AP Calculus 2001 AB FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

August 9, 2017

1 Problem 1

1.1 Part a

We solve numerically for the smallest positive number b such that $2-b^{3}=\tan b$, obtaining $b \sim 0.90216$. The area of the region R is then

$$
\begin{equation*}
\int_{0}^{b} \tan x d x+\int_{b}^{2^{1 / 3}}\left(2-x^{3}\right) d x \sim 0.72934 \tag{1}
\end{equation*}
$$

where we have integrated numerically.

1.2 Part b

The area of the region S is, integrating numerically again,

$$
\begin{equation*}
\int_{0}^{b}\left[2-x^{3}-\tan x\right] d x \sim 1.16054 \tag{2}
\end{equation*}
$$

Note: The integral is elementary, but we know the upper limit only approximately, so there is little point in carrying out an exact integration. Of course,

$$
\begin{equation*}
\int\left[2-x^{3}-\tan x\right] d x=2 x-\frac{1}{4} x^{4}+\log |\cos x| \tag{3}
\end{equation*}
$$

1.3 Part c

Using the method of washers, we find that the area of the solid generated by revolving the region S about the x-axis is

$$
\begin{equation*}
\pi \int_{0}^{b}\left[\left(2-x^{3}\right)^{2}-\tan ^{2} x\right] d x \sim 8.33182 \tag{4}
\end{equation*}
$$

Once again, we have carried out the integration numerically.
Note: Again, the integral is elementary:

$$
\begin{align*}
\int\left[\left(2-x^{3}\right)^{2}-\tan ^{2} x\right] d x & =\int\left[5-4 x^{3}+x^{6}-\sec ^{2} x\right] d x \tag{5}\\
& =5 x-x^{4}+\frac{1}{7} x^{7}-\tan x \tag{6}
\end{align*}
$$

But there is little point in doing the integral symbolically.

2 Problem 2

2.1 Part a

We have

$$
\begin{equation*}
W^{\prime}(12) \sim \frac{W(15)-W(9)}{15-9}=\frac{21-24}{6}=-\frac{1}{2} \text { degrees C/day. } \tag{7}
\end{equation*}
$$

2.2 Part b

The required trapezoidal approximation to the average value is

$$
\begin{equation*}
\frac{1}{15-0} \cdot \frac{20+2 \cdot 31+2 \cdot 28+2 \cdot 24+2 \cdot 22+21}{2} \cdot 3=\frac{251}{10} . \tag{8}
\end{equation*}
$$

2.3 Part c

If P is given by

$$
\begin{equation*}
P(t)=20+10 t e^{-t / 3}, \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
P^{\prime}(t)=10 e^{-t / 3}-\frac{10}{3} t e^{-t / 3} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{\prime}(12)=-30 e^{-4} \sim-0.54947 . \tag{11}
\end{equation*}
$$

This means that, at the beginning of the twelfth day, the water temperature is decreasing at a rate of about 0.54947 degrees Celsius per day.

2.4 Part d

The required average value is

$$
\begin{equation*}
\frac{1}{15} \int_{0}^{15} P(t) d t \sim 25.75743 \text { degrees Celsius. } \tag{12}
\end{equation*}
$$

3 Problem 3

3.1 Part a

When t is near 2, the graph shows that acceleration is near $15 \mathrm{ft} / \mathrm{sec}^{2}$. This is a positive number, so velocity is increasing in the vicinity of $t=2$.

Note: We have phrased our answer this way because the phrase "increasing at $t=2$ " is not defined in most calculus textbooks. In this context, the term "increasing" applies only to functions on intervals.

3.2 Part b

The portion of the acceleration curve on the interval $6 \leq t \leq 12$ is symmetric, about the point $(6,0)$, with the portion of the acceleration curve on the interval $(0,6)$. Consequently, the integral of acceleration from 0 to 12 (which is total change in velocity over that interval) is zero. Thus, velocity at $t=12$ is 55 feet per second.

