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1 Problem 1

1.1 Part a

The area of the region R is
∫ a
0

[
4−x − 1

4 − sinπx
]
dx, where a is the smallest positive solu-

tion of the equation

1 + 4 sinπx = 41−x. (1)

Numerical solution, and then a numerical integration, give

a ∼ 0.17823, and (2)∫ a

0

[
4−x − 1

4
− sinπx

]
dx ∼ 0.06475. (3)

1.2 Part b

The second smallest positive solution, b, of equation (1) is easily seen to be b = 1. The area
of the region S is therefore given by∫ 1

a

[
4−x − 1

4
− sinπx

]
dx ∼ 0.41036, (4)

where we have again carried out the integration numerically.
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1.3 Part c

The volume of the solid generated when S is revolved about the horizontal ine y = −1 is
(integrating numerically one more time)

π

∫ 1

a

[(
1

4
+ sinπx+ 1

)2

−
(
4−x + 1

)2]
dx ∼ 4.55876. (5)

2 Problem 2

2.1 Part a

If the rate R(t), in cubic yards per hour, at which sand is being removed by the tide at
time t is given by

R(t) = 2 + 5 sin

(
4πt

25

)
, (6)

then the amount, in cubic yards, of sand removed by the tide during the period 0 ≤ t ≤ 6
is ∫ 6

0
R(t) dt = 12 +

125

4π
− 125

4π
cos

(
24

25
π

)
∼ 31.81593 (7)

2.2 Part b

Y (t) = 2500−
∫ t

0

(
2 + 5 sin

4πτ

25

)
dτ +

∫ t

0

15τ

1 + 3τ
dτ. (8)

Note: Whether evaluation of the integrals is required is not clear. For the record,∫ t

0

(
2 + 5 sin

4πτ

25

)
dτ =

(
2τ − 125

4π
cos

4πτ

25

) ∣∣∣∣t
0

(9)

=

(
2t− 125

4π
cos

4πt

25

)
−
(
0− 125

4π

)
, (10)
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while ∫ t

0

15τ

1 + 3τ
dτ =

∫ t

0

5(1 + 3τ)

1 + 3τ
dτ −

∫
5

1 + 3τ
dτ (11)

= 5

∫
dτ − 5

3

∫
3 dτ

1 + 3τ
(12)

=

(
5τ − 5

3
ln |1 + 3τ |

) ∣∣∣∣t
0

(13)

= 5t− 5

3
ln |1 + 3t|. (14)

Thus,

Y (t) = 2500− 125

4π
+ 3t+

125

4π
cos

4πt

25
− 5

3
ln |1 + 3t|. (15)

2.3 Part c

When t = 4, the total amount of sand on the beach is changing at the rate

S(4)−R(4) = 34

13
− 5 sin

16π

25
∼ −1.90875 cubic yards per hour. (16)

2.4 Part d

A plot of S(t) − R(t) over the interval 0 ≤ t ≤ 6 shows that the rate of accumulation is
negative when t < t0 and positive when t > t0, where t0 is a certain value of t near t = 5.
Solving numerically for t0, we find that t0 ∼ 5.11787, and this must be the time when the
amount of sand on the beach is minimal. This minimal amount is about

Y (t0) ∼ 2492.36948. (17)

3 Problem 3

3.1 Part a

T ′(7) ∼ T (8)− T (6)
8− 6

=
55− 62

8− 6
= −7

2
. (18)

3



3.2 Part b

The average temperature of the wire is

1

8

∫ 8

0
T (x) dx ∼ 1

8

[
100 + 93

2
+

93 + 70

2
(5− 1) +

70 + 62

2
+

62 + 55

2
(8− 6)

]
(19)

∼ 1211

16
degrees Celsius. (20)

3.3 Part c

We are given that T is twice differentiable—though we are not told where. We take the
statement to mean that T is twice differentiable, and, consequently that T ′ is continuous,
on a domain that includes [0, 8], so that the problem is meaningful. By the Fundamental
Theorem of Calculus,∫ 8

0
T ′(t) dt = T (8)− T (0) = −45 degrees Celsius. (21)

The integrand, T ′(x), is the (instantaneous) rate at which T (x) changes per unit length at
each point of the interval [0, 8], and the integral gives net temperature change over the
same interval.

