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1 Problem1

1.1 Parta

We solve numerically for the smallest positive number b such that 2— b = tan b, obtaining
b ~ 0.90216. The area of the region R is then

b 21/3
/ tanz dz + / (2 — 2%) dz ~ 0.72934 (1)
0 b

where we have integrated numerically.

1.2 Partb

The area of the region S is, integrating numerically again,

b
/ (2 — 2® — tanz] do ~ 1.16054. )
0

Note: The integral is elementary, but we know the upper limit only approximately, so
there is little point in carrying out an exact integration. Of course,

1
/[Q—xg—tanx] da::2x—1:1:4+log\cosx|, 3)



1.3 Partc

Using the method of washers, we find that the area of the solid generated by revolving
the region S about the z-axis is

b
w/ [(2—2®)? — tan® 2] dz ~ 8.33182. (4)
0

Once again, we have carried out the integration numerically.

Note: Again, the integral is elementary:

/ [(2—2°%)% —tan® 2] do = / 5 — 42® + 2% — sec® 2] dz (5)

7

1
= bz —a* + -7 - tan x. (6)

But there is little point in doing the integral symbolically.

2 Problem 2
2.1 Parta
We have
W' (12) ~ W(lf; : ;/V(Q) _ A g 24 —% degrees C/day. )
22 Parthb

The required trapezoidal approximation to the average value is

1 204+2-314+2-2842-24+2-22+21 3_251
15—0 2 10

(8)

23 Partc
If P is given by

P(t) = 20 4 10te™*/?, )



then
Pt) = 1073 — ?te’t/?’, (10)

and

P'(12) = —30e™* ~ —0.54947. (11)

This means that, at the beginning of the twelfth day, the water temperature is decreasing
at a rate of about 0.54947 degrees Celsius per day.

24 Partd

The required average value is
1 15
i P(t) dt ~ 25.75743 degrees Celsius. (12)
0

3 Problem 3

3.1 Parta

When t is near 2, the graph shows that acceleration is near 15 ft/sec?. This is a positive
number, so velocity is increasing in the vicinity of ¢t = 2.

Note: We have phrased our answer this way because the phrase “increasing at ¢t = 2” is
not defined in most calculus textbooks. In this context, the term “increasing” applies only
to functions on intervals.

3.2 Partb

The portion of the acceleration curve on the interval 6 < ¢ < 12 is symmetric, about the
point (6, 0), with the portion of the acceleration curve on the interval (0, 6). Consequently,
the integral of acceleration from 0 to 12 (which is total change in velocity over that inter-
val) is zero. Thus, velocity at t = 12 is 55 feet per second.



3.3 Partc

The car’s absolute maximum velocity for 0 < ¢ < 18 is 115 ft/sec, which is the velocity
it attains when ¢ = 6. Thereafter velocity decreases as long as acceleration is negative—
that is, while 6 < ¢ < 14. Finally, it increases again while 14 < ¢t < 18. However, the
area under the acceleration curve on the latter interval is smaller than the area between
the acceleration curve and the t-axis on the interval 6 < ¢ < 14, so the total increase
in velocity that accrues while 14 < ¢ < 18 does not balance out the total decrease that
accrued while 6 < t < 14.

This means that velocity attains its absolute maximum for 0 < ¢t < 18 when ¢ = 6. We
calculate this maximum value by finding the area of the trapezoid over the interval 0 <

t < 6, whichis
216
% 15 = 60, (13)

and adding the initial velocity, 55, to obtain a maximal velocity of 115 ft/sec.

3.4 Partd

The car never reaches a velocity of 0 ft/sec. In fact, the absolute minimum velocity at-
tained by the car occurs when ¢ = 16, and this velocity is the sum of 55 ft/sec, the area of
the region above the t-axis in the interval [0, 6], and the negative of the area of the region
below the t-axis in the interval [6, 16], or 55 + 60 — 105 = 10 ft/sec.

4 Problem 4
41 Parta
If
W) = a:2x—2 _ ($_\/§)m($+ﬂ)7 (14)

then h/(x) = 0 when 2 = +v/2, so the graph of & has a horizontal tangent when x = ++/2.
We note that

o W(z)<O0forz < —2;
e h/(x) >0for —v2 <z <0;



e h(z) <0for0 <z <2
e h/(z) > 0forv2 < z.

Thus, by the First Derivative Test, i has a local minimum at x = —+/2, and h has a local
minimum at z = /2.

Note: The quantity #/(0) is undefined, but « = 0 fails to be a critical point for . This is
because h itself need not be defined at z = 0.

4.2 Partb

We have

h"(z) = a [z — 295_1] =1+

o (15)

ek

which is always positive—except, of course, when x = 0. Hence h is concave upward on
(—00,0) and on (0, c0).

4.3 Partc

The equation of the line tangent to the graph of hatz = 4 is

6 = h(4) + h'(4)(z — 4), or (16)

y:(—3)+42_2(:c—4). 17)
This can be rewritten as

y = ;az —17. (18)

44 Partd

We have h”(z) = 1+ 2272, so that h”/(z) > 1 for all = # 0. Thus, &' is increasing on [4, 00),
and P/(z) > h(4) = 7/2 for all z > 4. Consequently,

) ot = [ W©de> [*Tde= -, 19)



again for all z > 4. Thus, when x > 4, we have
7 7
h(z) > 5(3: —4)+h(4) = 2%~ 17. (20)
But the right-hand side of (20) is just the right-hand side of the equation of the tangent

line to h at (4, —3) as given in (18). Thus, the line tangent to the graph of y = h(x) atz =4
lies below the graph of h for z > 4.

5 Problem 5

5.1 Parta

We have f(z) = 423 + ax® + bz + k, so f'(z) = 122 + 2az + band f”(z) = 24z + 2a. But
there is an inflection point at x = —2,s0 0 = f”(—2) = —48 + 2a. Thus, a = 24.

So f'(x) = 1222 4 48z + b, and, because of the local minimum at z = —1, it follows that
0= f/(—1) = —36 + b. Thus, b = 36.

We obtain a = 24 and b = 36. It follows that f(z) = 423 + 2422 + 362 + k.

5.2 Partb

From Part a, above, we have f(x) = 423 + 2422 + 362 + k, so

1
32 = / f(z)dx (21)
0
1
_ / (42* + 242 + 362 + k) dx (22)
0
1
= (2" +82% + 182% + kx) | =27 +k, (23)

0

and it follows that k = 5.



6 Problem 6

6.1 Parta

If y = f(x) passes through the point (3,1/4) and satisfies the equation

y' = y*(6 — 2z), (24)
then
1 2
y' = <> (6 -2 3) =0, (25)
@14 \4
and
y" = 2yy' (6 — 2z) — 2y°, (26)
so that
| =g 27)
(3,1/4)
6.2 Partb

We have f'(z) = [f(z)] *(6—2z) and f(3) = 1/4. Therefore , as the solution of a differen-
tial equation, is continuous on its domain and, in particular, f(x) is positive in some open
interval centered at 2 = 3. For z in that interval, we may write

[ = [0-s0s

Making use of the facts that f(3) = 1/4 and that f remains non-zero throughout the
interval in question, we carry out the integrations to find that

x x

| = 6| ; (29)
—f(lx)+4:(6:c—x2)—(6~3—32); (30)
_f(lx) = (62 — %) — 13; (31)
J@) = o (32)



