the points of the “line at infinity” with
those of the image of the y-axis under the embedding I. (Only the point
[0, w, 0]—where, of course, w 6= 0—remains on the “line at infinity”.)

Finally, we observe that T is its own inverse mapping: T 2 = idPR2.
Let us now consider the graph { (x, f [x]) : x ∈ R } of a function f : R → R

in the Euclidean plane. The image of a point (x, f [x]) of this graph under
the embedding I is the homogeneous equivalence class [x, f [x], 1]. We apply
the transformation T to this image. If we rule out the possibility that x = 0
(a possibility that is of no interest to us), the result is

T [I[(x, f [x])]] = T [[x, f [x], 1]] (11)

= [1, f [x], x] (12)

= [x−1, f [x]x−1, 1] (13)

= [t, tf [t−1], 1], (14)

where t = x−1 6= 0. Noting that the [t, tf [t−1], 1] lies in the image of R2 under
I, we apply I−1. We obtain

I−1[T [I[(x, f [x])]]] = (t, tf [t−1]), (15)

where t = x−1.
This analysis suggests that one way to investigate the behavior of f [x] as

x →∞ is to investigate, instead, the behavior of the function

F [t] = tf [t−1] (16)

as t → 0. The analysis also makes it clear that we must now carefully
distinguish between three cases:

1. t → 0, (i.e., x →∞),

2. t → 0+ ( x → +∞), and
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3. t → 0− (x → −∞).

We will confine our attention to the first of these cases, leaving the other
two to the reader. In the rest of this note, we will therefore interpret the
statement limu→∞ g[u] = L to mean that no matter what ε > 0 may be
given, there is a corresponding real number M > 0 such that |g[u] − L| < ε

whenever M < |u|. We emphasize that in the sequel we consider two-sided
neighborhoods of ∞ only.

As we have seen, the question of a “tangent at ∞” for the function f can
reasonably be interpreted as being equivalent to that of a tangent at t = 0
for the function F : t 7→ tf [t−1]. We have not been given a meaning for
F [0] (because we have no meaning for f [0−1]), but there is a standard way of
deciding upon what F [0] should mean—especially if we seek a line tangent to
the curve s = F [t] at t = 0. We must ask for F to have a continuous extension
to t = 0; moreover, that continuous extension must be differentiable at the
origin. Thus, we ask that there be a real number m such that

lim
t→0

F [t] = m. (17)

We define F [0] = m, and require, in addition, that there be another real
number b such that

b = lim
h→0

F [h]−m

h
(18)

= lim
h→0

F [0 + h]− F [0]

h
. (19)

When these conditions are met, it is customary to agree that the line tangent
to the curve s = F [t] at t = 0 is the line whose equation is s = bt + m.

Now we reverse the manipulations that got us from f to F . We need
only note that (I−1TI)−1 = I−1T−1I = I−1TI. The image under I of the line
s = bt+m is the projective line [b,−1, m]tr, and T carries this to [m,−1, b]tr—
which is the image under I of the Euclidean line whose equation is y = mx+b.
This line is the “tangent at ∞” for the curve y = f [x], and it is the line that
we should call “the asymptote of the curve y = f [x]”.

It remains to translate the conditions (17) and (18), which are conditions
on F , into conditions on f . The key to this translation is, of course, equa-
tion (16).
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In light of (16), condition (17) becomes

lim
t→0

tf [t−1] = m, (20)

or, substituting x = t−1 and noting that t → 0 is equivalent to x →∞,

lim
x→∞

f [x]

x
= m. (21)

This condition may be rewritten as

lim
x→∞

f [x]

x
−m

 = 0, (22)

or, finally, as

lim
x→∞

f [x]−mx

x

 = 0. (23)

A function f for which there is a real number m satisfying condition (23)
is said to be asymptotically linear , and the number m is called the asymp-
totic derivative of f . The condition is one that arises, for example, in the
study of positive non-linear operators in ordered vector spaces. (See, e.g.,
[M. A. Krasnosel’skii, Positive Solutions of Operator Equations , P. Noordhoff
Ltd., Groningen, The Netherlands (1964)] or [Robert H. Martin, Nonlinear
Operators and Differential Equations in Banach Spaces , John Wiley & Sons,
New York (1976)].)

As to condition (18), application of (16) yields

lim
h→0

hf [h−1]−m

h
= b, (24)

which we can rewrite as

lim
x→∞(f [x]−mx) = b. (25)

This, in turn, may be rewritten as

lim
x→∞[f [x]− (mx + b)] = 0. (26)

Condition (26) is the condition that most of us have been taught is the
condition that the line y = mx + b must satisfy in order to be considered
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an asymptote to the curve y = f [x]. As we have seen, it arises out of the
tangency condition that we have imposed on the auxiliary function F .

What about condition (23)? Well, let us suppose that f is a function for
which there are numbers m and b such that (26), and therefore condition
(25), holds. Let ε > 0 be given. Find M so that

1. M < |x| implies that |f [x]− (mx + b)| < ε

2
, and

2. min

1,
2|b|
ε

 < M .

Suppose that M < |x|. Then∣∣∣∣∣∣f [x]−mx

x

∣∣∣∣∣∣ =

∣∣∣∣∣∣f [x]−mx− b

x
+

b

x

∣∣∣∣∣∣ (27)

≤
∣∣∣∣∣∣f [x]−mx− b

x

∣∣∣∣∣∣ +
∣∣∣∣∣ bx
∣∣∣∣∣ (28)

But 1 < M < |x|, so∣∣∣∣∣∣f [x]−mx− b

x

∣∣∣∣∣∣ < |f [x]− (mx + b)| (29)

<
ε

2
, (30)

and
2|b|
ε

< M < |x|, so that

∣∣∣∣∣ bx
∣∣∣∣∣ = |b| · 1

|x|
(31)

< |b| · ε

2|b|
=

ε

2
. (32)

It follows now that condition (23) is satisfied. We see from this that con-
dition (23) is actually a consequence of the existence of m and b satisfying
condition (26). This should come as no surprise, because, after all, (23)
is the requirement that the function F be continuous at the origin, while
(26) is the requirement that F be differentiable there. It is well known that
differentiability implies continuity.
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It is also well known that continuity does not imply differentiability. In
our context, this should mean that there are curves y = f [x] for which con-
dition (23) holds but condition (26) does not. In fact, this is the case, and
y = sin x is such a curve, for taking m = 0, we have

lim
x→∞

f [x]−mx

x

 = lim
x→∞

(
sin x

x

)
(33)

= 0. (34)

Let us remark that there is no argument about whether or not a curve s =
F [t] may cross its tangent line infinitely many times in every neighborhood
of t = 0. If F ′[0] exists, then the tangent line is, by definition, the line
whose equation is s = F [0] + F ′[0]t; this definition is quite independent
of all other behavior of the curve. We argue on this basis that whether
condition (26) holds should be the only criterion for deciding whether the
line whose equation is y = mx + b is an asymptote for the curve y = f [x].
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