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1 Problem 1

1.1 Part a

The function F (t) = 82 + 4 sin(t/2) gives the rate, in cars per minute, at which cars pass
through the intersection. Thus, the total number of cars that pass through the intersection
in the period 0 ≤ t ≤ 30 is∫ 30

0
F (t) dt =

∫ 30

0

[
82 + 4 sin

t

2

]
dt (1)

=

[
82t− 8 cos

t

2

] ∣∣∣∣30
0

(2)

= [2460− 8 cos 15]− [0− 8] ∼ 2474.07750, (3)

or 2474 to the nearest whole number.

1.2 Part b

F ′(t) = 2 cos
t

2
, so (4)

F ′(7) = 2 cos
7

2
∼ −1.87291 < 0, (5)

and, F ′ being a continuous function, we conclude that traffic flow is decreasing near t = 7
because F ′(7) < 0 and F ′ is continuous near t = 7. (We have phrased our answer this
way, because the terms “increasing” and “decreasing” are almost always defined only for
intervals, and not at individual points.)
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1.3 Part c

The average value, in cars per minute, of traffic flow over the interval 10 ≤ t ≤ 15 is

1

15− 10

∫ 15

10
F (t) dt =

1

5

[
82t− 8 cos

t

2

] ∣∣∣∣15
10

(6)

=
1

5

(
410 + 8 cos 5− 8 cos

15

2

)
(7)

∼ 81.89924 cars per minute. (8)

1.4 Part d

The average rate of change of the traffic flow over the interval 10 ≤ t ≤ 15 is

F (15)− F (10)
15− 10

=
4 sin(15/2)− 4 sin 5

5
cars per minute per minute (9)

∼ 1.51754 cars per minute per minute. (10)

2 Problem 2

Throughout this problem we understand that

f(x) = 2x(1− x) and (11)
g(x) = 3(x− 1)

√
x (12)

for 0 ≤ x ≤ 1.
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2.1 Part a

The graphs of the curves y = f(x) and y − g(x) intersect on the x-axis at x = 0 and at
x = 1. Thus, the area between the two curves is∫ 1

0
[f(x)− g(x)] dx =

∫ 1

0

[
2x(1− x)− 3(x− 1)

√
x
]
dx (13)

=

∫ 1

0

[
3x1/2 + 2x− 3x3/2 − 2x2

]
dx (14)

=

[
2x3/2 + x2 − 6

5
x5/2 − 2

3
x3
] ∣∣∣∣1

0

(15)

=

[
2 + 1− 6

5
− 2

3

]
− 0 =

17

15
. (16)

2.2 Part b

The volume of the solid generated by rotating the shaded region about the horizontal line
y = 2 is ∫ 1

0

[
π[2− g(x)]2 − π[2− f(x)]2

]
dx (17)

= π

∫ 1

0

(
4x4 − 17x3 + 30x2 + 12x3/2 − 17x− 12x1/2

)
dx (18)

= π

(
8x3/2 +

17

2
x2 − 24

5
x5/2 − 10x3 +

17

4
x4 − 4

5
x5
) ∣∣∣∣1

0

(19)

=
103

20
π ∼ 16.17920. (20)

2.3 Part c

The volume of the solid given is∫ 1

0
[h(x)− g(x)]2 dx =

∫ 1

0

[
kx(1− x)− 3(x− 1)

√
x
]2
dx (21)

Thus, the desired equation is∫ 1

0

[
kx(1− x)− 3(x− 1)

√
x
]2
dx = 15. (22)
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Note: Solving equation (22) is not required, so evaluation of the integral is also not neces-
sary. However, ∫ 1

0

[
kx(1− x)− 3(x− 1)

√
x
]2
dx =

1

30
k2 +

32

105
k +

3

4
, (23)

and solution of the resulting quadratic equation for k > 0 gives

k =

√
87886− 64

14
∼ 16.60398. (24)

3 Problem 3

3.1 Part a

Acceleration, a(t), at time t is

a(t) = v′(t) =
d

dt

[
1− arctan et

]
(25)

= − et

1 + e2t
. (26)

Thus,

a(2) = − e2

1 + e4
∼ −0.13290. (27)

3.2 Part b

Speed, σ(t), at time t is given by

σ(t) = |v(t)| =
√
[v(t)]2, (28)

so

[σ(t)]2 = [v(t)]2 . (29)

Thus,

�2σ(t)σ
′(t) = �2v(t)v

′(t), (30)

4



and

σ′(t) =
v(t)

σ(t)
v′(t) =

v(t)

|v(t)|
v′(t). (31)

We now find that

σ′(2) =
v(2)

|v(2)|
v′(2) (32)

=

(
1− arctan e2

|1− arctan e2|

)
·
(
− e2

1 + e4

)
∼ 0.13290 > 0. (33)

This is a positive number at a point where σ′ is continuous, so we conclude that speed is
increasing near t = 2.

