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Questions regarding implicit differentiation come to the AP Calculus list in a variety
of flavors. Most of them reflect confusion that is almost certainly due to the poor job
that mainstream elementary calculus textbooks do with this topic. Typical problems are
mechanical exercises of the form “Here is a relation F (x, y) = 0; find y′.” Such problems
completely ignore several issues: What does the equation F (x, y) = 0 mean? What does y′

mean under such circumstances? What does it mean to find y′ under these circumstances?
Is there any reason to believe that we can actually do so?

There are certainly other issues—but they are not appropriate for most students at this
level. I am not about to suggest that we teach beginning calculus students the Implicit
Function Theorem. But that theorem is the foundation upon which the matter rests, so it
ought to occupy a prominent place in our thinking when we deal with implicit differenti-
ation in our beginning courses. Here is a statement of that theorem; the symbols F1 and
F2 denote partial derivatives:

Theorem: Let F be a function that possesses partial derivatives continuous in some
neighborhood of some solution, (x0, y0), of the equation F (x, y) = 0. If F2(x0, y0) 6= 0,
there are an ε > 0 and a unique continuously differentiable function ϕ such that ϕ(x0) = y0

and F [x, ϕ(x)] = 0 for |x− x0| < ε. Moreover, when |x− x0| < ε, we have

ϕ′(x) = −F1[x, ϕ(x)]
F2[x, ϕ(x)]

.

The reader who wants to see a proof of this theorem can consult David V. Widder’s
Advanced Calculus, originally published by Prentice-Hall in 1947, but more recently re-
issued in a cost-effective paperback by Dover.

Note that, as problems in freshman calculus are all too frequently cast, the point (x0, y0)
is missing. The notion that we are finding ϕ′(x) for a certain (locally defined!) function
for which F [x, ϕ(x)] = 0 is there only, ahem, implicitly. But the formal treatment that our
textbooks suggest, and that we allow students to give these problems, has a tendency to
remove it from their thinking (and ours, too?). Because of this formal treatment, students
will happily process a problem like “Find y′ given that x2 + y2 = −1” to obtain the
nonsensical answer y′ = −x/y.
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When I deal with this topic, I try to emphasize the local quality of what I am asking
them about. I try to give problems in which the point (x0, y0) appears explicitly, and I
usually ask for y′ at or near the point in question in ways that will focus their attention
of the underlying implicitly defined function. For example, I might ask them something
like this: “Find an equation for the line tangent to the curve x3 − 4xy + 2y3 = 2 at the
point (2, 1). Use your result to estimate the value of y for the point on the curve near (2, 1)
where x = 1.997.”

1. Failure of the hypotheses

Here is a question that is very similar to one that appeared on the AP Calculus list in
October, 2004 (the original questioner wanted to know about a curve of the same shape
oriented somewhat differently):

The following curve
√

2x3 + 3
√

2xy2 − 9x2 + 9y2 = 0 has two tangents at the
origin. However, implicit differentiation doesn’t seem to reveal this as y′ ends up
giving you 0/0 at the origin. What is going on here?

In this case, F (x, y) =
√

2x3 + 3
√

2xy2− 9x2 + 9y2, so F2(x, y) = 6
√

2xy+ 18y. This is
zero at (0, 0). Consequently, the Implicit Function Theorem is inapplicable at (0, 0). There
could be several reasons underlying the failure of the theorem, however. It could be that
the function F does define y as a differentiable function of x near (x0, y0), but that F is
just too convoluted for the implicit function theorem to apply; this is what happens when
G(x, y) = x4 + 2x2y2 + y4 − 50x2 − 50y2 + 625 and we try to apply the implicit function
theorem at (3, 4) (discussion of this example begins on page 4 of this note). It could be
that there is no derivative to be found; this is the case for H(x, y) = y3 − x2 at the origin.
But the difficulty with the function F is more subtle.
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Figure 1:
√

2x3 + 3
√

2xy2 − 9x2 + 9y2 = 0

2



The graph of F (x, y) = 0 (see Figure 1) near the origin consists of two curves that cross
at the origin, each having a different tangent line than the other. The implicit function
theorem fails here because the equation F (x, y) = 0 doesn’t have unique solutions for y as
a function of x in any neighborhood of (0, 0).

