AP Calculus 2003 AB FRQ Solutions

Louis A. Talman Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

August 24, 2017

1 Problem 1

1.1 Part a

The two curves intersect when $x=a$, where $\sqrt{a}=e^{-3 a}$. Solving numerically, we find that $a \sim 0.23873$. Thus, we find (after a numerical integration) that the area of the region R is

$$
\begin{equation*}
\int_{a}^{1}\left(\sqrt{x}-e^{-3 x}\right) d x \sim 0.44263 \tag{1}
\end{equation*}
$$

Note: The exact integral is

$$
\begin{align*}
\int_{a}^{1}\left(\sqrt{x}-r^{-3 x}\right) d x & =\left.\frac{1}{3}\left[2 x^{3 / 2}+e^{-3 x}\right]\right|_{a} ^{1} \tag{2}\\
& =\frac{1}{3}\left(2+e^{-3}\right)-\frac{1}{3}\left(2 a^{3 / 2}+e^{-3 a}\right) \tag{3}
\end{align*}
$$

However, we know a only approximately, so "exact" integration is misleading.

1.2 Part b

This problem is most easily solved using the method of washers. The required volume, V, is

$$
\begin{align*}
V & =\pi \int_{a}^{1}\left[\left(1-e^{-3 x}\right)^{2}-(1-\sqrt{x})^{2}\right] d x \tag{4}\\
& \sim 1.42356 . \tag{5}
\end{align*}
$$

It is also possible-but probably not wise-to use the method of shells:

$$
\begin{equation*}
V=2 \pi \int_{e^{-3}}^{\sqrt{a}}(1-y)\left(1+\frac{1}{3} \ln y\right) d y+2 \pi \int_{\sqrt{a}}^{1}(1-y)\left(1-y^{2}\right) d y . \tag{6}
\end{equation*}
$$

Note: For the sake of completeness (See the Note to Part a, above), we record the "exact" value:

$$
\begin{equation*}
V=\frac{1}{6} \pi\left(-8 a^{3 / 2}+3 a^{2}+e^{-6 a}-4 e^{-3 a}+4 e^{-3}-e^{-6}+5\right) . \tag{7}
\end{equation*}
$$

1.3 Part c

The area $A(h)$ of the cross section meeting the x-axis at $x=h$ is

$$
\begin{equation*}
A(h)=5\left(\sqrt{h}-e^{-3 h}\right)^{2} \tag{8}
\end{equation*}
$$

The required volume is therefore

$$
\begin{equation*}
\int_{a}^{1} A(x) d x \sim 1.55435 \tag{9}
\end{equation*}
$$

The integral is not elementary, and we have carried out the integration numerically.

2 Problem 2

2.1 Part a

We are given

$$
\begin{equation*}
v(t)=-(t+1) \sin \frac{t^{2}}{2} \tag{10}
\end{equation*}
$$

so acceleration $a(t)$ is

$$
\begin{equation*}
a(t)=v^{\prime}(t)=-t(1+t) \cos \frac{t^{2}}{2}-\sin \frac{t^{2}}{2} \tag{11}
\end{equation*}
$$

Setting $t=2$ then gives

$$
\begin{align*}
& v(2)=-3 \sin 2 \tag{12}\\
& a(2)=-6 \cos 2-\sin 2 . \tag{13}
\end{align*}
$$

Speed $\sigma(t)$ is given by $\sigma(t)=|v(t)|$, so $[\sigma(t)]^{2}=[v(t)]^{2}$, or $\sigma^{2}=v^{2}$. Thus, at least when $v \neq 0,2 \sigma \sigma^{\prime}=2 v v^{\prime}$, or

$$
\begin{equation*}
\sigma^{\prime}(t)=\frac{v(t)}{\sigma(t)} v^{\prime}(t)=\frac{v(t)}{|v(t)|} v^{\prime}(t) \tag{14}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sigma^{\prime}(2)=\frac{v(2)}{|v(2)|} v^{\prime}(2) \sim-1.58758<0 \tag{15}
\end{equation*}
$$

and it follows from the continuity of σ^{\prime} that speed is decreasing near $t=2$.

2.2 Part b

Changes in the direction of motion correspond to local extrema for position-which can occur only where the derivative of position, i.e. velocity, changes sign. If $v(t)=0$, then either $1+t=0$ or $\sin \left(t^{2} / 2\right)=0$. In the interval $(0,3), 1+t$ is positive, while $\sin \left(t^{2} / 2\right)$ changes sign only at $t^{2}=2 \pi$, or $t=\sqrt{2 \pi}$. Thus, $t=\sqrt{2 \pi}$ gives the only time at which a direction change occurs.

