AP Calculus 1999 AB FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

September 16, 2017

1 Problem 1

1.1 Part a

If $v(t)=t \sin t^{2}$, then $v(1.5) \sim 1.16711>0$. Motion is upward because $v(1.5)>0$.

1.2 Part b

From $v(t)=t \sin t^{2}$, we find $v^{\prime}(t)=2 t^{2} \cos t^{2}+\sin t^{2}$, when $a(1.5)=v^{\prime}(1.5) \sim-2.04871$. Acceleration is negative, so velocity is decreasing.

1.3 Part c

By the Fundamental Theorem of Calculus,

$$
\begin{align*}
y(t) & =y(0)+\int_{0}^{t} v(\tau) d \tau \tag{1}\\
& =y(0)+\int_{0}^{t} \tau \sin \tau^{2} d \tau \tag{2}\\
& =y(0)-\left.\frac{1}{2} \cos \tau^{2}\right|_{0} ^{t}=3+\frac{1}{2}\left(1-\cos t^{2}\right) . \tag{3}
\end{align*}
$$

Thus, $y(2) \sim 3+\frac{1}{2}(1-\cos 4) \sim 3.82682$.

1.4 Part d

Total distance traveled during the interval $0 \leq t \leq 2$ is

$$
\begin{align*}
\int_{0}^{2}|v(t)| d t & =\int_{0}^{2}\left|t \sin t^{2}\right| d t \tag{4}\\
& =\int_{0}^{\sqrt{\pi}} t \sin t^{2} d t-\int_{\sqrt{\pi}}^{2} t \sin t^{2} d t \tag{5}\\
& =-\left.\frac{1}{2} \cos t^{2}\right|_{0} ^{\sqrt{\pi}}+\left.\frac{1}{2} \cos t^{2}\right|_{\sqrt{\pi}} ^{2} \tag{6}\\
& =-\frac{1}{2}(-1-1)+\frac{1}{2}(\cos 4+1) \tag{7}\\
& =\frac{3}{2}+\frac{1}{2} \cos 4 \sim 1.17318 . \tag{8}
\end{align*}
$$

2 Problem 2

2.1 Part a

The area of the pictured region is

$$
\begin{equation*}
\int_{-2}^{2}\left(4-x^{2}\right) d x=\left.\left(4 x-\frac{1}{3} x^{3}\right)\right|_{-2} ^{2}=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)=\frac{32}{3} . \tag{9}
\end{equation*}
$$

2.2 Part b

Revolving the pictured region about the x-axis produces a solid whose volume is

$$
\begin{align*}
\pi \int_{-2}^{2}\left(16-x^{4}\right) d x & =\left.\pi\left(16 x-\frac{1}{5} x^{5}\right)\right|_{-2} ^{2} \tag{10}\\
& =\pi\left(32-\frac{32}{5}\right)-\pi\left(-32+\frac{32}{5}\right)=\frac{256}{5} \pi \tag{11}
\end{align*}
$$

2.3 Part c

The required equation is

$$
\begin{equation*}
\pi \int_{-2}^{2}\left[\left(k-x^{2}\right)^{2}-(k-4)^{2}\right] d x=\frac{256}{5} \pi . \tag{12}
\end{equation*}
$$

Solution is not required. However, a tedious integration reduces the equation to

$$
\begin{equation*}
\frac{64}{3} k-\frac{256}{5}=\frac{256}{5} \tag{13}
\end{equation*}
$$

which easily gives $k=24 / 5$.

3 Problem 3

3.1 Part a

The midpoint Riemann sum with 4 subdivisions of equal length gives

$$
\begin{equation*}
\int_{0}^{24} R(t) d t \sim 10.4 \times 6+11.2 \times 6+11.3 \times 6+10.2 \times 6=258.6 \tag{14}
\end{equation*}
$$

This means that approximately 258.6 gallons of water flows out of the pipe during the time interval $0 \leq t \leq 24$.

3.2 Part b

The function R is given differentiable on [0,24], so it must also be continuous on that interval. Moreover, $R(0)=9.6=R(24)$. Thus, R meets the requirements of Rolle's Theorem, and we may conclude that there must be a time, t, with $0<t<24$, such that $R^{\prime}(t)=0$.