3.3 Part c

The car's absolute maximum velocity for $0 \leq t \leq 18$ is $115 \mathrm{ft} / \mathrm{sec}$, which is the velocity it attains when $t=6$. Thereafter velocity decreases as long as acceleration is negativethat is, while $6 \leq t \leq 14$. Finally, it increases again while $14 \leq t \leq 18$. However, the area under the acceleration curve on the latter interval is smaller than the area between the acceleration curve and the t-axis on the interval $6 \leq t \leq 14$, so the total increase in velocity that accrues while $14 \leq t \leq 18$ does not balance out the total decrease that accrued while $6 \leq t \leq 14$.

This means that velocity attains its absolute maximum for $0 \leq t \leq 18$ when $t=6$. We calculate this maximum value by finding the area of the trapezoid over the interval $0 \leq$ $t \leq 6$, which is

$$
\begin{equation*}
\frac{2+6}{2} \cdot 15=60 \tag{13}
\end{equation*}
$$

and adding the initial velocity, 55 , to obtain a maximal velocity of $115 \mathrm{ft} / \mathrm{sec}$.

3.4 Part d

The car never reaches a velocity of $0 \mathrm{ft} / \mathrm{sec}$. In fact, the absolute minimum velocity attained by the car occurs when $t=16$, and this velocity is the sum of $55 \mathrm{ft} / \mathrm{sec}$, the area of the region above the t-axis in the interval $[0,6]$, and the negative of the area of the region below the t-axis in the interval [6,16], or $55+60-105=10 \mathrm{ft} / \mathrm{sec}$.

4 Problem 4

4.1 Part a

If

$$
\begin{equation*}
h^{\prime}(x)=\frac{x^{2}-2}{x}=\frac{(x-\sqrt{2})(x+\sqrt{2})}{x}, \tag{14}
\end{equation*}
$$

then $h^{\prime}(x)=0$ when $x= \pm \sqrt{2}$, so the graph of h has a horizontal tangent when $x= \pm \sqrt{2}$. We note that

- $h^{\prime}(x)<0$ for $x<-\sqrt{2}$;
- $h^{\prime}(x)>0$ for $-\sqrt{2}<x<0$;
- $h^{\prime}(x)<0$ for $0<x<\sqrt{2}$;
- $h^{\prime}(x)>0$ for $\sqrt{2}<x$.

Thus, by the First Derivative Test, h has a local minimum at $x=-\sqrt{2}$, and h has a local minimum at $x=\sqrt{2}$.

Note: The quantity $h^{\prime}(0)$ is undefined, but $x=0$ fails to be a critical point for h. This is because h itself need not be defined at $x=0$.

4.2 Part b

We have

$$
\begin{equation*}
h^{\prime \prime}(x)=\frac{d}{d x}\left[x-2 x^{-1}\right]=1+\frac{2}{x^{2}}, \tag{15}
\end{equation*}
$$

which is always positive-except, of course, when $x=0$. Hence h is concave upward on $(-\infty, 0)$ and on $(0, \infty)$.

4.3 Part c

The equation of the line tangent to the graph of h at $x=4$ is

$$
\begin{align*}
& 6=h(4)+h^{\prime}(4)(x-4), \text { or } \tag{16}\\
& y=(-3)+\frac{4^{2}-2}{4}(x-4) . \tag{17}
\end{align*}
$$

