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1 Problem 1

1.1 Part a

If f(x) = 4x2 − x3 and g(x) = 18 − 3x, then the curves have an intersection in the first
quadrant where x = 3. Setting f(x) = g(x) we find that x3−4x2−3x+18 = 0. We note that
x = 3 is a solution of this equation, and that f(3) = g(3) = 9. Moreover, f ′(x) = 8x− 3x2,
and thus, f ′(3) = −3, which is precisely the slope of the line y = 18 − 3x = g(x). It
follows that the line y = 18 − 3x is the tangent line to the graph of y = f(x) at the point
x = 3.

1.2 Part b

The solutions of the equation f(x) = 0 are x = 0 and x = 4. The solution of the equation
18− 3x = 0 is x = 6

The region R extends horizontally from x = 3 on the left to x = 6 on the right, so the area,
AR of R is given by

AR =

∫ 4

3

[
(18− 3x)−

(
4x2 − x3

)]
dx+

∫ 6

4
(18− 3x) dx (1)
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Now∫ 4

3

[
(18− 3x)−

(
4x2 − x3

)]
dx =

[
18x− 3

2
x2 − 4

3
x3 +

1

4
x4
] ∣∣∣∣4

3

(2)

=

(
72− 24− 256

3
+ 64

)
−
(
54− 27

2
− 36 +

81

4

)
(3)

=
80

3
− 99

4
=

23

12
∼ 1.91667, (4)

while ∫ 6

4
(18− 3x) dx =

(
18x− 3

2
x2
) ∣∣∣∣6

4

(5)

= (108− 54)− (72− 24) = 54− 48 = 6. (6)

Thus

AR =
23

12
+ 6 =

95

12
∼ 7.91667. (7)

1.3 Part c

The curve y = 4x2 − x3 intersects the x-axis, as we have seen in Part a, above, at x = 0
and at x = 4. thus, the volume generated when the region R is revolved about the x-axis
is

π

∫ 4

0

(
4x2 − x3

)2
dx = π

∫ 4

0

(
16x4 − 8x5 + x6

)
dx (8)

= π

(
16

5
x5 − 4

3
x6 +

1

7
x7
) ∣∣∣∣4

0

=
16384

105
π ∼ 490.20813. (9)

Remark: This is a calculator-active problem, and we can save time by doing the integra-
tions of Parts b and c numerically.

2 Problem 2

Oil is pumped into the tank at H(t) gallons per hour and is removed at the rate R(t)
gallons per hour for 0 ≤ t ≤ 12, where H and R are given by

H(t) = 2 +
10

1 + ln(1 + t)
; (10)

R(t) = 12 sin
t2

47
. (11)
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2.1 Part a

The amount pumped into the tank during the time interval 0 ≤ t ≤ 12 is given by∫ 12

0
H(t) dt =

∫ 12

0

[
2 +

10

1 + ln(t+ 1)

]
dt ∼ 70.57086 gallons, (12)

where we have carried out the integration numerically.

2.2 Part b

At time t, the rate of change of volume of oil in the tank is H(t)−R(t). At time t = 6, this
is

H(6)−R(6) = 2 +
10

1 + ln 7
− 12 sin

36

47
(13)

∼ −2.9419 gallons per hour. (14)

The level of oil in the tank is falling when t = 6 because the rate of change of volume is
negative at that time.

2.3 Part c

We are given that there were 125 gallons of oil in the tank when t = 0. Thus, the volume
V (t) of oil in the tank at time t is, by the Fundamental Theorem of Calculus,

V (t) = 125 +

∫ t

0
[H(τ)−R(τ)] dτ (15)

= 125 +

∫ t

0

[
2 +

10

1 + ln(1 + τ)
− 12 sin

τ2

47

]
dτ. (16)

Integrating numerically, we find that the volume of oil in the amount tank at t = 12
is

V (12) = 25 +

∫ 12

0
[H(τ)−R(τ)] dτ (17)

= 125 +

∫ t

0

[
2 +

10

1 + ln(1 + τ)
− 12 sin

τ2

47

]
dτ ∼ 122.02571 gallons. (18)

3



2 4 6 8 10 12

-5

-2.5

2.5

5

7.5

10

Figure 1: Plot of H(t)−R(t) (Problem 2, Part d)

2.4 Part d

See Figure 1 for a plot of the rate at which the volume of the oil in the tank changes.