3.3 Part c

The average rate of flow is approximately

$$
\begin{equation*}
\frac{1}{24} \int_{0}^{24} \frac{1}{79}\left(768+23 t-t^{2}\right) d t=\left.\frac{1}{24} \cdot \frac{1}{79}\left(768 t+\frac{23}{2} t^{2}-\frac{1}{3} t^{3}\right)\right|_{0} ^{24}=\frac{852}{79} \text { gallons/hour. } \tag{15}
\end{equation*}
$$

4 Problem 4

4.1 Part a

An equation for the line tangent to the graph of f at the point where $x=2$ is

$$
\begin{align*}
& y=f(0)+f^{\prime}(0)(x-0), \text { or } \tag{16}\\
& y=2-3 x . \tag{17}
\end{align*}
$$

4.2 Part b

We don't have enough information to decide whether f has an inflection point at $x=0$. If $f(x)=2-5 x-2 \sin x$, then f satisfies the given conditions with $f^{\prime \prime}(x)=-2 \sin x$, so that $f^{\prime \prime}(x)$ undergoes a sign change at $x=0$, meaning that f has an inflection point at $x=0$. However, if $f(x)=3-3 x-\frac{1}{2} x^{2}-\cos x$, then this f also satisfies the given conditions. However $f^{\prime \prime}(x)=\cos x-1$ vanishes when $x=0$, but does not undergo a sign change at $x=0$-meaning that f has no inflection point at $x=0$.

4.3 Part c

An equation for the line tangent to the graph of g at the point where $x=0$ is

$$
\begin{align*}
y=g(0)+g^{\prime}(0)(x-0) & =4+\left[e^{0}(3 \cdot 2+2(-3)](x-0),\right. \text { or } \tag{18}\\
y & =4 . \tag{19}
\end{align*}
$$

4.4 Part d

From $g^{\prime}(x)=e^{-2 x}\left[3 f(x)+2 f^{\prime}(x)\right]$, we have

$$
\begin{align*}
g^{\prime \prime}(x) & =e^{-2 x}\left[3 f^{\prime}(x)+2 f^{\prime \prime}(x)\right]-2 e^{-2 x}\left[3 f(x)+2 f^{\prime}(x)\right] \tag{20}\\
& =3 e^{-2 x} f^{\prime}(x)+2 e^{-2 x} f^{\prime \prime}(x)-6 e^{-2 x} f(x)-4 e^{-2 x} f^{\prime}(x) \tag{21}\\
& =e^{-2 x}\left[-6 f(x)-f^{\prime}(x)+2 f^{\prime \prime}(x)\right] . \tag{22}
\end{align*}
$$

From what we are given regarding $g^{\prime}(x)$ we see that $g^{\prime}(0)=3 \cdot f(0)+2 f^{\prime}(0)=3 \cdot 2+2 \cdot(-3)=$ 0.

From (22), we see that $g^{\prime \prime}(0)=(-6) \cdot 2-(-3)+2 \cdot 0=-9<0$.
By the Second Derivative Test, f has a local maximum at $x=0$.

5 Problem 5

5.1 Part a

On the interval $[2,4]$, the graph is symmetric about the point $(3,0)$, so the integral over $[2,4]$ is zero. Consequently,

$$
\begin{equation*}
\int_{1}^{4} f(t) d t=\int_{1}^{2} f(t) d t+\int_{2}^{4} f(t) d t=\int_{1}^{2} f(t) d t \tag{23}
\end{equation*}
$$

and the latter integral is the area of the trapezoid whose corners are $(1,0),(2,0),(2,1)$, and $(1,4)$, or

$$
\begin{equation*}
\frac{4+1}{2} \cdot 1=\frac{5}{2} . \tag{24}
\end{equation*}
$$

Thus,

$$
\begin{align*}
g(4) & =\frac{5}{2}, \text { and } \tag{25}\\
g(-2) & =\int_{1}^{-2} f(t) d t=-\int_{-2}^{1} f(t) d t \tag{26}
\end{align*}
$$

is the negative of the area of a triangle of base 3 , height 4 , or -6 .

