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1 Problem1

1.1 Parta

The function F(t) = 82 + 4sin(t/2) gives the rate, in cars per minute, at which cars pass
through the intersection. Thus, the total number of cars that pass through the intersection
in the period 0 <t < 30is
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/0 F(t)dt = /0 {82 + 4sin 2} dt (1)
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— [2460 — 8 cos 15] — [0 — 8] ~ 2474.07750, 3)
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or 2474 to the nearest whole number.

1.2 Partb

t
F'(t) = 2cos 37 50 (4)
F'(7) = 2008% ~ —1.87291 < 0, )

and, I’ being a continuous function, we conclude that traffic flow is decreasing near t = 7
because F'(7) < 0 and F’ is continuous near ¢t = 7. (We have phrased our answer this
way, because the terms “increasing” and “decreasing” are almost always defined only for
intervals, and not at individual points.)



1.3 Partc

The average value, in cars per minute, of traffic flow over the interval 10 <t < 151is

1 15 1 Al
F(t)dt = — |82t — 8 cos — 6
15—10/10 ®) 5{ COSQ] o ©)
1 1
= - <410+8COS5—8COS5) 7)
) 2
~ 81.89924 cars per minute. (8)
1.4 Partd
The average rate of change of the traffic flow over the interval 10 < ¢ < 15is
F(15) — F(1 4sin(15/2) — 4 i
(15) (10) = sin(15/2) s 5 cars per minute per minute 9)
15—-10 )
~ 1.51754 cars per minute per minute. (10)
2 Problem 2
Throughout this problem we understand that
f(z) =2z(1 —x) and (11)
g(z) = 3(z — 1)Vx (12)

for0 <z <1.



2.1 Parta

The graphs of the curves y = f(z) and y — g(x) intersect on the z-axis at + = 0 and at

2 = 1. Thus, the area between the two curves is
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2.2 Partb

(13)
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(15)

(16)

The volume of the solid generated by rotating the shaded region about the horizontal line

y=2is
1 , ,
[ tre gt ~ 2~ @)
0
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= 7T/ (4904 — 1723 + 302% + 122%/%2 — 172 — 12331/2) dx
0
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= 3/2 72_75/2_ 3 74_75
103
= 27077 ~ 16.17920.
2.3 Partc

The volume of the solid given is

1 1 9
/ [h(z) — g(x)])* dz = / [kzx(1—2) — 3(x — 1)y/z| dx
0 0

Thus, the desired equation is

/1 [kx(1 —z) — 3(z — 1)\/5]2dx = 15.
0

1

0

17)

(18)

(19)

(20)

(1)

(22)



Note: Solving equation (22) is not required, so evaluation of the integral is also not neces-

sary. However,

/1 [kx(l—w)—?,(xil)ﬁ]de_ik2+£k+
0

30

and solution of the resulting quadratic equation for k£ > 0 gives

o= VBT830 =64 6 60398,
14
3 Problem 3
3.1 Parta
Acceleration, a(t), at time ¢ is
a(t) =7'(t) = 4 [1 — arctane']
dt
___e
o 14e2t
Thus,
2
= ~ —0.13290.
(2) = g ~ 013290
3.2 Partb

Speed, o(t), at time ¢ is given by

SO

Thus,
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and

(6= D) = L. o
We now find that
/ . ’U(Z) ,
7= (32)
2 2

This is a positive number at a point where ¢’ is continuous, so we conclude that speed is
increasing near t = 2.

3.3 Partc

First we observe that

v(0) =1 — arctane’ =1 — % > 0. (34)

The function ¢ +— arctan e’ is a composition of increasing functions on the positive half
of the z-axis, and so is increasing there. Moreover, lim;_, arctane’ = 7/2. Hence, v is
a decreasing function on [0, 00) and lim; . v(t) < 0. It follows that v(7") = 0 for just
one value of 7' > 0, and because v(t) passes from a region where it is positive to a region
where it is negative as t increases through T, that point must give a maximum value for
position y(t), where

y(t) = —1 -l-/o v(T) dr. (35)

Solving for T" in the equation v(7") = 0 we find that 7" = Intan1 ~ 0.44302. This is the
time when y(t) reaches its maximal value.