2.3 Part c

Total distance traveled during $0 \leq t \leq 3$ is (integrating numerically)

$$
\begin{equation*}
\int_{0}^{3}|v(t)| d t \sim 4.33382 \tag{16}
\end{equation*}
$$

2.4 Part d

By the Fundamental Theorem of Calculus, position $x(t)$ at time t is given by

$$
\begin{equation*}
x(t)=1+\int_{0}^{t} v(\tau) d \tau \tag{17}
\end{equation*}
$$

Maximal distance from the origin for $0 \leq t \leq 3$ must then correspond to one of $t=0$, $t=\sqrt{2 \pi}$ or $t=3$-the endpoints of the interval and the only critical point. Doing the necessary integrations numerically, we find that

$$
\begin{align*}
x(0) & =1 ; \tag{18}\\
x(\sqrt{2 \pi}) & =1+\int_{0}^{\sqrt{2 \pi}} v(\tau) d \tau \sim-2.26548 \tag{19}\\
x(3) & =1+\int_{0}^{3} v(\tau) d \tau \sim-1.19715 . \tag{20}
\end{align*}
$$

Maximal distance from the origin therefore occurs when $t=\sqrt{2 \pi}$, and is approximately 2.26548 .

3 Problem 3

3.1 Part a

An approximate value for $R^{\prime}(45)$ is given by

$$
\begin{equation*}
R^{\prime}(45) \sim \frac{R(50)-R(40)}{50-40}=\frac{55-40}{10}=\frac{3}{2} \text { gallons per minute. } \tag{21}
\end{equation*}
$$

3.2 Part b

If $R(t)$ is increasing fastest at $t=45$, then R^{\prime} is maximal when $t=45 . R^{\prime}$ is differentiable, so this means that R^{\prime} has a critical point at $t=45$, or that $R^{\prime \prime}(45)=0$.

3.3 Part c

The required left Riemann sum is

$$
\begin{equation*}
20 \cdot(30-0)+30 \cdot(40-30)+40 \cdot(50-40)+55 \cdot(70-50)+65 \cdot(90-70)=3700 . \tag{22}
\end{equation*}
$$

Note that R is increasing on $[0,90]$, and this means that $R(t)$ is minimal for each of the sub-intervals we consider at that sub-interval's left endpoint. We conclude that

$$
\begin{equation*}
3700<\int_{0}^{90} R(t) d t \tag{23}
\end{equation*}
$$

3.4 Part d

If $0 \leq b \leq 90$, then $\int_{0}^{b} R(t) d t$ is the amount (in gallons) of fuel consumed between $t=0$ and $t=b$. Thus $\frac{1}{b} \int_{0}^{b} R(t) d t$ is the average rate (in gallons per minute) at which fuel is consumed during the interval $0 \leq t \leq b$.

4 Problem 4

4.1 Part a

The graph of $y=f^{\prime}(x)$, as given, lies above the x-axis only on the interval $[-3,-2)$, so f is increasing precisely on the interval $[-3,-2]$.
Note: Positivity of the derivative on $[-3,-2)$ guarantees that f is increasing on $[-3,-2)$. It is easily shown that a continuous function that is increasing on $[a, b)$, or, in fact, on (a, b), must be increasing on $[a, b]$. However, the readers have ignored this subtlety in the past.

4.2 Part b

Inflection points can be found at places where the derivative changes from increasing to decreasing, or vice versa. For the function f, we see from the graph of f^{\prime} that one of these things happens at $x=0$ and at $x=2$.

4.3 Part c

We have $f^{\prime}(0)=-2$, so the tangent line to $y=f(x)$ at the point with coordinates $(0,3)$ is

$$
\begin{equation*}
y=3-2 x \tag{24}
\end{equation*}
$$

4.4 Part d

The Fundamental Theorem of Calculus assures us that

$$
\begin{equation*}
f(x)=3+\int_{0}^{x} f^{\prime}(\xi) d \xi \tag{25}
\end{equation*}
$$

so

$$
\begin{equation*}
f(-3)=3+\int_{0}^{-3} f^{\prime}(\xi) d \xi \tag{26}
\end{equation*}
$$

Now $\int_{-3}^{0} f(\xi) d \xi=-\int_{0}^{-3} f(\xi) d \xi$ is the area of a triangle of base 1 and height 1 minus the area of a triangle of base 2 and height 2 , or $\frac{1}{2}-2=-\frac{3}{2}$. So

$$
\begin{equation*}
f(-3)=3+\frac{3}{2}=\frac{9}{2} . \tag{27}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
f(4)=3+\int_{0}^{4} f(t) d t \tag{28}
\end{equation*}
$$

and this integral is the negative of the area that remains when a semicircle of radius 2 is removed from a rectangle of base 4 and height 2 , or $8-2 \pi$. Thus,

$$
\begin{equation*}
f(4)=3-(8-2 \pi)=2 \pi-5 \tag{29}
\end{equation*}
$$

5 Problem 5

5.1 Part a

We have

$$
\begin{equation*}
V=\pi r^{2} h=25 \pi h, \tag{30}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{d V}{d t}=25 \pi \frac{d h}{d t} \tag{31}
\end{equation*}
$$