This rate is positive, and the volume V (t) increases, from t = 0 until about t = 5. The
rate is negative, and the volume decreases from about t = 5 until a little after t = 11.
Thereafter, the volume increases. This means that the minimum amount of oil in the tank
occurs when t = 0, or when t = 12, or when t is the value near 11 for which the plot
crosses the t-axis. (We rule out the value of t near 5 because it gives a local maximum—
which can’t be a global minimum—for V .)

Solving numerically, we find that t0 ∼ 11.31847 gives the zero ofH(t)−V (t) near 11.

Using (16), and carrying out the required integrations numerically, we find that

V (0) = 125; (19)
V (t0) ∼ 120.73818; (20)
V (12) ∼ 122.02571. (21)

We conclude that the volume of oil in the tank is minimal when t ∼ 11.31847.

3 Problem 3

3.1 Part a

Average radius is
1

720

∫ 360

0
B(x) dx.
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3.2 Part b

The required midpoint Riemann sum is

1

720

[
20 · (120− 0) + 30 · (240− 120) + 24 · (360− 240)

]
= 14 (22)

3.3 Part c

The integral π
∫ 275

125

[
B(x)

2

]2
dx gives the volume, in cubic centimeters, of the segment of

the blood vessel that extends from x = 125 mm to x = 275 mm.

3.4 Part d

The function B is given twice differentiable, so if 0 ≤ a < b ≤ 360, then B is continuous
on [a, b] and differentiable on (a, b). Also, B′ is continuous on [a, b] and differentiable on
(a, b). (We interpret continuity and differentiability at an endpoint of an interval in the
appropriate one-sided sense.) Consequently, Rolle’s Theorem can be applied to B on any
interval, 0 ≤ a < b ≤ 360 for which B(a) = B(b). Similarly for B′.

We have B(60) = B(180). By Rolle’s Theorem, then, there is a number ξ1 ∈ (60, 180) for
which B′(ξ1) = 0. We also have B(240) = B(360), so—again by Rolle’s Theorem—there
is a number ξ2 ∈ (240, 360) such that B′(ξ2) = 0. It is clear that ξ1 < ξ2 because we know
that ξ1 < 180 < 240 < ξ2.

Now B′(ξ1) = 0 = B′(ξ2), and a third application of Rolle’s Theorem, this time to B′ on
the interval [ξ1, ξ2], yields a number η ∈ (ξ1, ξ2) such that B′′(η) = 0. Noting that 0 < ξ1 <
η < ξ2 < 360, we conclude that we have found η ∈ (0, 360) such that B′′(η) = 0.

4 Problem 4

4.1 Part a

If v(t) = e1−t − 1 then acceleration is a(t) = v′(t) = −e1−t, and a(3) = −e−2.
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4.2 Part b

Speed, σ(t) at time t is σ(t) = |v(t)|, so σ2 = v2. Thus, 2σσ′ = 2vv′ and

σ′(t) =
v(t)

σ(t)
v′(t) =

v(t)

|v(t)|
v′(t). (23)

Thus

σ′(3) =
v(3)

|v(3)|
v′(3) =

e−2 − 1

|e−2 − 1|
(
−e−2

)
> 0. (24)

The function σ′ is continuous near t = 3, and so is therefore positive in some open interval
centered at t = 3. Therefore σ(t) is increasing near t = 3.

Note: The term increasing is almost always defined for functions over intervals, and al-
most never at isolated points. The issue is that a function like

f(x) =

x2 sin
(
1

x

)
+
x

2
when x 6= 0

0 when x = 0
(25)

has a positive (but discontinuous) derivative at the origin but fails to be increasing on any
open interval that contains the origin.

