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1 Problem 1

1.1 Part a

We solve numerically for the smallest positive number b such that 2−b3 = tan b, obtaining
b ∼ 0.90216. The area of the region R is then∫ b

0
tanx dx+

∫ 21/3

b

(
2− x3

)
dx ∼ 0.72934 (1)

where we have integrated numerically.

1.2 Part b

The area of the region S is, integrating numerically again,∫ b

0

[
2− x3 − tanx

]
dx ∼ 1.16054. (2)

Note: The integral is elementary, but we know the upper limit only approximately, so
there is little point in carrying out an exact integration. Of course,∫ [

2− x3 − tanx
]
dx = 2x− 1

4
x4 + log | cosx|, (3)
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1.3 Part c

Using the method of washers, we find that the area of the solid generated by revolving
the region S about the x-axis is

π

∫ b

0

[
(2− x3)2 − tan2 x

]
dx ∼ 8.33182. (4)

Once again, we have carried out the integration numerically.

Note: Again, the integral is elementary:∫ [
(2− x3)2 − tan2 x

]
dx =

∫ [
5− 4x3 + x6 − sec2 x

]
dx (5)

= 5x− x4 + 1

7
x7 − tanx. (6)

But there is little point in doing the integral symbolically.

2 Problem 2

2.1 Part a

We have

W ′(12) ∼ W (15)−W (9)

15− 9
=

21− 24

6
= −1

2
degrees C/day. (7)

2.2 Part b

The required trapezoidal approximation to the average value is

1

15− 0
· 20 + 2 · 31 + 2 · 28 + 2 · 24 + 2 · 22 + 21

2
· 3 =

251

10
. (8)

2.3 Part c

If P is given by

P (t) = 20 + 10te−t/3, (9)
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then

P ′(t) = 10e−t/3 − 10

3
te−t/3, (10)

and

P ′(12) = −30e−4 ∼ −0.54947. (11)

This means that, at the beginning of the twelfth day, the water temperature is decreasing
at a rate of about 0.54947 degrees Celsius per day.

2.4 Part d

The required average value is

1

15

∫ 15

0
P (t) dt ∼ 25.75743 degrees Celsius. (12)

3 Problem 3

3.1 Part a

When t is near 2, the graph shows that acceleration is near 15 ft/sec2. This is a positive
number, so velocity is increasing in the vicinity of t = 2.

Note: We have phrased our answer this way because the phrase “increasing at t = 2” is
not defined in most calculus textbooks. In this context, the term “increasing” applies only
to functions on intervals.

3.2 Part b

The portion of the acceleration curve on the interval 6 ≤ t ≤ 12 is symmetric, about the
point (6, 0), with the portion of the acceleration curve on the interval (0, 6). Consequently,
the integral of acceleration from 0 to 12 (which is total change in velocity over that inter-
val) is zero. Thus, velocity at t = 12 is 55 feet per second.
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3.3 Part c

The car’s absolute maximum velocity for 0 ≤ t ≤ 18 is 115 ft/sec, which is the velocity
it attains when t = 6. Thereafter velocity decreases as long as acceleration is negative—
that is, while 6 ≤ t ≤ 14. Finally, it increases again while 14 ≤ t ≤ 18. However, the
area under the acceleration curve on the latter interval is smaller than the area between
the acceleration curve and the t-axis on the interval 6 ≤ t ≤ 14, so the total increase
in velocity that accrues while 14 ≤ t ≤ 18 does not balance out the total decrease that
accrued while 6 ≤ t ≤ 14.

This means that velocity attains its absolute maximum for 0 ≤ t ≤ 18 when t = 6. We
calculate this maximum value by finding the area of the trapezoid over the interval 0 ≤
t ≤ 6, which is

2 + 6

2
· 15 = 60, (13)

and adding the initial velocity, 55, to obtain a maximal velocity of 115 ft/sec.

3.4 Part d

The car never reaches a velocity of 0 ft/sec. In fact, the absolute minimum velocity at-
tained by the car occurs when t = 16, and this velocity is the sum of 55 ft/sec, the area of
the region above the t-axis in the interval [0, 6], and the negative of the area of the region
below the t-axis in the interval [6, 16], or 55 + 60− 105 = 10 ft/sec.