3.4 Partd
Taking position as given by equation (35), we integrate numerically to find that
2
y(2) = -1 +/ v(T)dr ~ —1.36069. (36)
0

Because, as we have seen in Part ¢, above, y(t) is decreasing for all t > T ~ 0.44302, we
conclude that the particle is moving away from the origin when t = 2.
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4 Problem 4

41 Parta

From
22 + 4y =7+ 3zy (37)

we obtain, by implicit differentiation with respect to z, treating y as (locally) a function of
z,

2z + 8yy’ = 3y + 31/, (38)
so that
S8yy' — 3xy = 3y — 2z, (39)
or
dy , 3y —2x
dx Y 8y — 3z (40)
4.2 Partb

If we are to have v/ = 0 in Part a, above, then we must have, from (40),

, 3y —2zx

O: p—
Y78y 3¢

(41)

and from this we conclude that 3y — 22 = 0. But we are given that z = 3, and so y = 2.
These values for z and y give

24y =32 4+4-22=9416=25=T7+18=7+3-3-2 =7+ 3ay, (42)
showing that the point (3, 2) lies on the curve. The point P = (3,2) thus meets our re-

quirements.

4.3 Partc

From Part a, above, we have

(8y — 3x)y’ = 3y — 2x. (43)



Another implicit differentiation with respect to x then gives
8y —3)y' + (8y — 3z)y" = 3y — 2. (44)

At (3,2), as we have seen above, we have y' = 0. Substituting these values for z, y, and ¢/
in equation (44) gives

(8-0—3)-0+(8-2—3-3)y" =3-0—2, (45)
whence
2
" =—-=-<0. (46)
32 7

We conclude, from the Second Derivative Test, that the curve has a local maximum at
(3,2).

5 Problem 5
51 Parta
o) = 5(2+1) 3= (47)
g'(0) = f(0) = 1. (43)
52 Parthb

The function g, being differentiable throughout its domain, attains a relative maximum
only at points zy where ¢'(z9) = f(z9) = 0 and there is an ¢ > 0 such that ¢/ = f is
positive on the interval (xg — €, zo) but negative on the interval (zg, zg + €). The only such
pointis xg = 3.

5.3 Partc

Because g is differentiable throughout (—5, 4), its absolute minimum value occurs either
at a point where ¢’ = f has a zero or at an endpoint of the interval. We have ¢'(z) = 0
atx = 3,atx = 1, and at x = —4. Of these, only x = —4 is a possibility, because, by the
First Derivative Test, neither of the other two gives a local minimum—and an absolute
minimum interior to the interval must be a local minimum. It is geometrically evident that
g(—=5) =0, that g(—4) = —1, and that g(4) is substantially larger than 0. Consequently, the
required abolute minimum value of g in the interval [-5, 4] is g(—4) = —1.
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5.4 Partd

The graph of g has an inflection point where the graph of ¢’ = f has a relative extremum.
Consequently, g has inflection pointsatz = —3,atz = 1,and at x = 2.

6 Problem 6

6.1 Parta

See Figure 1.
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Figure 1: Problem 6, Part a

6.2 Partb

Because y' = x2(y — 1) slope is positive only when x # 0 and (y — 1) is positive. Thus,
slope is positive precisely where both  # 0 and y > 1.

6.3 Partc

If y = f(x) is the solution to the initial value problem

Yy -1, )
y0) =3, 60



then

f/(l") — 2
SO
Cope) T,
/0 f@_ldf—/o € d, (52)

as long as z is chosen so that f(£) # 1 anywhere in the closed interval whose endpoints
are 0 and x. That such values of x exist follows from the the fact that f is the solution
of the initial value problem for which f(0) = 3 and so is continuous on some interval
centered at z = 0.

For such z,
n[f(&) =1 =51 (53)
0 0
3
In|f(e) = 1] = Inf3 -1 = 5, (54)
or
3
1n\f(m)—1y=%+1n2, (55)
and
|f(z) — 1] = 2673, (56)

Now f(0)—1=3—-1=2>0,and f, and we have chosen z so that f(z) —1 # 0 anywhere
in the interval determined by 0 and z. Thus, by continuity, f(z) — 1 has the same sign as
2. Thus, |f(z) — 1| = f(x) — 1 and

Flz) =1+ 2e""/3 (57)

gives the solution we seek.



