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1 Problem 1

1.1 Part a

The two curves intersect when x = a, where
√
a = e−3a. Solving numerically, we find that

a ∼ 0.23873. Thus, we find (after a numerical integration) that the area of the region R
is ∫ 1

a

(√
x− e−3x

)
dx ∼ 0.44263. (1)

Note: The exact integral is∫ 1

a

(√
x− r−3x

)
dx =

1

3

[
2x3/2 + e−3x

] ∣∣∣∣1
a

(2)

=
1

3

(
2 + e−3

)
− 1

3

(
2a3/2 + e−3a

)
. (3)

However, we know a only approximately, so “exact” integration is misleading.

1.2 Part b

This problem is most easily solved using the method of washers. The required volume,
V , is

V = π

∫ 1

a

[(
1− e−3x

)2 − (1−√x)2] dx (4)

∼ 1.42356. (5)
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It is also possible—but probably not wise—to use the method of shells:

V = 2π

∫ √a
e−3

(1− y)
(
1 +

1

3
ln y

)
dy + 2π

∫ 1

√
a
(1− y)(1− y2) dy. (6)

Note: For the sake of completeness (See the Note to Part a, above), we record the “exact”
value:

V =
1

6
π
(
−8a3/2 + 3a2 + e−6a − 4e−3a + 4e−3 − e−6 + 5

)
. (7)

1.3 Part c

The area A(h) of the cross section meeting the x-axis at x = h is

A(h) = 5
(√

h− e−3h
)2

(8)

The required volume is therefore ∫ 1

a
A(x) dx ∼ 1.55435. (9)

The integral is not elementary, and we have carried out the integration numerically.

2 Problem 2

2.1 Part a

We are given

v(t) = −(t+ 1) sin
t2

2
, (10)

so acceleration a(t) is

a(t) = v′(t) = −t(1 + t) cos
t2

2
− sin

t2

2
. (11)
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Setting t = 2 then gives

v(2) = −3 sin 2; (12)
a(2) = −6 cos 2− sin 2. (13)

Speed σ(t) is given by σ(t) = |v(t)|, so [σ(t)]2 = [v(t)]2, or σ2 = v2. Thus, at least when
v 6= 0, 2σσ′ = 2vv′, or

σ′(t) =
v(t)

σ(t)
v′(t) =

v(t)

|v(t)|
v′(t). (14)

Thus,

σ′(2) =
v(2)

|v(2)|
v′(2) ∼ −1.58758 < 0, (15)

and it follows from the continuity of σ′ that speed is decreasing near t = 2.

2.2 Part b

Changes in the direction of motion correspond to local extrema for position—which can
occur only where the derivative of position, i.e. velocity, changes sign. If v(t) = 0, then
either 1 + t = 0 or sin(t2/2) = 0. In the interval (0, 3), 1 + t is positive, while sin(t2/2)
changes sign only at t2 = 2π, or t =

√
2π. Thus, t =

√
2π gives the only time at which a

direction change occurs.

2.3 Part c

Total distance traveled during 0 ≤ t ≤ 3 is (integrating numerically)∫ 3

0
|v(t)| dt ∼ 4.33382. (16)

2.4 Part d

By the Fundamental Theorem of Calculus, position x(t) at time t is given by

x(t) = 1 +

∫ t

0
v(τ) dτ. (17)
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Maximal distance from the origin for 0 ≤ t ≤ 3 must then correspond to one of t = 0,
t =

√
2π or t = 3—the endpoints of the interval and the only critical point. Doing the

necessary integrations numerically, we find that

x(0) = 1; (18)

x
(√

2π
)
= 1 +

∫ √2π
0

v(τ) dτ ∼ −2.26548 (19)

x(3) = 1 +

∫ 3

0
v(τ) dτ ∼ −1.19715. (20)

Maximal distance from the origin therefore occurs when t =
√
2π, and is approximately

2.26548.

3 Problem 3

3.1 Part a

An approximate value for R′(45) is given by

R′(45) ∼ R(50)−R(40)
50− 40

=
55− 40

10
=

3

2
gallons per minute. (21)

3.2 Part b

If R(t) is increasing fastest at t = 45, then R′ is maximal when t = 45. R′ is differentiable,
so this means that R′ has a critical point at t = 45, or that R′′(45) = 0.

