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1 Problem 1

1.1 Part a

The curve intersects the x-axis at x = 1, so the desired area is∫ 10

1

√
x− 1 dx =

2

3
(x− 1)3/2

∣∣∣∣10
1

(1)

=
2

3
(10− 1)3/2 − 2

3
· 0 = 18. (2)

1.2 Part b

The volume generated when the region of Part a is revolved about the horizontal line
y = 3 is

π

∫ 10

1

[
9−

(
3−
√
x− 1

)2]
dx = π

∫ 10

1

[
6
√
1− x+ (1− x)

]
dx (3)

= π

[
4(1− x)3/2 + x− x2

2

] ∣∣∣∣10
1

=
135

2
π ∼ 212.05750. (4)
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1.3 Part c

Solving the equation y =
√
x− 1 for x in terms of y gives x = y2 + 1. Hence, the volume

generated by revolving the region about the vertical line x = 10 is

π

∫ 3

0

[
10− (y2 + 1)

]2
dy = π

∫ 3

0

(
y4 − 18y2 + 81

)
dy (5)

= π

(
y5

5
− 6y3 + 81y

) ∣∣∣∣3
0

(6)

= π

(
243

5
− 6 · 27 + 81 · 3

)
− 0 =

648

5
π ∼ 407.15041. (7)

2 Problem 2

2.1 Part a

BecauseR(t) = 5
√
t cos(t/5) is the rate of change of the number of mosquitos on the island

and we have R(6) ∼ 4.43796 > 0, it follows from the continuity of R that the number of
mosquitos is increasing throughout some interval centered at t = 6.

Note: The statement that the number is increasing at t = 6 is problematic: The stan-
dard definition of the term increasing applies only on intervals, and not at an individual
point.

2.2 Part b

R′(t) =
5

2
√
t
cos

t

5
−
√
t sin

t

5
, so (8)

R′(6) ∼ −1.91319 < 0. (9)

R′(6) < 0, and R′ is continuous at t = 6. It follows that R(t) is decreasing near t = 6.
Thus, the number of mosquitos is increasing at a decreasing rate near t = 6. (But see the
note to Part a, above.)
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2.3 Part c

By the Fundamental Theorem of Calculus, the number M(t) of mosquitos at time t is
given by

M(t) = 1000 +

∫ t

0
R(τ) dτ. (10)

Hence (carrying out the integration numerically)

M(31) = 1000 +
√
5

∫ 31

0

√
τ cos

τ

5
dτ ∼ 964.33519. (11)

To the nearest whole number, this is 964.

2.4 Part d

The maximum number of mosquitos for the period 0 ≤ t ≤ 31 will occur when t = 0, or
when t = 31, or when R(t) = 0. The latter condition obtains when t = 5π/2 and when
t = 15π/2. Integrating numerically when necessary in (10), we find that

M(0) = 1000; (12)

M

(
5π

2

)
∼ 1039.35691; (13)

M

(
15π

2

)
∼ 842.40475; (14)

M(31) ∼ 964.33519. (15)

Thus, the mosquito population peaks at about 1039 when t = 5π/2.

3 Problem 3

3.1 Part a

The Midpoint Rule with four subintervals of equal length gives∫ 40

0
v(t) dt ∼ v(5) · (10− 0) + v(15) · (20− 10) + v(25) · (30− 20) + v(35) · (40− 30)

(16)

∼ (9.2 + 7.0 + 2.4 + 4.3) · 10 = 229 miles. (17)
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The integral gives the distance, in miles, that the plane traveled during the time interval
0 ≤ t ≤ 40.

3.2 Part b

By Rolle’s Theorem, acceleration—which is v′(t)—must be zero at least once in the interval
0 ≤ t ≤ 15 because v(0) = v(15). Similarly, v′(t) must be zero at least once in the interval
25 ≤ t ≤ 30, because v(25) = v(30). Thus, acceleration must vanish at least twice in the
interval 0 ≤ t ≤ 40.

3.3 Part c

If the plane’s velocity is given by

f(t) = 6 + cos
t

10
+ 3 sin

7t

40
, (18)

then

f ′(t) =
21

40
cos

7t

40
− 1

10
sin

t

10
(19)

gives acceleration. At t = 23, this gives acceleration as

f ′(23) =
21

40
cos

161

40
− 1

10
sin

23

10
miles/min2 (20)

∼ −0.40769 miles/min2. (21)

3.4 Part d

Average velocity over 0 ≤ t ≤ 40 is

1

40

∫ 40

0

(
6 + cos

t

10
+ 3 sin

7t

40

)
dt =

1

40

[
6t+ 10 sin

t

10
− 120

7
cos

7t

40

] ∣∣∣∣40
0

(22)

=
1

40

[
240 + 10 sin 4− 120

7
cos 7

]
− 1

40

[
120

7

]
(23)

∼ 5.91627miles/min. (24)

4



4 Problem 4

4.1 Part a

Inflection points are to be found where f ′′ changes sign—that is, where the slope of f ′

changes from positive to negative or vice versa. Consequently, the function f whose
derivative is pictured has inflection points at x = 1 and at x = 3.

