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1 Problem1

1.1 Parta

The two curves intersect when z = a, where \/a = e~3%. Solving numerically, we find that
a ~ 0.23873. Thus, we find (after a numerical integration) that the area of the region R
is

/ 1 (Vz — e %) dz ~ 0.44263. 1)

Note: The exact integral is

1

/1 (Vo — 7‘_337) dx = % [21‘3/2 + 6_333} (2)

1
3

However, we know a only approximately, so “exact” integration is misleading.

a

(2 + 6_3) — é (2&3/2 + 6_3“> . 3)

1.2 Partb

This problem is most easily solved using the method of washers. The required volume,
V,is

T I ®
~ 1.42356. ©)



It is also possible—but probably not wise—to use the method of shells:
Va 1 1 )
V:27T/ (1—y)<1+3lny) dy+27r/ (1—y)(1—y*)dy. (6)
e—3 a

Note: For the sake of completeness (See the Note to Part a, above), we record the “exact”
value:

1
V= i (—8a3/2 +3a% 4+ e — 46737 f 473 — 0 4 5) . (7)

1.3 Partc

The area A(h) of the cross section meeting the z-axis at x = h is
2
A(h) =5 (\/E - e_3h) )
The required volume is therefore
1
/ A(x) dx ~ 1.55435. )

The integral is not elementary, and we have carried out the integration numerically.

2 Problem 2

2.1 Parta

We are given
2
v(t) = —(t+1)sin X (10)

so acceleration a(t) is

a(t) =1'(t) = —t(1+1) cosI;2 — sin t; (11)



Setting ¢ = 2 then gives

v(2) = —3sin 2; (12)

a(2) = —6cos2 —sin 2. (13)
Speed o(t) is given by o(t) = |v(t)], so [o(t)]> = [v(t)]?, or 0% = v%. Thus, at least when
v # 0,200 =20/, or

1 v(t) V(1) = v(t) o
Thus,
/ o v(2) v o _
o (2) ’v(2)| (2) 1.58758 < 0, (15)

and it follows from the continuity of ¢’ that speed is decreasing near t = 2.
y P g

2.2 Partb

Changes in the direction of motion correspond to local extrema for position—which can
occur only where the derivative of position, i.e. velocity, changes sign. If v(t) = 0, then
either 1 +¢ = 0 or sin(t?/2) = 0. In the interval (0,3), 1 + ¢ is positive, while sin(t?/2)
changes sign only at t2 = 2, or t = /2. Thus, t = /27 gives the only time at which a
direction change occurs.

2.3 Partc

Total distance traveled during 0 < ¢ < 3 is (integrating numerically)

3
/0 lo(t)] dt ~ 4.33382. (16)

24 Partd

By the Fundamental Theorem of Calculus, position z(t) at time ¢ is given by

z(t) =1 +/0 v(T) dr. (17)



Maximal distance from the origin for 0 < ¢t < 3 must then correspond to one of ¢t = 0,
t = V2m or t = 3—the endpoints of the interval and the only critical point. Doing the
necessary integrations numerically, we find that

z(0) = 1; (18)
V2r
T (\/ﬂ) =1 +/0 : v(T) dr ~ —2.26548 (19)
z(3) =1+ /311(7') dr ~ —1.19715. (20)
0

Maximal distance from the origin therefore occurs when ¢t = v/27, and is approximately
2.26548.

3 Problem 3

3.1 Parta

An approximate value for R'(45) is given by

R/ (45) ~ R(i?()) : fO(ZLO) = 551_040 = g gallons per minute. (21)

3.2 Partb

If R(t) is increasing fastest at t = 45, then R’ is maximal when ¢ = 45. R’ is differentiable,
so this means that R’ has a critical point at ¢ = 45, or that R”(45) = 0.

3.3 Partc

The required left Riemann sum is

20 - (30 — 0) + 30 - (40 — 30) + 40 - (50 — 40) + 55 - (70 — 50) + 65 - (90 — 70) = 3700.
(22)

Note that R is increasing on [0,90], and this means that R(t) is minimal for each of the
sub-intervals we consider at that sub-interval’s left endpoint. We conclude that

90
3700 < / R(t) dt. (23)
0

4



3.4 Partd

If 0 < b <90, then fé) R(t) dt is the amount (in gallons) of fuel consumed between ¢ = 0

and ¢t = b. Thus } fob R(t) dt is the average rate ( in gallons per minute) at which fuel is
consumed during the interval 0 < ¢ <.

4 Problem4

4.1 Parta

The graph of y = f'(x), as given, lies above the z-axis only on the interval [-3, —2), so f
is increasing precisely on the interval [-3, —2].

Note: Positivity of the derivative on [—3, —2) guarantees that f is increasing on [—3, —2).
It is easily shown that a continuous function that is increasing on [a, b), or, in fact, on
(a,b), must be increasing on [a, b]. However, the readers have ignored this subtlety in the
past.

4.2 Partb
Inflection points can be found at places where the derivative changes from increasing to

decreasing, or vice versa. For the function f, we see from the graph of f’ that one of these
things happens at z = 0 and at v = 2.

