AP Calculus 2004 AB FRQ Solutions

Louis A. Talman, Ph. D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

July 21, 2017

1 Problem 1

1.1 Part a

The function $F(t)=82+4 \sin (t / 2)$ gives the rate, in cars per minute, at which cars pass through the intersection. Thus, the total number of cars that pass through the intersection in the period $0 \leq t \leq 30$ is

$$
\begin{align*}
\int_{0}^{30} F(t) d t & =\int_{0}^{30}\left[82+4 \sin \frac{t}{2}\right] d t \tag{1}\\
& =\left.\left[82 t-8 \cos \frac{t}{2}\right]\right|_{0} ^{30} \tag{2}\\
& =[2460-8 \cos 15]-[0-8] \sim 2474.07750 \tag{3}
\end{align*}
$$

or 2474 to the nearest whole number.

1.2 Part b

$$
\begin{align*}
F^{\prime}(t) & =2 \cos \frac{t}{2}, \text { so } \tag{4}\\
F^{\prime}(7) & =2 \cos \frac{7}{2} \sim-1.87291<0 \tag{5}
\end{align*}
$$

and, F^{\prime} being a continuous function, we conclude that traffic flow is decreasing near $t=7$ because $F^{\prime}(7)<0$ and F^{\prime} is continuous near $t=7$. (We have phrased our answer this way, because the terms "increasing" and "decreasing" are almost always defined only for intervals, and not at individual points.)

1.3 Part c

The average value, in cars per minute, of traffic flow over the interval $10 \leq t \leq 15$ is

$$
\begin{align*}
\frac{1}{15-10} \int_{10}^{15} F(t) d t & =\left.\frac{1}{5}\left[82 t-8 \cos \frac{t}{2}\right]\right|_{10} ^{15} \tag{6}\\
& =\frac{1}{5}\left(410+8 \cos 5-8 \cos \frac{15}{2}\right) \tag{7}\\
& \sim 81.89924 \text { cars per minute. } \tag{8}
\end{align*}
$$

1.4 Part d

The average rate of change of the traffic flow over the interval $10 \leq t \leq 15$ is

$$
\begin{align*}
\frac{F(15)-F(10)}{15-10} & =\frac{4 \sin (15 / 2)-4 \sin 5}{5} \text { cars per minute per minute } \tag{9}\\
& \sim 1.51754 \text { cars per minute per minute. } \tag{10}
\end{align*}
$$

2 Problem 2

Throughout this problem we understand that

$$
\begin{align*}
& f(x)=2 x(1-x) \text { and } \tag{11}\\
& g(x)=3(x-1) \sqrt{x} \tag{12}
\end{align*}
$$

for $0 \leq x \leq 1$.

2.1 Part a

The graphs of the curves $y=f(x)$ and $y-g(x)$ intersect on the x-axis at $x=0$ and at $x=1$. Thus, the area between the two curves is

$$
\begin{align*}
\int_{0}^{1}[f(x)-g(x)] d x & =\int_{0}^{1}[2 x(1-x)-3(x-1) \sqrt{x}] d x \tag{13}\\
& =\int_{0}^{1}\left[3 x^{1 / 2}+2 x-3 x^{3 / 2}-2 x^{2}\right] d x \tag{14}\\
& =\left.\left[2 x^{3 / 2}+x^{2}-\frac{6}{5} x^{5 / 2}-\frac{2}{3} x^{3}\right]\right|_{0} ^{1} \tag{15}\\
& =\left[2+1-\frac{6}{5}-\frac{2}{3}\right]-0=\frac{17}{15} \tag{16}
\end{align*}
$$

2.2 Part b

The volume of the solid generated by rotating the shaded region about the horizontal line $y=2$ is

$$
\begin{align*}
& \int_{0}^{1}\left[\pi[2-g(x)]^{2}-\pi[2-f(x)]^{2}\right] d x \tag{17}\\
&=\pi \int_{0}^{1}\left(4 x^{4}-17 x^{3}+30 x^{2}+12 x^{3 / 2}-17 x-12 x^{1 / 2}\right) d x \tag{18}\\
&=\left.\pi\left(8 x^{3 / 2}+\frac{17}{2} x^{2}-\frac{24}{5} x^{5 / 2}-10 x^{3}+\frac{17}{4} x^{4}-\frac{4}{5} x^{5}\right)\right|_{0} ^{1} \tag{19}\\
&=\frac{103}{20} \pi \sim 16.17920 \tag{20}
\end{align*}
$$

2.3 Part c

The volume of the solid given is

$$
\begin{equation*}
\int_{0}^{1}[h(x)-g(x)]^{2} d x=\int_{0}^{1}[k x(1-x)-3(x-1) \sqrt{x}]^{2} d x \tag{21}
\end{equation*}
$$

Thus, the desired equation is

$$
\begin{equation*}
\int_{0}^{1}[k x(1-x)-3(x-1) \sqrt{x}]^{2} d x=15 . \tag{22}
\end{equation*}
$$