But it is given that

$$
\begin{equation*}
\frac{d V}{d t}=-5 \pi \sqrt{h} \tag{32}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
25 \pi \frac{d h}{d t}=-5 \pi \sqrt{h}, \tag{33}
\end{equation*}
$$

and, dividing by 25π, we obtain

$$
\begin{equation*}
\frac{d h}{d t}=-\frac{\sqrt{h}}{5} \tag{34}
\end{equation*}
$$

5.2 Part b

Let $h=f(t)$ be the solution of the differential equation $5 h^{\prime}=-\sqrt{h}$ for which $h=17$ when $t=0$. Then f, being the solution of a differential equation with a positive initial value at $t=0$, is a continuous function, remains positive over some interval centered at $t=0$. We can therefore choose t so that $f(\tau)$ doesn't vanish for any value of τ that lies in the closed interval whose endpoints are 0 and t. For such values of τ we see that from

$$
\begin{equation*}
f^{\prime}(\tau)=-\frac{\sqrt{f(\tau)}}{5} \tag{35}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\int_{0}^{t} \frac{f^{\prime}(\tau)}{\sqrt{f(\tau)}} d \tau=-\frac{1}{5} \int_{0}^{t} d \tau \tag{36}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
\left.2 \sqrt{f(t)}\right|_{0} ^{t}=-\left.\frac{1}{5} \tau\right|_{0} ^{t}, \tag{37}
\end{equation*}
$$

or

$$
\begin{equation*}
2 \sqrt{f(t)}-2 \sqrt{f(0)}=-\frac{t}{5} \tag{38}
\end{equation*}
$$

But $f(0)=17$, so

$$
\begin{equation*}
\sqrt{f(t)}=\sqrt{17}-\frac{t}{10}, \tag{39}
\end{equation*}
$$

and we conclude that

$$
\begin{equation*}
f(t)=\frac{1}{100} t^{2}-\frac{\sqrt{17}}{5} t+17 \tag{40}
\end{equation*}
$$

The solution we seek is thus $h=f(t)=\frac{1}{100} t^{2}-\frac{\sqrt{17}}{5} t+17$.

5.3 Part c

The coffee pot is empty when $(\sqrt{17}-t / 10)^{2}=0$, or when $t=10 \sqrt{17}$ seconds.

6 Problem 6

6.1 Part a

The function f is continuous at $x=3$ iff $\lim _{x \rightarrow 3} f(x)=3$. It is given that $f(3)=2$, and it is clear from what is given that $\lim _{x \rightarrow 3^{-}} f(x)=2$. When $x>3$, we have $f(x)=5-x$ so we have $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(5-x)=2$. Both one-sided limits exist and are equal to $2=f(3)$, so we conclude that $\lim _{x \rightarrow 3} f(x)=2=f(3)$, meaning that f is continuous at $x=3$.

6.2 Part b

The average value of f over the interval $[0,5]$ is

$$
\begin{align*}
\frac{1}{5-0} \int_{0}^{5} f(x) d x & =\frac{1}{5}\left(\int_{0}^{3} \sqrt{x+1} d x+\int_{3}^{5}(5-x) d x\right) \tag{41}\\
& =\frac{1}{5}\left[\left.\frac{2}{3}(x+1)^{3 / 2}\right|_{0} ^{3}+\left.\left(5 x-\frac{x^{2}}{2}\right)\right|_{3} ^{5}\right] \tag{42}\\
& =\frac{1}{5}\left[\frac{2}{3}\left(4^{3 / 2}-1\right)+\left(\frac{25}{2}-\frac{21}{2}\right)\right]=\frac{4}{3} \tag{43}
\end{align*}
$$

6.3 Part c

We are given

$$
g(x)= \begin{cases}k \sqrt{x+1} & \text { for } 0 \leq x \leq 3 \tag{44}\\ m x+2 & \text { for } 3<x \leq 5\end{cases}
$$

where m and k are unspecified constants.
If $g^{\prime}(3)$ is to exist, then g must be continuous at $x=3$, and, reasoning as in Part a, above, we find that this imposes the restriction that $2 k=3 m+2$, or that $m=(2 k-2) / 3$.