Technically, the question, as phrased, is unanswerable. But the readers have, historically,
paid no attention to this subtlety.

4.3 Part c

The particle changes direction where the derivative of position with respect to time, which
is velocity, changes sign. This happens only when e1−t − 1 = 0, or when t = 1.

4.4 Part d

The total distance traveled ( as opposed to the total displacement) over the time interval
[0, 3] is the integral of speed over 0 ≤ t ≤ 3. This is∫ 3

0
σ(t) dt =

∫ 1

0

(
e1−t − 1

)
dt+

∫ 3

1

(
1− e1−t

)
dt (26)

=
(
−e1−t − t

) ∣∣∣∣1
0

+
(
t+ e1−t

) ∣∣∣∣3
1

(27)

= [(−1− 1)− (−e)] +
[
(3 + e−2)− (1 + 1)

]
= e− 1 + e−2. (28)
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5 Problem 5

5.1 Part a

g(3) is the sum of the area of a rectangle of height 2, base 1, with the area of a triangle of
height 2, base 1, which is 2+1 = 3. By the Fundamental Theorem of Calculus, g′(x) = f(x),
so g′(3) = f(3) = 2. In the interval [2, 4], the Fundamental Theorem of Calculus tells us
that

g′(x) = f(x) = f(4) +
f(4)− f(2)

4− 2
(x− 4) (29)

= 0 +
0− 4

4− 2
(x− 4) = −2(x− 4) (30)

= 8− 2x, (31)

so

g′′(x) = −2 (32)

on [2, 4]. Hence, g′′(3) = −2.

5.2 Part b

The average rate of change of g on [0, 3] is

g(3)− g(0)
3− 0

=
3− (−4)

3
=

7

3
. (33)

See Part a, above, for the calculation of g(3). To find g(0) we simply observe that

g(0) =

∫ 0

2
f(t) dt, (34)

which is the negative of the area of a triangle of base 2, height 4, which is −4.

5.3 Part c

By the Fundamental Theorem of Calculus, g′(x) = f(x). Thus, on the interval (0, 3), the
function g′(x) takes on its average value 7

3 just twice—where the horizontal line y = 7
3

intersects the graph of f .
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One intersection lies in the interval [0, 2] where f(x) = 2x. Thus, this intersection is at
x = 7

6 . The other intersection lies in the interval [2, 4], where f(x) = 8 − 2x, as we have
seen in Part a, above. This intersection must therefore be at x = 17

6 .

We conclude that the only such points lie at x = 7
6 and at x = 17

6 .

5.4 Part d

Inflection points occur where the montonicity of the derivative changes from increasing to
decreasing, or vice versa. There are two such points for g′(x) = f(x) (which equality we
know from the Fundamental Theorem of Calculus). They are at x = 2 and at x = 5.

6 Problem 6

6.1 Part a

If f satisfies f ′(x) = x
√
f(x), with f(3) = 25, then f ′(3) = 3 ·

√
25 = 15. Thus,

f ′′(3) =
√
f(3) + 3 · f ′(3)

2
√
f(3)

(35)

=
√
25 +

3 · 15
2 ·
√
25

(36)

= 5 +
9

2
=

19

2
. (37)

6.2 Part b

We have, from f ′(x) = x
√
f(x),

f ′(x)√
f(x)

= x. (38)

Now f(3) = 25, and as the solution of a differential equation, f must be a continuous
function near ξ = 3. It follows that f(ξ) > 0 on some open interval centered at ξ = 3.
Choosing any value of x lying in such an interval, we may write∫ x

3

f ′(ξ)√
f(ξ)

dξ =

∫ x

3
ξ dξ. (39)
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Carrying out the anti-differentiations, we find that

2
√
f(ξ)

∣∣∣∣x
3

=
1

2
ξ2
∣∣∣∣x
3

. (40)

But f(3) = 25, so this becomes

2
√
f(x)− 2

√
25 =

x2

2
− 9

2
, (41)

or

√
f(x) =

x2

4
+

11

4
. (42)

We conclude that

f(x) =
1

16
(x2 + 11)2. (43)
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