Note: Solving equation (22) is not required, so evaluation of the integral is also not necessary. However,

$$
\begin{equation*}
\int_{0}^{1}[k x(1-x)-3(x-1) \sqrt{x}]^{2} d x=\frac{1}{30} k^{2}+\frac{32}{105} k+\frac{3}{4}, \tag{23}
\end{equation*}
$$

and solution of the resulting quadratic equation for $k>0$ gives

$$
\begin{equation*}
k=\frac{\sqrt{87886}-64}{14} \sim 16.60398 \tag{24}
\end{equation*}
$$

3 Problem 3

3.1 Part a

Acceleration, $a(t)$, at time t is

$$
\begin{align*}
a(t) & =v^{\prime}(t)=\frac{d}{d t}\left[1-\arctan e^{t}\right] \tag{25}\\
& =-\frac{e^{t}}{1+e^{2 t}} \tag{26}
\end{align*}
$$

Thus,

$$
\begin{equation*}
a(2)=-\frac{e^{2}}{1+e^{4}} \sim-0.13290 \tag{27}
\end{equation*}
$$

3.2 Part b

Speed, $\sigma(t)$, at time t is given by

$$
\begin{equation*}
\sigma(t)=|v(t)|=\sqrt{[v(t)]^{2}} \tag{28}
\end{equation*}
$$

so

$$
\begin{equation*}
[\sigma(t)]^{2}=[v(t)]^{2} . \tag{29}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathscr{Z} \sigma(t) \sigma^{\prime}(t)=\not 2 v(t) v^{\prime}(t) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{\prime}(t)=\frac{v(t)}{\sigma(t)} v^{\prime}(t)=\frac{v(t)}{|v(t)|} v^{\prime}(t) . \tag{31}
\end{equation*}
$$

We now find that

$$
\begin{align*}
\sigma^{\prime}(2) & =\frac{v(2)}{|v(2)|} v^{\prime}(2) \tag{32}\\
& =\left(\frac{1-\arctan e^{2}}{\left|1-\arctan e^{2}\right|}\right) \cdot\left(-\frac{e^{2}}{1+e^{4}}\right) \sim 0.13290>0 . \tag{33}
\end{align*}
$$

This is a positive number at a point where σ^{\prime} is continuous, so we conclude that speed is increasing near $t=2$.

3.3 Part c

First we observe that

$$
\begin{equation*}
v(0)=1-\arctan e^{0}=1-\frac{\pi}{4}>0 . \tag{34}
\end{equation*}
$$

The function $t \mapsto \arctan e^{t}$ is a composition of increasing functions on the positive half of the x-axis, and so is increasing there. Moreover, $\lim _{t \rightarrow \infty} \arctan e^{t}=\pi / 2$. Hence, v is a decreasing function on $[0, \infty)$ and $\lim _{t \rightarrow \infty} v(t)<0$. It follows that $v(T)=0$ for just one value of $T>0$, and because $v(t)$ passes from a region where it is positive to a region where it is negative as t increases through T, that point must give a maximum value for position $y(t)$, where

$$
\begin{equation*}
y(t)=-1+\int_{0}^{t} v(\tau) d \tau \tag{35}
\end{equation*}
$$

Solving for T in the equation $v(T)=0$ we find that $T=\ln \tan 1 \sim 0.44302$. This is the time when $y(t)$ reaches its maximal value.

3.4 Part d

Taking position as given by equation (35), we integrate numerically to find that

$$
\begin{equation*}
y(2)=-1+\int_{0}^{2} v(\tau) d \tau \sim-1.36069 \tag{36}
\end{equation*}
$$

Because, as we have seen in Part c, above, $y(t)$ is decreasing for all $t>T \sim 0.44302$, we conclude that the particle is moving away from the origin when $t=2$.

4 Problem 4

4.1 Part a

From

$$
\begin{equation*}
x^{2}+4 y^{2}=7+3 x y \tag{37}
\end{equation*}
$$

we obtain, by implicit differentiation with respect to x, treating y as (locally) a function of x,

$$
\begin{equation*}
2 x+8 y y^{\prime}=3 y+3 x y^{\prime} \tag{38}
\end{equation*}
$$

so that

$$
\begin{equation*}
8 y y^{\prime}-3 x y^{\prime}=3 y-2 x \tag{39}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d y}{d x}=y^{\prime}=\frac{3 y-2 x}{8 y-3 x} \tag{40}
\end{equation*}
$$

4.2 Part b

If we are to have $y^{\prime}=0$ in Part a, above, then we must have, from (40),

$$
\begin{equation*}
0=y^{\prime}=\frac{3 y-2 x}{8 y-3 x} \tag{41}
\end{equation*}
$$

and from this we conclude that $3 y-2 x=0$. But we are given that $x=3$, and so $y=2$. These values for x and y give

$$
\begin{equation*}
x^{2}+4 y^{2}=3^{2}+4 \cdot 2^{2}=9+16=25=7+18=7+3 \cdot 3 \cdot 2=7+3 x y, \tag{42}
\end{equation*}
$$

showing that the point $(3,2)$ lies on the curve. The point $P=(3,2)$ thus meets our requirements.