3.4 Part d

By hypothesis, T is continuous on [1, 5] and differentiable on (1, 5), so the Mean Value
Theorem guarantees that there is a point ξ ∈ (1, 5) such that

T ′(ξ) =
T (5)− T (1)

5− 1
= −23

4
. (22)

By the same reasoning, there is a point η ∈ (5, 6) for which

T ′(η) =
T (6)− T (5)

6− 5
= −8. (23)

We note that, necessarily, 0 < ξ < η < 8. We apply the Mean Value Theorem still a third
time, now on the interval [ξ, η], and we obtain ζ ∈ (ξ, η) such that

T ′′(ζ) =
T ′(ξ)− T ′(η)

ξ − η
=
−8 + (23/4)

ξ − η
=

−9
4(ξ − η)

< 0. (24)

Thus, the data in the table are not consistent with the assertion that T ′′(x) > 0 throughout
0, 8).
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4 Problem 4

4.1 Part a

The derivative of f must be zero or undefined at any point of (0, 4) where f has a relative
extremum. Thus, x = 1 and x = 2 are the only values we need to consider. We find that
f ′(x) > 0 for all x 6= 1 in the interval (0, 2). Consequently, f is increasing throughout that
interval and can’t have a relative extremum at x = 1. At x = 2, we find that f(2) is mean-
ingful, and that f ′(x) is positive on (1, 2) but negative on (2, 3). By the First Derivative
Test, f has a relative maximum at x = 2.

4.2 Part b

See Figure 1
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Figure 1: Problem 4, Part b

4.3 Part c

If

g(x) =

∫ x

1
f(t) dt, (25)
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then, by the Fundamental Theorem of Calculus, g′(x) = f(x) Thus, g can have relative
extrema only at points where f(x) = 0. At x = 1, f(x) undergoes a sign change from
negative to positive, and so at x = 1, g(x) passes from a region where it is decreasing to
a region where it is increasing. Consequently, g has a relative minimum at x = 1. Similar
reasoning shows that g has a relative maximum at x = 3.

4.4 Part d

The function g has inflection points where g′ as relative extrema. But g′ is f and, according
to Part a of this problem, f has a relative extremum only at x = 2. We conclude that g has
just one inflection point, at x = 2.

5 Problem 5

5.1 Part a

∫ 24

0
v(t) dt =

1

2
(4− 0) · 20 + (16− 4) · 20 + 1

2
(34− 16) · 20 = 360 meters. (26)

The integral gives the distance, in meters, that the car travels during the time period 0 ≤
t ≤ 24.

5.2 Part b

The definition of v′(t0) is

v′(t0) = lim
h→9

v(t0 + h)− v(t0)
h

. (27)

For the piecewise linear function given,

lim
h→0−

v(4 + h)− v(4)
h

= 5, while (28)

lim
h→0+

v(4 + h)− v(4)
h

= 0. (29)

These one-sided limits are distinct, so the two-sided limit, which would be v′(4), doesn’t
exist.

On the other hand, v′(20) = −5/2.
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5.3 Part c

Acceleration, a(t), is given by

a(t) =


t when 0 < t < 4

0 when 4 < t < 16

−5

2
when 16 < t < 24.

(30)

5.4 Part d

The average rate of change of v over 8 ≤ t ≤ 20 is

v(20)− v(8)
20− 8

=
10− 20

20− 8
= −5

6
. (31)

The hypotheses of the Mean Value Theorem require that a function be differentiable at
every point of the interior of the interval on which we wish to apply the theorem, so we
may not apply the Mean Value Theorem to the function v on the interval [8, 20], because
v′(16) does not exist.

6 Problem 6

6.1 Part a

See Figure 2

6.2 Part b

At (1,−1), we have y′ = −2(1)/(−1) = 2, so the equation of the line tangent to the solution
for which y(1) = −1 is

y = −1 + 2(x− 1) = 2x− 3. (32)

This gives and approximate value for y(1.1) of y = 2 · (1.1)− 3 = −0.8.
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Figure 2: Problem 6, Part a
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6.3 Part c

If f is the particular solution of y′ = −2x/y for which f(1) = −1, then

f(x)f ′(x) = −2x, so that (33)∫ x

1
f(ξ)f ′(ξ) dξ = −2

∫ x

1
ξ dξ; (34)

1

2
[f(ξ)]2

∣∣∣∣x
1

= −ξ2
∣∣∣∣x
1

; (35)

[f(x)]2 − [f(1)]2 = −2x2 + 2; (36)

[f(x)]2 = 3− 2x2; and (37)

f(x) = −
√

3− 2x2, (38)

where we have chosen the negative square root on the right side in order to satisfy the
initial condition.
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