4.2 Part b

the function f is decreasing on the interval [−1, 4] and increasing on the interval [4, 5]
because f ′ is non-positive, with only isolated zeros, on the first of these intervals and
non-negative, with only an isolated zero on the second.

The absolute maximum vale of f must fall at one of the points x = −1 or x = 5. (There can
be no absolute maximum for f at any point interior to (−1, 5) because f ′ does not change
signs from positive to negative anywhere in that interval.) The (unsigned) area bounded
by f and the x-axis on the interval [−1, 4] is clearly larger than the area between f and the
x-axis on the interval [4, 5], so

−
∫ 4

−1
f ′(t) dt = f(−1)− f(4) > f(5)− f(4) =

∫ 5

4
f ′(t) dt, (25)

whence

f(−1) > f(5), (26)

so the absolute maximum value taken on in the interval [−1, 5] is f(−1).

4.3 Part c

We are given that g(x) = xf(x), so

g′(2) = f(2) + 2f ′(2) = 6 + 2 · (−1) = 4. (27)

Also

g(2) = 2f(2) = 12. (28)

An equation for the line tangent to the graph at x = 2 is therefore

y = 12 + 4(x− 2), or (29)
y = 4x+ 4. (30)
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5 Problem 5

5.1 Part a

See Figure 1.
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Figure 1: Problem 5, Part a

5.2 Part b

If y′ = x4(y−2), then slope can be negative only when the product on the right side of the
equation is negative. This is so just when (y − 2) < 0, the points in the plane where slope
is negative are the points (x, y) for which y < 2.

5.3 Part c

If y = f(x), with f(0) = 0, is a solution to the differential equation y′ = x4(y − 2),
then

f ′(x) = x4 [f(x)− 2] , or (31)
f ′(x)

f(x)− 2
= x4. (32)

As a solution to a differential equation near x = 0, f must be a continuous function, at
least on some interval centered at x = 0, so we can be sure that (f(x) − 2) < 0 when x is
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near 0. Choosing such an x, we integrate both sides of equation (32) from 0 to x:∫ x

0

f ′(ξ)

f(ξ)− 2
dξ =

∫ x

0
ξ4 dξ. (33)

Making use of the negativity of the denominator on the left side, as well as the fact that
f(0) = 0, we obtain

ln [2− f(ξ)]
∣∣∣∣x
0

=
ξ5

5

∣∣∣∣x
0

, or (34)

ln [2− f(x)] = ln 2 +
x5

5
. (35)

From this, it follows that

2− f(x) = 2ex
5/5, whence (36)

f(x) = 2
(
1− ex5/5

)
(37)

6 Problem 6

6.1 Part a

If n > 1, then ∫ 1

0
xn dx =

xn+1

n+ 1

∣∣∣∣1
0

=
1n+1

n+ 1
− 0n+1

n+ 1
=

1

n+ 1
. (38)

6.2 Part b

If n > 1 and y = xn, then

y′ = nxn−1, so (39)

y′
∣∣∣∣
x=1

= n. (40)

It follows that the equation of the line tangent to y = xn at (1, 1) is

y = 1 + n(x− 1). (41)

This line crosses the x-axis at x = 1 − 1

n
, so that the base of the triangle T has length

1

n
.

The altitude of T is one, so the area of T is
1

2n
.

7



6.3 Part c

From what we have seen in Parts a and b, above, the area, A(n) of the region S, as a
function of n, is

A(n) =
1

n+ 1
− 1

2n
=

n− 1

2n2 + 2n
. (42)

Thus,

A′(n) =
(2n2 + 2n)− (n− 1)(4n+ 2)

4n2(n+ 1)2
(43)

= −n
2 − 2n− 1

2n2(n+ 1)2
. (44)

When n > 0, we see thatA′(n) = 0 only for n = 1+
√
2, by the Quadratic Formula. Noting

that A′(n) > 0 for 1 ≤ n < 1 +
√
2 but that A′(n) < 0 for 1 +

√
2 < n, we conclude, by the

First Derivative Test, that the maximal area occurs when n = 1 +
√
2.
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