4.3 Part c

From Part a, above, we have

$$
\begin{equation*}
(8 y-3 x) y^{\prime}=3 y-2 x \tag{43}
\end{equation*}
$$

Another implicit differentiation with respect to x then gives

$$
\begin{equation*}
\left(8 y^{\prime}-3\right) y^{\prime}+(8 y-3 x) y^{\prime \prime}=3 y^{\prime}-2 . \tag{44}
\end{equation*}
$$

At $(3,2)$, as we have seen above, we have $y^{\prime}=0$. Substituting these values for x, y, and y^{\prime} in equation (44) gives

$$
\begin{equation*}
(8 \cdot 0-3) \cdot 0+(8 \cdot 2-3 \cdot 3) y^{\prime \prime}=3 \cdot 0-2, \tag{45}
\end{equation*}
$$

whence

$$
\begin{equation*}
\left.y^{\prime \prime}\right|_{(3,2)}=-\frac{2}{7}<0 . \tag{46}
\end{equation*}
$$

We conclude, from the Second Derivative Test, that the curve has a local maximum at $(3,2)$.

5 Problem 5

5.1 Part a

$$
\begin{align*}
g(0) & =\frac{1}{2}(2+1) \cdot 3=\frac{9}{2} \tag{47}\\
g^{\prime}(0) & =f(0)=1 . \tag{48}
\end{align*}
$$

5.2 Part b

The function g, being differentiable throughout its domain, attains a relative maximum only at points x_{0} where $g^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)=0$ and there is an $\epsilon>0$ such that $g^{\prime}=f$ is positive on the interval $\left(x_{0}-\epsilon, x_{0}\right)$ but negative on the interval $\left(x_{0}, x_{0}+\epsilon\right)$. The only such point is $x_{0}=3$.

5.3 Part c

Because g is differentiable throughout $(-5,4)$, its absolute minimum value occurs either at a point where $g^{\prime}=f$ has a zero or at an endpoint of the interval. We have $g^{\prime}(x)=0$ at $x=3$, at $x=1$, and at $x=-4$. Of these, only $x=-4$ is a possibility, because, by the First Derivative Test, neither of the other two gives a local minimum-and an absolute minimum interior to the interval must be a local minimum. It is geometrically evident that $g(-5)=0$, that $g(-4)=-1$, and that $g(4)$ is substantially larger than 0 . Consequently, the required abolute minimum value of g in the interval $[-5,4]$ is $g(-4)=-1$.

5.4 Part d

The graph of g has an inflection point where the graph of $g^{\prime}=f$ has a relative extremum. Consequently, g has inflection points at $x=-3$, at $x=1$, and at $x=2$.

6 Problem 6

6.1 Part a

See Figure 1.

Figure 1: Problem 6, Part a

6.2 Part b

Because $y^{\prime}=x^{2}(y-1)$ slope is positive only when $x \neq 0$ and $(y-1)$ is positive. Thus, slope is positive precisely where both $x \neq 0$ and $y>1$.

6.3 Part c

If $y=f(x)$ is the solution to the initial value problem

$$
\begin{align*}
\frac{d y}{d x} & =x^{2}(y-1) \tag{49}\\
y(0) & =3 \tag{50}
\end{align*}
$$

then

$$
\begin{equation*}
\frac{f^{\prime}(x)}{f(x)-1}=x^{2}, \tag{51}
\end{equation*}
$$

so

$$
\begin{equation*}
\int_{0}^{x} \frac{f^{\prime}(\xi)}{f(\xi)-1} d \xi=\int_{0}^{x} \xi^{2} d \xi \tag{52}
\end{equation*}
$$

as long as x is chosen so that $f(\xi) \neq 1$ anywhere in the closed interval whose endpoints are 0 and x. That such values of x exist follows from the the fact that f is the solution of the initial value problem for which $f(0)=3$ and so is continuous on some interval centered at $x=0$.
For such x,

$$
\begin{align*}
\left.\ln |f(\xi)-1|\right|_{0} ^{x} & =\left.\frac{\xi^{3}}{3}\right|_{0} ^{x} \tag{53}\\
\ln |f(x)-1|-\ln |3-1| & =\frac{x^{3}}{3} \tag{54}
\end{align*}
$$

or

$$
\begin{equation*}
\ln |f(x)-1|=\frac{x^{3}}{3}+\ln 2, \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)-1|=2 e^{x^{3} / 3} . \tag{56}
\end{equation*}
$$

Now $f(0)-1=3-1=2>0$, and f, and we have chosen x so that $f(x)-1 \neq 0$ anywhere in the interval determined by 0 and x. Thus, by continuity, $f(x)-1$ has the same sign as 2. Thus, $|f(x)-1|=f(x)-1$ and

$$
\begin{equation*}
f(x)=1+2 e^{x^{3} / 3} \tag{57}
\end{equation*}
$$

gives the solution we seek.