It might be hoped that we can find the slopes of the two curves passing through the
origin from the quotient −F1(x, y)/F2(x, y) through some kind of limiting process. This
hope turns out to be vain. First, consider that

−F1(x, y)
F2(x, y)

= −6x−
√

2x2 −
√

2y2

6y + 2
√

2xy

doesn’t approach a limit as (x, y)→ (0, 0). Try letting, say, y = mx, and see what happens
as x→ 0. You will find that the limit depends upon m. Indeed, we see in retrospect, this
has to be the case if the quotient is to be related to the slopes of tangent lines, because
there are different tangents to the original, non-simple, curve at the origin. The limit, as
(x, y)→ (0, 0) of −F1(x, y)/F2(x, y) does not exist in general, but is curve-dependent. This
means that in order to find the value of the y′(0) we seek, we must know the curve y(x)
explicitly—that is, we must actually solve F (x, y) = 0 for y in terms of x near x = 0, y = 0.
In other words, we must find ε > 0 and we must find a differentiable function y = ϕ(x)
that satisfies F [x, ϕ(x)] = 0 for −ε < x < ε, with ϕ(0) = 0. But, of course, the whole point
of the implicit differentiation was that we didn’t know how to do this very thing. And, in
this example, there isn’t a unique smooth solution curve y = ϕ(x) passing through (0, 0)
in any interval (−ε, ε), no matter how small ε > 0 may be.

If we really must have the slopes of the tangents at such a crossing point, we will
generally need to be able to find a useful parametrization of the curve in question. This
example succumbs to the use of polar coordinates: We can explicitly solve the equation
F (r cos θ, r sin θ) = 0 for r in terms of θ. Standard techniques then give the desired slopes.

Here is another example in which things are a little more subtle. This one appeared on
the list in March, 2005:

The problem in question is in the new AB version (D&S Marketing), test 6,
#32. The problem asks for vertical tangents of x3−y2+x2 = 0. Upon using implicit
differentiation, you get y′ = (3x2 + 2x)/(2y). Obviously, the only possibility of
having a vertical tangent, means that y = 0. Substitute this back into the original
relationship, [and this] yields x = 0 or x = −1. I say there is a vertical tangent at
the point (−1, 0) only. The book says there’s also one at the origin. My reasoning
is two-fold, one reason which is sure to raise some eyebrows. If x and y approach 0
at the same rate, y does not approach infinity (I don’t think). And, for the reason
many will not like . . . I graphed the relation (this was the calculator portion) and
there certainly doesn’t appear to be a vertical tangent at the origin . . . any help???

There is not a vertical tangent at x = 0. We can see this analytically by transforming
to polar coordinates, which is how I produced the following picture:
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Figure 2: x3 − y2 + x2 = 0

Use of implicit differentiation to find dy/dx in a problem like this one is questionable
at best, because that technique depends upon the implicit function theorem. One of the
hypotheses for that theorem requires that the partial derivative of (in this case) x3−y2+x2

taken with respect to y be non-zero at a point of interest before we can draw any conclusions
at all about the derivative of y with respect to x at such a point of interest. That hypothesis
fails here if we set y = 0, as the problem invites us to do. We can therefore draw no
conclusions from implicit differentiation about the existence of the derivative at points on
this curve where y = 0. In particular, we may not conclude that dy/dx fails to exist when
y = 0.

This problem, however, naively assumes that this partial derivative’s vanishing is tan-
tamount to non-existence of dy/dx; this is incorrect reasoning. To see this consider the
function G(x, y) = x4 + 2x2y2 + y4− 50x2− 50y2 + 625, and consider the curve G(x, y) = 0
at the point (3, 4). (Or, indeed, at any point on the curve where y is not 0.) Here we
have G2(x, y) = 4y(x2 + y2 − 25), and this vanishes if x2 + y2 = 25—which, it turns out,
is precisely the curve given by the equation G(x, y) = 0. The difficulty is the old one of
confusing a statement with its converse. In this case, non-vanishing of the partial derivative
insures existence of dy/dx; existence of dy/dx does not insure non-vanishing of the partial.

In the x3 − y2 + x2 = 0 problem, as the graph and the analysis suggested above both
show, there are two non-vertical tangents to the curve at the origin. But we may not use
the implicit function theorem, or its consequence, implicit differentiation, to find them.

The only way I can see to effect a partial rescue of this problem is to reverse the roles
of x and y. Use of implicit differentiation to find vertical tangents while thinking of y as
a function of x can’t succeed in general. The logic is flawed: p⇒ q just isn’t equivalent to
q ⇒ p, and any technique based upon that equivalence is bad mathematics. Even reversing
the roles of x and y, so that y becomes the independent variable, doesn’t allow us to
determine what happens at the origin for this problem, because, again, the denominator
vanishes—making application of implicit differentiation invalid.
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2. Too many derivatives

Here is another question taken from the list (October, 2003):

Can you simplify (or eliminate) fractions before finding derivatives?

Consider the example: 4x2y − 3
y

= 0. The derivative implicitly is

− 8xy3

4x2y2 + 3
.

If you multiply by y first the derivative is −y/x.