4 Problem 4

4.1 Part a

If

h′(x) =
x2 − 2

x
=

(
x−
√
2
)(
x+
√
2
)

x
, (14)

then h′(x) = 0 when x = ±
√
2, so the graph of h has a horizontal tangent when x = ±

√
2.

We note that

• h′(x) < 0 for x < −
√
2;

• h′(x) > 0 for −
√
2 < x < 0;
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• h′(x) < 0 for 0 < x <
√
2;

• h′(x) > 0 for
√
2 < x.

Thus, by the First Derivative Test, h has a local minimum at x = −
√
2, and h has a local

minimum at x =
√
2.

Note: The quantity h′(0) is undefined, but x = 0 fails to be a critical point for h. This is
because h itself need not be defined at x = 0.

4.2 Part b

We have

h′′(x) =
d

dx

[
x− 2x−1

]
= 1 +

2

x2
, (15)

which is always positive—except, of course, when x = 0. Hence h is concave upward on
(−∞, 0) and on (0,∞).

4.3 Part c

The equation of the line tangent to the graph of h at x = 4 is

6 = h(4) + h′(4)(x− 4), or (16)

y = (−3) + 42 − 2

4
(x− 4). (17)

This can be rewritten as

y =
7

2
x− 17. (18)

4.4 Part d

We have h′′(x) = 1 + 2x−2, so that h′′(x) > 1 for all x 6= 0. Thus, h′ is increasing on [4,∞),
and h′(x) > h(4) = 7/2 for all x > 4. Consequently,

h(x)− x(4) =
∫ x

4
h′(ξ) dξ >

∫ x

4

7

2
dξ =

7

2
(x− 4), (19)
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again for all x > 4. Thus, when x > 4, we have

h(x) >
7

2
(x− 4) + h(4) =

7

2
x− 17. (20)

But the right-hand side of (20) is just the right-hand side of the equation of the tangent
line to h at (4,−3) as given in (18). Thus, the line tangent to the graph of y = h(x) at x = 4
lies below the graph of h for x > 4.

5 Problem 5

5.1 Part a

We have f(x) = 4x3 + ax2 + bx+ k, so f ′(x) = 12x2 + 2ax+ b and f ′′(x) = 24x+ 2a. But
there is an inflection point at x = −2, so 0 = f ′′(−2) = −48 + 2a. Thus, a = 24.

So f ′(x) = 12x2 + 48x + b, and, because of the local minimum at x = −1, it follows that
0 = f ′(−1) = −36 + b. Thus, b = 36.

We obtain a = 24 and b = 36. It follows that f(x) = 4x3 + 24x2 + 36x+ k.

5.2 Part b

From Part a, above, we have f(x) = 4x3 + 24x2 + 36x+ k, so

32 =

∫ 1

0
f(x) dx (21)

=

∫ 1

0

(
4x4 + 24x2 + 36x+ k

)
dx (22)

=
(
x4 + 8x3 + 18x2 + kx

) ∣∣∣∣1
0

= 27 + k, (23)

and it follows that k = 5.
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6 Problem 6

6.1 Part a

If y = f(x) passes through the point (3, 1/4) and satisfies the equation

y′ = y2(6− 2x), (24)

then

y′
∣∣∣∣
(3,1/4)

=

(
1

4

)2

(6− 2 · 3) = 0, (25)

and

y′′ = 2yy′(6− 2x)− 2y2, (26)

so that

y′′
∣∣∣∣
(3,1/4)

= −1

8
. (27)

6.2 Part b

We have f ′(x) =
[
f(x)

]2
(6−2x) and f(3) = 1/4. Therefore f , as the solution of a differen-

tial equation, is continuous on its domain and, in particular, f(x) is positive in some open
interval centered at x = 3. For x in that interval, we may write∫ x

3

f ′(ξ)

[f(ξ)]2
dξ =

∫ x

3
(6− 2ξ) dξ. (28)

Making use of the facts that f(3) = 1/4 and that f remains non-zero throughout the
interval in question, we carry out the integrations to find that

− 1

f(ξ)

∣∣∣∣x
3

=
(
6ξ − ξ2

) ∣∣∣∣x
3

; (29)

− 1

f(x)
+ 4 = (6x− x2)− (6 · 3− 32); (30)

− 1

f(x)
= (6x− x2)− 13; (31)

f(x) =
1

x2 − 6x+ 13
. (32)
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