Now suppose that G is a function continuous on some interval centered at $x=x_{0}$ and that $\lim _{x \rightarrow x_{0}^{+}} G^{\prime}(x)$ exists and has the value L. (Note that for this limit to exist, G must be differentiable near x_{0}, though not necessarily at $x=x_{0}$ itself.) If $h>0$ is small, then, G being continuous on $\left[x_{0}, x_{0}+h\right]$ and differentiable on ($x_{0}, x_{0}+h$), we can, by the Mean Value Theorem. find $\xi_{h} \in(0, h)$ such that

$$
\begin{equation*}
\frac{G\left(x_{0}+h\right)-G\left(x_{0}\right)}{h}=G^{\prime}\left(\xi_{h}\right) \tag{45}
\end{equation*}
$$

so that

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{G\left(x_{0}+h\right)-G\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0^{+}} G^{\prime}\left(\xi_{h}\right), \tag{46}
\end{equation*}
$$

provided that the latter limit exists.
But we have supposed that $\lim _{x \rightarrow x_{0}^{+}} G^{\prime}(x)=L$, and $x_{0}<\xi_{h}<x_{0}+h$. Therefore $\xi_{h} \rightarrow x_{0}^{+}$ as $h \rightarrow 0^{+}$, and it follows that $\lim _{h \rightarrow 0^{+}} G^{\prime}\left(\xi_{h}\right)=L$. We conclude that the right-hand derivative $G_{+}^{\prime}\left(x_{0}\right)$ exists and equals L. From this, we see that, if G is any function which is continuous a near $x=x_{0}$, and for which $\lim _{x \rightarrow x_{0}^{+}} G^{\prime}(x)=L$, then $G_{+}^{\prime}\left(x_{0}\right)=L$.
A similar argument shows that if G is continuous near $x=x_{0}$ and $\lim _{x \rightarrow x_{0}^{-}} G^{\prime}(x)=M$, then $G_{-}^{\prime}\left(x_{0}\right)=M$.

Now $g^{\prime}(x)=m$ for $3<x \leq 5$, so that $\lim _{x \rightarrow 3^{+}} g^{\prime}(x)=\lim _{x \rightarrow 3^{+}} m=m$. If we require that $m=(2 k-2) / 3$, then g is continuous at $x=3$, and we can conclude that $g_{+}^{\prime}(3)=m$.
We have $g^{\prime}(x)=k /(2 \sqrt{x+1})$ for $0 \leq x \leq 3$, so that

$$
\begin{equation*}
\lim _{x \rightarrow 3^{-}} g^{\prime}(x)=\lim _{x \rightarrow 3^{-}} \frac{k}{2 \sqrt{x+1}}=\frac{k}{4} \tag{47}
\end{equation*}
$$

If we require that $m=(2 k-2) / 3$, as above, then g is continuous at $x=3$, and we can conclude that $g_{-}^{\prime}(3)=k / 4$.
Thus, if $G^{\prime}(3)$ is to exist (that is, that the two one-sided derivatives are both to exist and be equal), we now see that we must meet both of the conditions

$$
\begin{align*}
& m=\frac{2 k-2}{3}, \text { and } \tag{48}\\
& m=\frac{k}{4} . \tag{49}
\end{align*}
$$

Thus, $3 k=8 k-8$, and $k=8 / 5$. Finally, $m=k / 4=2 / 5$. The desired values of the constants m and k are therefore

$$
\begin{align*}
m & =\frac{2}{5} \tag{50}\\
k & =\frac{8}{5} . \tag{51}
\end{align*}
$$

Note: Problems like this appear in many calculus textbooks, but they generally encourage bad reasoning. The trouble is that equality of the quantities

$$
\begin{equation*}
\lim _{h \rightarrow 0} f^{\prime}\left(x_{0}+h\right) \text { and } \lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \tag{52}
\end{equation*}
$$

isn't an immediate consequence of the definitions. In fact, (52) asserts that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}}\left[\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]=\lim _{h \rightarrow 0}\left[\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right], \tag{53}
\end{equation*}
$$

and this elucidates the problem: Such cavalier treatment of limit processes is not, in general, correct. A theorem is required to support these manipulations, and we proved one above:

Theorem Let $\delta>0$, and suppose that $f:\left[x_{0}, x_{0}+\delta\right) \longrightarrow \mathbb{R}$ is differentiable at every point of ($x_{0}, x_{0}+\delta$). Suppose also that f is continuous from the right at $x=x_{0}$, and that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}^{+}} f^{\prime}(x)=L \tag{54}
\end{equation*}
$$

Then $f_{+}^{\prime}\left(x_{0}\right)$ exists and equals L. Similarly for the left-hand derivative of f at x_{0}, necessary changes being made.•
That establishing this theorem seems to require the Mean Value Theorem suggests that the fact is non-trivial.