This can be rewritten as

$$
\begin{equation*}
y=\frac{7}{2} x-17 \tag{18}
\end{equation*}
$$

4.4 Part d

We have $h^{\prime \prime}(x)=1+2 x^{-2}$, so that $h^{\prime \prime}(x)>1$ for all $x \neq 0$. Thus, h^{\prime} is increasing on $[4, \infty)$, and $h^{\prime}(x)>h(4)=7 / 2$ for all $x>4$. Consequently,

$$
\begin{equation*}
h(x)-x(4)=\int_{4}^{x} h^{\prime}(\xi) d \xi>\int_{4}^{x} \frac{7}{2} d \xi=\frac{7}{2}(x-4) \tag{19}
\end{equation*}
$$

again for all $x>4$. Thus, when $x>4$, we have

$$
\begin{equation*}
h(x)>\frac{7}{2}(x-4)+h(4)=\frac{7}{2} x-17 . \tag{20}
\end{equation*}
$$

But the right-hand side of (20) is just the right-hand side of the equation of the tangent line to h at $(4,-3)$ as given in (18). Thus, the line tangent to the graph of $y=h(x)$ at $x=4$ lies below the graph of h for $x>4$.

5 Problem 5

5.1 Part a

We have $f(x)=4 x^{3}+a x^{2}+b x+k$, so $f^{\prime}(x)=12 x^{2}+2 a x+b$ and $f^{\prime \prime}(x)=24 x+2 a$. But there is an inflection point at $x=-2$, so $0=f^{\prime \prime}(-2)=-48+2 a$. Thus, $a=24$.
So $f^{\prime}(x)=12 x^{2}+48 x+b$, and, because of the local minimum at $x=-1$, it follows that $0=f^{\prime}(-1)=-36+b$. Thus, $b=36$.
We obtain $a=24$ and $b=36$. It follows that $f(x)=4 x^{3}+24 x^{2}+36 x+k$.

5.2 Part b

From Part a, above, we have $f(x)=4 x^{3}+24 x^{2}+36 x+k$, so

$$
\begin{align*}
32 & =\int_{0}^{1} f(x) d x \tag{21}\\
& =\int_{0}^{1}\left(4 x^{4}+24 x^{2}+36 x+k\right) d x \tag{22}\\
& =\left.\left(x^{4}+8 x^{3}+18 x^{2}+k x\right)\right|_{0} ^{1}=27+k, \tag{23}
\end{align*}
$$

and it follows that $k=5$.

6 Problem 6

6.1 Part a

If $y=f(x)$ passes through the point $(3,1 / 4)$ and satisfies the equation

$$
\begin{equation*}
y^{\prime}=y^{2}(6-2 x), \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
\left.y^{\prime}\right|_{(3,1 / 4)}=\left(\frac{1}{4}\right)^{2}(6-2 \cdot 3)=0 \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}=2 y y^{\prime}(6-2 x)-2 y^{2}, \tag{26}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left.y^{\prime \prime}\right|_{(3,1 / 4)}=-\frac{1}{8} . \tag{27}
\end{equation*}
$$

6.2 Part b

We have $f^{\prime}(x)=[f(x)]^{2}(6-2 x)$ and $f(3)=1 / 4$. Therefore f, as the solution of a differential equation, is continuous on its domain and, in particular, $f(x)$ is positive in some open interval centered at $x=3$. For x in that interval, we may write

$$
\begin{equation*}
\int_{3}^{x} \frac{f^{\prime}(\xi)}{[f(\xi)]^{2}} d \xi=\int_{3}^{x}(6-2 \xi) d \xi \tag{28}
\end{equation*}
$$

Making use of the facts that $f(3)=1 / 4$ and that f remains non-zero throughout the interval in question, we carry out the integrations to find that

$$
\begin{align*}
-\left.\frac{1}{f(\xi)}\right|_{3} ^{x} & =\left.\left(6 \xi-\xi^{2}\right)\right|_{3} ^{x} \tag{29}\\
-\frac{1}{f(x)}+4 & =\left(6 x-x^{2}\right)-\left(6 \cdot 3-3^{2}\right) ; \tag{30}\\
-\frac{1}{f(x)} & =\left(6 x-x^{2}\right)-13 ; \tag{31}\\
f(x) & =\frac{1}{x^{2}-6 x+13} . \tag{32}
\end{align*}
$$