4.3 Partc

We have f’(0) = —2, so the tangent line to y = f(x) at the point with coordinates (0, 3)
is

=32z (24)

4.4 Partd

The Fundamental Theorem of Calculus assures us that

fz) =3+ /0 ") de, (25)



SO

-3
f(=3)=3+ ; f(&)d¢ (26)
Now f_03 f(&de = — f073 f(&) d¢ is the area of a triangle of base 1 and height 1 minus the
area of a triangle of base 2 and height 2, or % -2 = —%. So
3 9
f(—3)—3+§—§. (27)
On the other hand,
4
@ =s+ [ fa (28)
0

and this integral is the negative of the area that remains when a semicircle of radius 2 is
removed from a rectangle of base 4 and height 2, or 8 — 27. Thus,

f(4)=3— (8 —27) =27 — 5. (29)
5 Problem 5
5.1 Parta
We have
V = mr?h = 257h, (30)
SO
av dh
But it is given that
dVv
Y . 32
b 57vVh (32)
Therefore
257r% = —57Vh, (33)

and, dividing by 257, we obtain

(34)



5.2 Partb

Let h = f(t) be the solution of the differential equation 5/’ = —+/h for which h = 17 when
t = 0. Then f, being the solution of a differential equation with a positive initial value at
t = 0, is a continuous function, remains positive over some interval centered at ¢ = 0. We
can therefore choose ¢ so that f(7) doesn’t vanish for any value of 7 that lies in the closed
interval whose endpoints are 0 and ¢. For such values of 7 we see that from

firy = YLD, 35)
it follows that
t f/(T) 1 t
dr = —= dr. 36
st =5, 0

Integrating, we obtain

7 (37)

or

2/(0) - 2V/(0) = = (38)

But f(0) =17, so

t
f(t)_ 1 _1707 (39)
and we conclude that
1, VAT
t) = —t° — —t+ 17. 4
f(t) = 1ot = 5t 1T (40)

The solution we seek is thus h = f(t) = 1$5t% — @t +17.

5.3 Partc

The coffee pot is empty when (/17 — ¢/10)? = 0, or when ¢ = 10+/17 seconds.



6 Problem 6

6.1 Parta

The function f is continuous at z = 3 iff lim,_,3 f(z) = 3. It is given that f(3) = 2, and
it is clear from what is given that lim, ,3- f(z) = 2. When z > 3, we have f(z) =5 —«
so we have lim,_,5+ f(x) = lim,_,3+ (5 — ) = 2. Both one-sided limits exist and are equal
to 2 = f(3), so we conclude that lim,_,3 f(z) = 2 = f(3), meaning that f is continuous at
T =3.

6.2 Partb

The average value of f over the interval [0, 5] is

5:)/05f(x)dac:;)</03\/md:v+/:(5—$)d95> (41)

3 2 5
L ] (42)
5 0 2/ 15
12 (pn )4 (2B _21)] 4
_5[3(4 1>+<2 2)}_3' (43)
6.3 Partc
We are given
Ve+1 for0<z<3
g(z) = (44)
mx+2 for3<x<b5h,

where m and k are unspecified constants.

If ¢/(3) is to exist, then g must be continuous at = 3, and, reasoning as in Part a, above,
we find that this imposes the restriction that 2k = 3m + 2, or that m = (2k — 2)/3.

Now suppose that G is a function continuous on some interval centered at x = x and
that lim o G'(x) exists and has the value L. (Note that for this limit to exist, G must be
differentiable near zo, though not necessarily at = z itself.) If » > 0 is small, then, G
being continuous on [zg, xo + h] and differentiable on (x¢, o + h), we can, by the Mean
Value Theorem. find &, € (0, k) such that

G(zo + h) — G(xo)

N = G'(&n) (45)




so that

. G(l’o + h) — G(Q?()) . ’
Jim, A hgﬁG@w, (46)

provided that the latter limit exists.

But we have supposed that lim v G'(x) = L,and zy < &, < 2o + h. Therefore &, — xar

as h — 07, and it follows that lim;,_,q+ G'(§,) = L. We conclude that the right-hand
derivative G’ _(x¢) exists and equals L. From this, we see that, if G is any function which
is continuous a near = = xg, and for which lim St G'(xz) = L, then G'_(z9) = L.

A similar argument shows that if G is continuous near z = zy and lim, G'(z) =M,

then G'_(z¢) = M.

—>$O

Now ¢/(z) = m for 3 < x < 5, so that lim, .3+ ¢/(z) = lim,_,3+ m = m. If we require that
m = (2k — 2)/3, then g is continuous at z = 3, and we can conclude that ¢/, (3) = m.

We have ¢/'(z) = k/(2v/z + 1) for 0 < x < 3, so that

lim ¢'(x) = lim F (47)

k
z—3~ =3~ 2V + 1 N Z

If we require that m = (2k — 2)/3, as above, then g is continuous at + = 3, and we can
conclude that ¢’ (3) = k/4.

Thus, if G'(3) is to exist (that is, that the two one-sided derivatives are both to exist and
be equal), we now see that we must meet both of the conditions

2k
m=

m= . (49)

Thus, 3k = 8k — 8, and k = 8/5. Finally, m = k/4 = 2/5. The desired values of the
constants m and k are therefore

, and (48)

3
I

(50)

=
I

(1)

Ut] co Ut| DO

Note: Problems like this appear in many calculus textbooks, but they generally encourage
bad reasoning. The trouble is that equality of the quantities

f(zo+h) = f(zo)
h

. / .
]lllirbf (zo + h) and }ILIE)I%) (52)



isn’t an immediate consequence of the definitions. In fact, (52) asserts that

f(erh)—f(a?)} _ lim {f(ﬂfOJFh)—f(xo)
h

h—0 h ’

(53)

lim |lim
z—xo | h—0

and this elucidates the problem: Such cavalier treatment of limit processes is not, in gen-
eral, correct. A theorem is required to support these manipulations, and we proved one
above:

Theorem Let § > 0, and suppose that f: [zg,xo + 0) — R is differentiable at every point
of (zg, o + 0). Suppose also that f is continuous from the right at x = x(, and that

lim+ f'(z) = L. (54)

CE*}{L‘O

Then f! (x¢) exists and equals L. Similarly for the left-hand derivative of f at x(, necessary
changes being made.e

That establishing this theorem seems to require the Mean Value Theorem suggests that
the fact is non-trivial.
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