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We commonly make substitutions involving common elementary functions that are not
one-to-one, and this common practice leads us into making our substitutions in ways that
violate a number of principles. This phenomenon typically evidences itself (or should evi-
dence itself) as an unresolved ambiguity of sign arising from a trigonometric substitution.

Consider, for example, the integral
∫

dx

x3
√

x2 − 1
. In common practice we deal with

this indefinite integral in this way:

Make the substitution x = sec θ. Then dx becomes sec θ tan θ dθ. Thus∫
dx

x3
√

x2 − 1
=

∫
sec θ tan θ dθ

sec3 θ
√

sec2 θ − 1
(1)

=
∫

sec θ tan θ dθ

sec3 θ
√

tan2 θ
(2)

=
∫

sec θ tan θ dθ

sec3 θ tan θ
(3)

=
∫

cos2 θ dθ (4)

=
1
2

∫
(1 + cos 2θ) dθ (5)

=
1
2

(
θ +

1
2

sin 2θ

)
+ c (6)

=
1
2
(θ + sin θ cos θ) + c. (7)

But sec θ = x, and so θ = arcsec x and cos θ =
1
x

, while

sin θ =
√

1− cos2 θ (8)
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=

√
1− 1

x2
(9)

=

√
x2 − 1

x2
(10)

=
√

x2 − 1
x

. (11)

Consequently, ∫
dx

x3
√

x2 − 1
=

1
2

(
arcsec x +

√
x2 − 1
x2

)
+ c. (12)

Let us analyze this calculation carefully. The domain of the integrand is the set
{x ∈ R : |x| > 1 }, and the substitution x = sec θ certainly appears to honor this do-
main, as | sec θ| ≥ 1 for all θ. However, in passing from (2) to (3), we implicitly assume
that tan θ ≥ 0; that is, that θ lies in either the first quadrant or the third quadrant.
This seems to cause no trouble, because sec θ ≥ 1 when θ lies in the first quadrant while
sec θ ≤ −1 when θ lies in the third quadrant. Of course, the fact that an implicit as-
sumption causes no trouble does not excuse us from the error of making that assumption
implicitly ; assumptions ought always to be explicit. And we ought to take warning from
the fact that integrand on the right side of equation (4) is unfailingly non-negative—which
is not the case for the original integrand.

Notice that there are two similar errors in the calculation involving equations (8)
through (11). In writing (8), we have implicitly assumed that sin θ ≥ 0. This places θ
in the first or the second quadrant, and we are now in trouble. When we combine this
assumption with the assumption we made earlier, we find that we have ruled out the pos-
sibility that x < −1—thus invalidating our calculation on a part of the domain of the
integrand. We might take hope, nevertheless, in the fact that in passing from (10) to (11)
we have used the implicit assumption that x > 0 in a way that cancels out the error of sign
that crept in at equation (8): Equation (11) is correct whatever the sign of x! Of course,
in taking such hope, we must abandon the principle that a calculation with several errors
in it doesn’t justify the conclusion it reaches.

There is still an insuperable difficulty, though—one which we can’t ignore on the ground
that we got the right answer. The calculation quite ignores possible differences in the
definition of the inverse secant function. We can see what trouble this causes by imagining
for the moment that we are among those who select the range of the inverse secant function
to be

[
0,

π

2

)
∪
(π

2
, π
]
. For us, the ambiguities of sign that we have discussed above would
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then come together in altogether the wrong fashion, and we would have

d

dx

[
1
2

(
arcsec x +

√
x2 − 1
x2

)
+ c

]

=
1
2

(
1

|x|
√

x2 − 1
+

2− x2

x3
√

x2 − 1

)
(13)

=


1

x3
√

x2 − 1
, when x > 1;

1− x2

x3
√

x2 − 1
, when x < −1.

(14)

Thus, under these conditions, the substitution utterly fails to give the correct antideriva-
tive on that half of the domain of the integrand for which x < −1.

Consider, on the other hand, the definite integral
∫ −

√
2

−2

dx

x3
√

x2 − 1
. Correct appli-

cation of the substitution theorem for definite integrals to the evaluation of this integral
forces us to incorporate correct choices of ambiguous signs at every step. Thus, those who
take the range of the inverse secant function to be

[
0,

π

2

)
∪
(π

2
, π
]

as above must evaluate∫ −
√

2

−2

dx

x3
√

x2 − 1
in the following way:

Put f(x) =
1

x3
√

x2 − 1
, and put ϕ(θ) = sec θ. Then −2 = ϕ

(
2π

3

)
, while

−
√

2 = ϕ

(
3π

4

)
. By the substitution theorem,

∫ −
√

2

−2

dx

x3
√

x2 − 1
=

∫ ϕ(3π/4)

ϕ(2π/3)
f(x) dx (15)

=
∫ 3π/4

2π/3
f [ϕ(θ)]ϕ′(θ) dθ (16)

=
∫ 3π/4

2π/3

sec θ tan θ dθ

sec3 θ
√

sec2 θ − 1
(17)

=
∫ 3π/4

2π/3

sec θ tan θ dθ

sec3 θ
√

tan2 θ
. (18)

But
2π

3
≤ θ ≤ 3π

4
in this integral, and we have

√
tan2 θ = − tan θ for such θ.
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Consequently∫ −
√

2

−2

dx

x3
√

x2 − 1

= −
∫ 3π/4

2π/3
cos2 θ dθ (19)

= −1
2

∫ 3π/4

2π/3
(1 + cos 2θ) dθ (20)

= −1
2

(
θ +

1
2

sin 2θ

) ∣∣∣∣3π/4

2π/3

(21)

= −1
2

(
3π

4
+

1
2

sin
3π

2

)
+

1
2

(
2π

3
+

1
2

sin
4π

3

)
(22)

=
2−

√
3

8
− π

24
. (23)

On the other hand, one who chooses the range of the inverse secant function to be[
−π,−π

2

)
∪
[
0,

π

2

)
must do the calculation a different way:

Put f(x) =
1

x3
√

x2 − 1
, and put ϕ(θ) = sec θ. Then −2 = ϕ

(
−2π

3

)
, while

−
√

2 = ϕ

(
−3π

4

)
. By the substitution theorem,

∫ −
√

2

−2

dx

x3
√

x2 − 1
=

∫ ϕ(−3π/4)

ϕ(−2π/3)
f(x) dx (24)

=
∫ −3π/4

−2π/3
f [ϕ(θ)]ϕ′(θ) dθ (25)

=
∫ −3π/4

−2π/3

sec θ tan θ dθ

sec3 θ
√

sec2 θ − 1
(26)

=
∫ −3π/4

−2π/3

sec θ tan θ dθ

sec3 θ
√

tan2 θ
. (27)

But
−3π

4
≤ θ ≤ −2π

3
in this integral, and we have

√
tan2 θ = tan θ for such θ.

Consequently∫ −
√

2

−2

dx

x3
√

x2 − 1
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=
∫ −3π/4

−2π/3
cos2 θ dθ (28)

=
1
2

∫ −3π/4

−2π/3
(1 + cos 2θ) dθ (29)

=
1
2

(
θ +

1
2

sin 2θ

) ∣∣∣∣−3π/4

−2π/3

(30)

=
1
2

[
−3π

4
+

1
2

sin
(
−3π

2

)]
− 1

2

[
−2π

3
+

1
2

sin
(
−4π

3

)]
(31)

=
2−

√
3

8
− π

24
. (32)
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