3.3 Part c

First we observe that

v(0) = 1− arctan e0 = 1− π

4
> 0. (34)

The function t 7→ arctan et is a composition of increasing functions on the positive half
of the x-axis, and so is increasing there. Moreover, limt→∞ arctan et = π/2. Hence, v is
a decreasing function on [0,∞) and limt→∞ v(t) < 0. It follows that v(T ) = 0 for just
one value of T > 0, and because v(t) passes from a region where it is positive to a region
where it is negative as t increases through T , that point must give a maximum value for
position y(t), where

y(t) = −1 +
∫ t

0
v(τ) dτ. (35)

Solving for T in the equation v(T ) = 0 we find that T = ln tan 1 ∼ 0.44302. This is the
time when y(t) reaches its maximal value.

3.4 Part d

Taking position as given by equation (35), we integrate numerically to find that

y(2) = −1 +
∫ 2

0
v(τ) dτ ∼ −1.36069. (36)

Because, as we have seen in Part c, above, y(t) is decreasing for all t > T ∼ 0.44302, we
conclude that the particle is moving away from the origin when t = 2.
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4 Problem 4

4.1 Part a

From

x2 + 4y2 = 7 + 3xy (37)

we obtain, by implicit differentiation with respect to x, treating y as (locally) a function of
x,

2x+ 8yy′ = 3y + 3xy′, (38)

so that

8yy′ − 3xy′ = 3y − 2x, (39)

or

dy

dx
= y′ =

3y − 2x

8y − 3x
. (40)

4.2 Part b

If we are to have y′ = 0 in Part a, above, then we must have, from (40),

0 = y′ =
3y − 2x

8y − 3x
, (41)

and from this we conclude that 3y − 2x = 0. But we are given that x = 3, and so y = 2.
These values for x and y give

x2 + 4y2 = 32 + 4 · 22 = 9 + 16 = 25 = 7 + 18 = 7 + 3 · 3 · 2 = 7 + 3xy, (42)

showing that the point (3, 2) lies on the curve. The point P = (3, 2) thus meets our re-
quirements.

4.3 Part c

From Part a, above, we have

(8y − 3x)y′ = 3y − 2x. (43)

6



Another implicit differentiation with respect to x then gives

(8y′ − 3)y′ + (8y − 3x)y′′ = 3y′ − 2. (44)

At (3, 2), as we have seen above, we have y′ = 0. Substituting these values for x, y, and y′

in equation (44) gives

(8 · 0− 3) · 0 + (8 · 2− 3 · 3)y′′ = 3 · 0− 2, (45)

whence

y′′
∣∣∣∣
(3,2)

= −2

7
< 0. (46)

We conclude, from the Second Derivative Test, that the curve has a local maximum at
(3, 2).

5 Problem 5

5.1 Part a

g(0) =
1

2
(2 + 1) · 3 =

9

2
(47)

g′(0) = f(0) = 1. (48)

5.2 Part b

The function g, being differentiable throughout its domain, attains a relative maximum
only at points x0 where g′(x0) = f(x0) = 0 and there is an ε > 0 such that g′ = f is
positive on the interval (x0− ε, x0) but negative on the interval (x0, x0+ ε). The only such
point is x0 = 3.

5.3 Part c

Because g is differentiable throughout (−5, 4), its absolute minimum value occurs either
at a point where g′ = f has a zero or at an endpoint of the interval. We have g′(x) = 0
at x = 3, at x = 1, and at x = −4. Of these, only x = −4 is a possibility, because, by the
First Derivative Test, neither of the other two gives a local minimum—and an absolute
minimum interior to the interval must be a local minimum. It is geometrically evident that
g(−5) = 0, that g(−4) = −1, and that g(4) is substantially larger than 0. Consequently, the
required abolute minimum value of g in the interval [−5, 4] is g(−4) = −1.
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5.4 Part d

The graph of g has an inflection point where the graph of g′ = f has a relative extremum.
Consequently, g has inflection points at x = −3, at x = 1, and at x = 2.

6 Problem 6

6.1 Part a

See Figure 1.
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Figure 1: Problem 6, Part a

6.2 Part b

Because y′ = x2(y − 1) slope is positive only when x 6= 0 and (y − 1) is positive. Thus,
slope is positive precisely where both x 6= 0 and y > 1.

6.3 Part c

If y = f(x) is the solution to the initial value problem

dy

dx
= x2(y − 1); (49)

y(0) = 3, (50)
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then

f ′(x)

f(x)− 1
= x2, (51)

so ∫ x

0

f ′(ξ)

f(ξ)− 1
dξ =

∫ x

0
ξ2 dξ, (52)

as long as x is chosen so that f(ξ) 6= 1 anywhere in the closed interval whose endpoints
are 0 and x. That such values of x exist follows from the the fact that f is the solution
of the initial value problem for which f(0) = 3 and so is continuous on some interval
centered at x = 0.

For such x,

ln |f(ξ)− 1|
∣∣∣∣x
0

=
ξ3

3

∣∣∣∣x
0

; (53)

ln |f(x)− 1| − ln |3− 1| = x3

3
, (54)

or

ln |f(x)− 1| = x3

3
+ ln 2, (55)

and

|f(x)− 1| = 2ex
3/3. (56)

Now f(0)−1 = 3−1 = 2 > 0, and f , and we have chosen x so that f(x)−1 6= 0 anywhere
in the interval determined by 0 and x. Thus, by continuity, f(x) − 1 has the same sign as
2. Thus, |f(x)− 1| = f(x)− 1 and

f(x) = 1 + 2ex
3/3 (57)

gives the solution we seek.
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