5.2 Part b

By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
g^{\prime}(x)=\frac{d}{d x} \int_{1}^{x} f(t) d t=f(x) \tag{27}
\end{equation*}
$$

Hence $g^{\prime}(1)=f(1)=4$.

5.3 Part c

The absolute minimum of $g(x)$ for $-2 \leq x \leq 4$ is to be found either, on the one hand, at one of the points $x=-2$ or $x=4$, or, on the other hand, at a value of x where $-2<x<4$ and $g^{\prime}(x)=0$. As we have seen in Part a, above, $g(-2)=-6$, and $g(4)=5 / 2$. If $g^{\prime}(x)=0$, then by our first observation in Part b, above, $f(x)=0$. This happens only at $x=3$. But f, and therefore g^{\prime} undergoes a change of sign from positive to negative at $x=3$, so, by the First Derivative Test, g must have a local maximum-which, because f is not a constant function cannot be an absolute minimum for f-at $x=3$. We see, thus, that the absolute minimum for g on $[-2,4]$ is $g(-2)=-6$.

5.4 Part d

If g is to have an inflection point somewhere, then g^{\prime} must change from increasing to decreasing or from decreasing to increasing at that point. This happens when $x=1$, but not when $x=2$. So g has an inflection point at just one of the two points in question.

6 Problem 6

6.1 Part a

If $y=x^{-2}$, then $y^{\prime}=-2 x^{-3}$. So if w is any constant, the equation of the line tangent to the curve $y=x^{-2}$ at the point $\left(w, w^{-2}\right)$ is

$$
\begin{equation*}
y=\frac{1}{w^{2}}-\frac{2}{w^{3}}(x-w)=-\frac{2}{w^{3}} x+\frac{3}{w^{2}} . \tag{28}
\end{equation*}
$$

If $R:(k, 0)$ is the point where the tangent line at $\left(w, w^{-2}\right)$ crosses the x-axis, then

$$
\begin{align*}
0 & =-\frac{2}{w^{3}} k+\frac{3}{w^{2}}, \text { or } \tag{29}\\
k & =\frac{3}{2} w . \tag{30}
\end{align*}
$$

Thus, $w=3 \Rightarrow k=\frac{9}{2}$.

6.2 Part b

We saw in Part a, above, that, in general, $k=\frac{3}{2} w$.

6.3 Part c

Treating w and k as functions of time, t, we differentiate (30) implicitly with respect to t, and we obtain

$$
\begin{equation*}
\frac{d k}{d t}=\frac{3}{2} \frac{d w}{d t} \tag{31}
\end{equation*}
$$

Substituting $\frac{d w}{d t}=7$ units per second and $w=5$ into this equation, we obtain

$$
\begin{equation*}
\frac{d k}{d t}=\frac{3}{2} \frac{d w}{d t}=\frac{3}{2} \cdot 7=\frac{21}{2} \text { units/second. } \tag{32}
\end{equation*}
$$

6.4 Part d

We have seen in Part b, above, that the tangent line to the curve at the point $P:\left(w, w^{-2}\right)$ corresponding to $x=w$ crosses the x-axis at the point $R:(3 w / 2,0)$. Because Q has coordinates ($w, 0$), the area, A, of $\triangle P Q R$ is

$$
\begin{equation*}
A=\frac{1}{2}\left(\frac{3}{2} w-w\right) \cdot \frac{1}{w^{2}}=\frac{1}{4 w} . \tag{33}
\end{equation*}
$$

Another implicit differentiation yields

$$
\begin{equation*}
\frac{d A}{d t}=-\frac{1}{4 w^{2}} \frac{d w}{d t} \tag{34}
\end{equation*}
$$

Substituting the given data for w and for $\frac{d w}{d t}$ into this equation then gives

$$
\begin{equation*}
\frac{d A}{d t}=-\frac{1}{4 \cdot 25} \cdot 7=-\frac{7}{100}<0 \tag{35}
\end{equation*}
$$

and we can conclude that A, having a negative derivative at the moment in question, is decreasing at that time.
Note: The final numeric computation is not necessary. Because of the way the question is worded, it suffices to note that equation (34) guarantees that the derivatives $\frac{d A}{d t}$ and $\frac{d w}{d t}$ have opposite signs.