3.3 Part c

The required left Riemann sum is

20 · (30− 0) + 30 · (40− 30) + 40 · (50− 40) + 55 · (70− 50) + 65 · (90− 70) = 3700.
(22)

Note that R is increasing on [0, 90], and this means that R(t) is minimal for each of the
sub-intervals we consider at that sub-interval’s left endpoint. We conclude that

3700 <

∫ 90

0
R(t) dt. (23)
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3.4 Part d

If 0 ≤ b ≤ 90, then
∫ b
0 R(t) dt is the amount (in gallons) of fuel consumed between t = 0

and t = b. Thus 1
b

∫ b
0 R(t) dt is the average rate ( in gallons per minute) at which fuel is

consumed during the interval 0 ≤ t ≤ b.

4 Problem 4

4.1 Part a

The graph of y = f ′(x), as given, lies above the x-axis only on the interval [−3,−2), so f
is increasing precisely on the interval [−3,−2].

Note: Positivity of the derivative on [−3,−2) guarantees that f is increasing on [−3,−2).
It is easily shown that a continuous function that is increasing on [a, b), or, in fact, on
(a, b), must be increasing on [a, b]. However, the readers have ignored this subtlety in the
past.

4.2 Part b

Inflection points can be found at places where the derivative changes from increasing to
decreasing, or vice versa. For the function f , we see from the graph of f ′ that one of these
things happens at x = 0 and at x = 2.

4.3 Part c

We have f ′(0) = −2, so the tangent line to y = f(x) at the point with coordinates (0, 3)
is

y = 3− 2x (24)

4.4 Part d

The Fundamental Theorem of Calculus assures us that

f(x) = 3 +

∫ x

0
f ′(ξ) dξ, (25)
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so

f(−3) = 3 +

∫ −3
0

f ′(ξ) dξ (26)

Now
∫ 0
−3 f(ξ) dξ = −

∫ −3
0 f(ξ) dξ is the area of a triangle of base 1 and height 1 minus the

area of a triangle of base 2 and height 2, or 1
2 − 2 = −3

2 . So

f(−3) = 3 +
3

2
=

9

2
. (27)

On the other hand,

f(4) = 3 +

∫ 4

0
f(t) dt, (28)

and this integral is the negative of the area that remains when a semicircle of radius 2 is
removed from a rectangle of base 4 and height 2, or 8− 2π. Thus,

f(4) = 3− (8− 2π) = 2π − 5. (29)

5 Problem 5

5.1 Part a

We have

V = πr2h = 25πh, (30)

so

dV

dt
= 25π

dh

dt
. (31)

But it is given that

dV

dt
= −5π

√
h. (32)

Therefore

25π
dh

dt
= −5π

√
h, (33)

and, dividing by 25π, we obtain

dh

dt
= −
√
h

5
. (34)
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5.2 Part b

Let h = f(t) be the solution of the differential equation 5h′ = −
√
h for which h = 17 when

t = 0. Then f , being the solution of a differential equation with a positive initial value at
t = 0, is a continuous function, remains positive over some interval centered at t = 0. We
can therefore choose t so that f(τ) doesn’t vanish for any value of τ that lies in the closed
interval whose endpoints are 0 and t. For such values of τ we see that from

f ′(τ) = −
√
f(τ)

5
, (35)

it follows that ∫ t

0

f ′(τ)√
f(τ)

dτ = −1

5

∫ t

0
dτ. (36)

Integrating, we obtain

2
√
f(t)

∣∣∣∣t
0

= −1

5
τ

∣∣∣∣t
0

, (37)

or

2
√
f(t)− 2

√
f(0) = − t

5
. (38)

But f(0) = 17, so

√
f(t) =

√
17− t

10
, (39)

and we conclude that

f(t) =
1

100
t2 −

√
17

5
t+ 17. (40)

The solution we seek is thus h = f(t) = 1
100 t

2 −
√
17
5 t+ 17.

5.3 Part c

The coffee pot is empty when (
√
17− t/10)2 = 0, or when t = 10

√
17 seconds.
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6 Problem 6

6.1 Part a

The function f is continuous at x = 3 iff limx→3 f(x) = 3. It is given that f(3) = 2, and
it is clear from what is given that limx→3− f(x) = 2. When x > 3, we have f(x) = 5 − x
so we have limx→3+ f(x) = limx→3+(5− x) = 2. Both one-sided limits exist and are equal
to 2 = f(3), so we conclude that limx→3 f(x) = 2 = f(3), meaning that f is continuous at
x = 3.