For (xy − y2)/(y − x) = 1 the derivative is (y + 1)/(−x+ 2y + 1) however if
you factor out y − x and then cancel the derivative is 0.

More recently (October, 2005), another poster asked:

Two students solved this problem two different ways and obtained two different
answers and I’m not sure why. The problem was to find y′ given x2 + y2 = y2/x2

The first student used the quotient rule on the right side and obtained the answer
in the book (x4 + y2)/(xy − x3y). The second student multiplied both sides by
x2, and then differentiated and obtained (2x3 + xy2)/(y − x2y). I’m guessing
multipling both sides by x2 somehow changes the derivative.

These are nice examples of some of the confusion that can arise when we give too much
attention to the algebraic forms that result from implicit differentiation at the expense of
meaning. What we must always remember in problems such as these is that we are to keep
the local nature of the implicit function in mind. That implicitly defined function is a local
extension of some isolated solution (x0, y0) of the equation F (x, y) = 0 we started with.

The solution (x0, y0) is missing from the problems above. When we remember that it
belongs, and that we are treating a local extension of that solution, we can see, among
other things, that the two seemingly different expressions we obtain for derivatives in
each problem are really the same things. For example, in the first problem the im-
plicit function ϕ(x) extends some isolated solution of the equation 4x2y − (3/y) = 0,
whence 4x2ϕ(x)2 = 3. This means that the denominator of the first expression given
for y′ can be rewritten: 4x2[ϕ(x)]2 + 3 = 4x2[ϕ(x)]2 + 4x2[ϕ(x)]2 = 8x2[ϕ(x)]2. Thus,
ϕ′(x) = (−8x[ϕ(x)]3)/(4x2[ϕ(x)]2+3) = (−8x[ϕ(x)]3)/(8x2[ϕ(x)]2) = −ϕ(x)/x. Of course,
something similar happens in the other problems.

The moral of the story is that we really ought to be asking, not for y′(x)—which we can
usually obtain only as a function of the two variables x and y—but for y′[x0], or, perhaps
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y′(x) for a specific value of x that lies near x0 and a specific value of y that lies near y0.
We must remember that the expression in two variables that we obtain for y′ can have
meaning as a slope field in the context of the problem as given only when (x, y) lies on
some local solution near (x0, y0) of the equation F (x, y) = 0, and not as a generic function
of two variables.

If we specify x0 and y0 numerically in the statement of the problem, we get a numeric
answer. And it will not depend upon what algebraic transformations we make in the
problem as we solve it. (Provided those transformations are legal, of course.) Thus, if
we ask for y′(2) at the point (2,−

√
3/4) in the first problem above, the seeming difficulty

never arises.
The issue that arose in this problem is that we often forget that implicit differentiation

is for solving a local problem; it isn’t for finding a global derivative that depends, as a
function of two variables, on both x and y. One of the reasons why this happens to us is
that our text books insist on phrasing these problems incorrectly, as in “x3− y3 = 0; what
is y′?”. The underlying issue, not addressed in the problem as just given, is the question
“How does y depend on x?”. In this example, that question has a good answer only along
the curve y = x (unless we want to step into the complex domain). So the slope field given
by y′ = x2/y2 really isn’t of interest to us here. The question should have been phrased
“x3 − y3 = 0; what is y′ along the implicitly defined curve near the point (1, 1)?” (Or pick
your favorite other point on the curve y = x. But not the origin!) Notice that we could ask
this very same question, which amounts to “What is y′ at (1, 1) along the curve y = x?”
in a lot of different ways, e.g., “xn − yn = 0; what is y′ near (1, 1)?” The answer is the
same for all of those questions. But the (almost irrelevant) slope fields for different values
of n look very different. They should be understood as complicated representations, valid
away from the origin, of the derivative y′[x] ≡ 1 along the curve y = x.

3. Badly written problems

This one appeared in December 2004:

A student of mine was working the following problem: If g(x) + sin g(x) = x2

and g(1) = 0, find g′(1).

I know that the correct way to work the problem is to find g′(x) implicitly, plug
in 1 for x, and you have the answer. However, one of my students brought up an
interesting fact. Plugging x = 1 into the given equation does not yield the same
thing on both sides (equality does not hold). I can’t think of a good reason why
it would’t make the original statement true. I know you don’t have to know what
g(x) is to solve the problem, but I am curious as to why x = 1 won’t work in the
orginal equation. Can anyone offer a good explanation for this?

The substitution x = 1 doesn’t work in the original equation because the problem was
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poorly thought out. The point (1, 0) doesn’t lie on the curve y + sin y = x2, and the
problem, as stated, is meaningless. The author was, at best, careless. At worst, s/he
doesn’t understand what implicit differentiation is or accomplishes.
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