6.2 Part b

The average value of f over the interval [0, 5] is

1

5− 0

∫ 5

0
f(x) dx =

1

5

(∫ 3

0

√
x+ 1 dx+

∫ 5

3
(5− x) dx

)
(41)

=
1

5

[
2

3
(x+ 1)3/2

∣∣∣∣3
0

+

(
5x− x2

2

) ∣∣∣∣5
3

]
(42)

=
1

5

[
2

3

(
43/2 − 1

)
+

(
25

2
− 21

2

)]
=

4

3
. (43)

6.3 Part c

We are given

g(x) =

{
k
√
x+ 1 for 0 ≤ x ≤ 3

mx+ 2 for 3 < x ≤ 5,
(44)

where m and k are unspecified constants.

If g′(3) is to exist, then g must be continuous at x = 3, and, reasoning as in Part a, above,
we find that this imposes the restriction that 2k = 3m+ 2, or that m = (2k − 2)/3.

Now suppose that G is a function continuous on some interval centered at x = x0 and
that limx→x+0

G′(x) exists and has the value L. (Note that for this limit to exist, G must be
differentiable near x0, though not necessarily at x = x0 itself.) If h > 0 is small, then, G
being continuous on [x0, x0 + h] and differentiable on (x0, x0 + h), we can, by the Mean
Value Theorem. find ξh ∈ (0, h) such that

G(x0 + h)−G(x0)
h

= G′(ξh) (45)

8



so that

lim
h→0+

G(x0 + h)−G(x0)
h

= lim
h→0+

G′(ξh), (46)

provided that the latter limit exists.

But we have supposed that limx→x+0
G′(x) = L, and x0 < ξh < x0 + h. Therefore ξh → x+0

as h → 0+, and it follows that limh→0+ G
′(ξh) = L. We conclude that the right-hand

derivative G′+(x0) exists and equals L. From this, we see that, if G is any function which
is continuous a near x = x0, and for which limx→x+0

G′(x) = L, then G′+(x0) = L.

A similar argument shows that if G is continuous near x = x0 and limx→x−0
G′(x) = M ,

then G′−(x0) =M .

Now g′(x) = m for 3 < x ≤ 5, so that limx→3+ g
′(x) = limx→3+ m = m. If we require that

m = (2k− 2)/3, then g is continuous at x = 3, and we can conclude that g′+(3) = m.

We have g′(x) = k/(2
√
x+ 1) for 0 ≤ x ≤ 3, so that

lim
x→3−

g′(x) = lim
x→3−

k

2
√
x+ 1

=
k

4
. (47)

If we require that m = (2k − 2)/3, as above, then g is continuous at x = 3, and we can
conclude that g′−(3) = k/4.

Thus, if G′(3) is to exist (that is, that the two one-sided derivatives are both to exist and
be equal), we now see that we must meet both of the conditions

m =
2k − 2

3
, and (48)

m =
k

4
. (49)

Thus, 3k = 8k − 8, and k = 8/5. Finally, m = k/4 = 2/5. The desired values of the
constants m and k are therefore

m =
2

5
(50)

k =
8

5
. (51)

Note: Problems like this appear in many calculus textbooks, but they generally encourage
bad reasoning. The trouble is that equality of the quantities

lim
h→0

f ′(x0 + h) and lim
h→0

f(x0 + h)− f(x0)
h

(52)
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isn’t an immediate consequence of the definitions. In fact, (52) asserts that

lim
x→x0

[
lim
h→0

f(x+ h)− f(x)
h

]
= lim

h→0

[
f(x0 + h)− f(x0)

h

]
, (53)

and this elucidates the problem: Such cavalier treatment of limit processes is not, in gen-
eral, correct. A theorem is required to support these manipulations, and we proved one
above:

Theorem Let δ > 0, and suppose that f : [x0, x0 + δ) −→ R is differentiable at every point
of (x0, x0 + δ). Suppose also that f is continuous from the right at x = x0, and that

lim
x→x+0

f ′(x) = L. (54)

Then f ′+(x0) exists and equalsL. Similarly for the left-hand derivative of f at x0, necessary
changes being made.•

That establishing this theorem seems to require the Mean Value Theorem suggests that
the fact is non-trivial.
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